
Soundness and Completeness of Formal Encryption: the
Cases of Key Cycles and Partial Information Leakage

Pedro Adão1?, Gergei Bana2??, Jonathan Herzog3, and Andre Scedrov4? ? ?

1 SQIG–Instituto de Telecomunicações and IST, TULisbon, Portugal
2 Department of Computer Science, UCDavis, USA

3 The Naval Postgraduate School, Monterey, CA, USA
4 Department of Mathematics, University of Pennsylvania, Philadelphia, USA

pedro.adao@ist.utl.pt gebana@cs.ucdavis.edu jcherzog@nps.edu
scedrov@math.upenn.edu

Abstract. In their seminal work, Abadi and Rogaway [2, 3] show that the formal
(Dolev-Yao) notion of indistinguishability is sound with respect to the computa-
tional model: messages that are indistinguishable in the formal model become in-
distinguishable messages in the computational model. However, this result leaves
two problems unsolved. First, it cannot tolerate key cycles. Second, it makes the
too-strong assumption that the underlying cryptography hides all aspects of the
plaintext, including its length. In this paper we extend their work in order to ad-
dress these problems.
We show that the recently-introduced notion of KDM-security can provide sound-
ness even in the presence of key cycles. For this, we have to consider encryption
that reveals the length of plaintexts, which we use to motivate a general exami-
nation information-leaking encryption. In particular, we consider the conditions
under which an encryption scheme that may leak some partial information will
provide soundness and completeness to some (possibly weakened) version of the
formal model.

1 Introduction

Historically, cryptographic protocols have been studied and analyzed in at least two
different models. The first of these models, the computational model, is derived from
? Partially supported by FCT grant SFRH/BD/8148/2002. Additional support from

FEDER/FCT project QuantLog POCI/MAT/55796/2004, FEDER/FCT project QSec
PTDC/EIA/67661/2006, and FEDER/FCT project KLog PTDC/MAT/68723/2006.

?? Partially supported by OSD/ONR CIP/SW URI ‘Software Quality and Infrastructure Protec-
tion for Diffuse Computing” through ONR Grant N00014-01-1-0795. Additional support from
NSF Grant CNS-0429689. Additional support from the Packard Fellowship. Part of this work
was done while the author was affiliated with University of Pennsylvania, Department of Math-
ematics.

? ? ? Partially supported by OSD/ONR CIP/SW URI “Software Quality and Infrastructure Protec-
tion for Diffuse Computing” through ONR Grant N00014-01-1-0795 and OSD/ONR CIP/SW
URI “Trustworthy Infrastructure, Mechanisms, and Experimentation for Diffuse Computing”
through ONR Grant N00014-04-1-0725. Additional support from NSF Grants CCR-0098096
and CNS-0429689.

2

complexity theory. Its definitions are phrased in terms of the asymptotic behavior of
Turing machines, and its main proof technique is the reduction. The other of these two
models, the formal model (or, Dolev-Yao model), is so named because of its genesis in
the field of formal methods. Its definitions are phrased in terms of process algebras and
state machines (particularly non-deterministic ones) and it uses many different proof
methods (including automated ones).

In this work (based on [5, 4, 14]) we consider two aspects of these models’ rela-
tionship. The differences between these models are many, but two in particular are key:
their representations of messages and the powers they give to the adversary.

– In the computational model, messages are families of probability distributions over
bit-strings (indexed by the security parameter). The adversary is modeled as an
algorithm of realistic computational power: probabilistic polynomial-time, PPT .

– The formal model imposes a great deal more structure. Messages are expressions
built according to a particular grammar. Atomic messages are symbols representing
keys, random values, texts, and so on. More complex messages can be built from
simpler ones by application of (symbolic) functions, e.g., pairing and encryption.
The adversary is only given limited power to manipulate these expressions, such as
separating a concatenation or decrypting an encryption (if it knows the decrypting
key). These possible operations are specified via a set of equations.

Despite these differences, certain intuitions can be translated between the two models
in the expected way. In particular, under carefully chosen conditions, indistinguisha-
bility of messages can be mapped directly from one model to the other. This was first
demonstrated by Abadi and Rogaway [2, 3] in a particular setting and under strong as-
sumptions. In their formulation of the formal model, two expressions are thought to
be indistinguishable to the adversary, also called formally equivalent, if their only dif-
ferences lie in encryption terms that cannot be decrypted by the formal adversary. In
the computational model, on the other hand, messages are families of probability dis-
tributions on bit-strings. Indistinguishability of computational messages is captured by
the standard notion of computational indistinguishability (i.e., indistinguishability by
an efficient algorithm).

Relating the two models. Once a computational encryption scheme is fixed, an intuitive
function translates expressions between the two models. This function (called interpre-
tation), maps each formal expression to an ensemble (indexed by the security parame-
ter) of probability distributions over bit-strings. Given an encryption scheme, and hence
a particular interpretation function, one can then ask whether all pairs of equivalent for-
mal messages map to indistinguishable probability distribution ensembles. If so, it is
said that soundness holds5 and it implies that the formal model is a faithful abstrac-
tion of the computational model: security in the formal model implies security in the
computational model as well.

In their seminal work, Abadi and Rogaway demonstrated that (in the symmetric-
key encryption setting) soundness holds when the security level of the computational

5 This particular kind of soundness is but one piece of a much larger definition, but as a conve-
nient shorthand we will use ‘soundness’ in this paper to mean soundness of message indistin-
guishability.

3

encryption scheme is ‘type-0,’ a property of their own devising. This result was later
translated to the public-key setting by Micciancio and Warinschi [46], who found that
soundness is guaranteed by encryption schemes that satisfy ‘chosen-ciphertext secu-
rity’ [51, 52] (CCA-2 in the notation of [18]). This power of chosen-ciphertext security
has been confirmed by subsequent extensions [33, 23]. These results, however—in both
the symmetric and asymmetric settings—do not address two important problems.

Unsolved problems in previous soundness results. Firstly, none of the existing sound-
ness results address the problem of key cycles. An expression has a (symmetric) key
cycle if one can find symmetric keys K1, K2,. . . , Kn such that Ki is encrypted in the
expression under Ki+1 and Kn is encrypted by K1. (In the asymmetric setting, the pub-
lic key Ki+1 encrypts the private key K−1

i , and K1 encrypts K−1
n .) The formal model

makes no distinction between those messages that have key cycles and those that do not.
Further, the interpretation function is well-defined over key cycles, and so, formal key
cycles are computationally meaningful. However, neither the soundness result of Abadi
and Rogaway nor subsequent soundness results (described in Section 2) are known to
hold for such messages. (In fact, the stronger of these results [11, 23] assumes that no
private or symmetric keys are encrypted at all!)

Another problem that was not dealt in most of the previous soundness results re-
gards to partial leakage of information. Most of these results consider that formal en-
cryption hides all information about the plaintext. As an example, the original Abadi
and Rogaway result assumes that formal encryption conceals all aspects of the plain-
text. That is, their result requires that symmetric encryption hides (among other things)
the length of the plaintext. Unfortunately, this cannot be achieved except in very limited
contexts. This particular issue has been noted by Backes, Pfitzmann and Waidner [13],
and Backes and Pfitzmann [8]. Furthermore, it is the focus of work by Micciancio and
Warinschi [46], Laud [39], and Micciancio and Panjwani [44] who resolve the matter
by weakening the formal model. These results, however, are highly specific to particular
classes of computational encryption schemes. Can these results can be generalized to
encompass other encryption schemes that leak other kinds of information? Rephrased,
under what conditions will an encryption scheme provide soundness to some formal
model?

1.1 Our work

In this paper, we extend the original result of Abadi and Rogaway in order to address the
problems mentioned above. First, we extend the formalism of Abadi Rogaway and show
that soundness in the presence of key cycles can actually be achieved using a recently-
proposed notion of computational security. In doing this, however, we must (unlike
Abadi and Rogaway) assume that formal encryptions reveal two things: the ‘length’ of
their plaintexts, and whether two different ciphertexts were created using the same key.
With this as motivation, we then turn to generalizations of the Abadi-Rogaway formal-
ism. In particular, we show (in a general way) how Abadi and Rogaway’s formulation
of the formal model can be extended to consider encryption schemes (computational or
information-theoretic) that leak partial information such as plaintext-length. That is, we

4

investigate those conditions under which a computational encryption scheme provides
soundness and completeness to some (possibly weakened) version of the formal model.

In more detail: We resolve the issue of soundness in the presence of key cycles by
using the notion of key-dependent message (KDM) security for symmetric encryption.
This definition was recently introduced simultaneously both by Black, Rogaway and
Shrimpton [19], who consider it in their own right, and by Camenisch and Lysyan-
skaya [20], who use it for an anonymous credential system. We, however, will use it to
demonstrate two points:

1. As expected, and predicted by Black et al., this new definition is strong enough to
provide soundness in the presence of keys cycles.

2. Moreover, soundness requires new computational definitions of security. That is,
we demonstrate that both soundness and KDM security neither imply nor are im-
plied by type-0 security, the notion of security used by Abadi and Rogaway.

Thus, the problem of key cycles was, in fact, a genuine “gap” between the formal and
computational models at the time of the original Abadi-Rogaway result, but one that
can be repaired using recent advances in the computational model. Also, soundness in
the presence of key cycles demonstrates that there is more to the relationship between
the formal and computational models than type-0.

Unfortunately, KDM-secure encryption does not necessarily hide all aspects of its
inputs. In particular, KDM-security allows a ciphertext to reveal two things: the bit-
length of the plaintext, and the identity (but not value) of the key used in the encryption.
Therefore, soundness for key cycles requires that encryptions in the formal model must
also reveal these two things.

This fact leads us to another extension of the original Abadi-Rogaway result. Their
result assumes that computational encryption can hide all aspects of the plaintext. In
particular, it demonstrates that soundness is provided by ‘type-0’ encryption, which
hides (among other things) the length of the plaintext. However, most available encryp-
tion schemes do not hide this information. For this reason, the original Abadi-Rogaway
result should be generalized to consider the kinds of soundness that can be provided by
real encryption schemes.

The Problem of Leakage of Partial Information More specifically, we extend the
applicability of the Abadi-Rogaway treatment by expanding their formulation of the
formal model. We show how to adjust the formal notion of equivalence in order to
maintain soundness when the underlying computational encryption scheme leaks partial
information. Furthermore, we investigate the circumstances under which an encryption
scheme (or security definition) can be thought of as implementing a (possibly weak-
ened) version of the formal model.

Also, our approach captures both the standard complexity-based encryption schemes
of the computational model and purely probabilistic, information-theoretic encryption
schemes. That is, we use a general probabilistic framework that includes, as special
cases, both the computational and purely probabilistic encryption schemes (such as
One-Time Pad).

We consider not only soundness properties, but we also provide completeness the-
orems. In this context, an encryption scheme provides soundness if, when used in the

5

interpretation function, equivalent formal messages become indistinguishable proba-
bility distributions. On the other hand, a scheme provides completeness if whenever
two formal messages have indistinguishable interpretations, they are equivalent in the
formal model. Our generalization will show how both of these conditions can be main-
tained. Since key cycles do not pose a problem for completeness, we will only discuss
completeness regarding the leak of information.

2 Previous Work

Work intended to connect the cryptographic and the formal models started with sev-
eral independent approaches, including Lincoln, Mitchell, Mitchell, and Scedrov [41],
Canetti [22], Pfitzmann, Schunter and Waidner [48, 49], and Abadi and Rogaway [3].
In [3], formal terms with nested operations are considered specifically for symmetric
encryption, the adversary is restricted to passive eavesdropping, and the security goals
are formulated as indistinguishability of terms. This was extended in [1] from terms
to more general programs, but the restriction to passive adversaries remained. We dis-
cuss other extensions of [3] further below. Several papers consider specific models or
specific properties, e.g., Guttman, Thayer, and Zuck [31] consider strand spaces and
information-theoretically secure authentication.

A process calculus for analyzing security protocols in which protocol adversaries
may be arbitrary probabilistic polynomial-time processes is introduced in [41]. In this
framework, which provides a formal treatment of the computational model, security
properties are formulated as observational equivalences. Mitchell, Ramanathan, Sce-
drov, and Teague [47] use this framework to develop a form of process bisimulation
that justifies an equational proof system for protocol security.

The approach by Pfitzmann, Schunter and Waidner [48, 49] starts with a general
reactive system model, a general definition of cryptographically secure implementation
by simulatability, and a composition theorem for this notion of secure implementation.
This work is based on definitions of secure function evaluation, i.e.the computation of
one set of outputs from one set of inputs [29, 43, 16, 21]. The approach was extended
from synchronous to asynchronous systems in [50, 22], which are now known as the
reactive simulatability framework [50, 10] and the universal composability framework
[22]. A detailed comparison of the two approaches may be found in [27].

The first soundness result of a formal model under active attacks has been achieved
by Backes, Pfitzmann and Waidner [11] within the reactive simulatability framework.
Their result comprises arbitrary active attacks and holds in the context of arbitrary sur-
rounding interactive protocols and independently of the goals that one wants to prove
about the surrounding protocols; in particular, property preservation theorems for the
simulatability have been proved, e.g., for integrity and secrecy [6, 9]. While the original
result in [11] considered public-key encryption and digital signatures, the soundness re-
sult was extended to symmetric authentication and to symmetric encryption in [12] and
[8], respectively. (These authors are also among the first to explicitly note that symbolic
models of cryptography ignore plaintext-lengths while real cryptographic algorithms
often reveal it [13, 8].)

6

Concurrently with [11], an extension to asymmetric encryption, but still under pas-
sive attacks, is in [34]. Asymmetric encryption under active attacks is considered in [32]
in the random oracle model. Laud [39] has subsequently presented a cryptographic un-
derpinning for a formal model of symmetric encryption under active attacks. His work
enjoys a direct connection with a formal proof tool, but it is specific to certain confi-
dentiality properties and restricts the surrounding protocols to straight-line programs in
a specific language. Herzog et al. [34] and Micciancio and Warinschi [46] also give a
cryptographic underpinning under active attacks. Their results are narrower than that
in [11] since they are specific for public-key encryption, but consider simpler real im-
plementations. Moreover, [34] relies on a stronger assumption, which was subsequently
weakened by Herzog [33]. The approach in [46] restricts the classes of protocols and
protocol properties that can be analyzed. The work of [46] was subsequently extended
by Micciancio and Panjwani [44] to prove soundness of a group-key distribution proto-
col in the presence of a CPA-secure scheme. Cortier and Warinschi [24] use automated
tools for proving that symbolic integrity and specific secrecy proofs are sound with
respect to the computational model in the case of protocols that use nonces, signa-
tures and asymmetric encryption (see below for the relationship between symbolic and
cryptographic secrecy). Bana [14] and Adão, Bana, and Scedrov [5] extend the original
Abadi-Rogaway result to weaker encryption schemes. Laud and Corin [40] consider ex-
tensions to composite keys, while Baudet, Cortier, and Kremer [15] consider extensions
to equational theories and to static equivalence.

Impagliazzo and Kapron [36] suggest a formal logic for reasoning about probabilis-
tic polynomial-time indistinguishability. Datta, Derek, Mitchell, Shmatikov, and Turu-
ani [26] describe a cryptographically sound formal logic for proving protocol security
properties without explicitly reasoning about probability, complexity, or the actions of
a malicious attacker.

Recently, there has been concurrent and independent work on linking symbolic and
cryptographic secrecy properties. Cortier and Warinschi [24] have shown that symbol-
ically secret nonces are also computationally secret, i.e., indistinguishable from a fresh
random value given the view of a cryptographic adversary. Backes and Pfitzmann [9]
and Canetti and Herzog [23] have established new symbolic criteria that suffice to show
that a key is cryptographically secret. Backes and Pfitzmann formulate this as a prop-
erty preservation theorem from the formal model to a concrete implementation while
Canetti and Herzog link their criteria to ideal functionalities for mutual authentication
and key exchange protocols. Backes and Pfitzmann have additionally provided a new
definition of secrecy of payloads, i.e.application data, in a reactive framework, and they
give sufficient symbolic criterion for this definition.

The first cryptographically sound security proofs of the Needham-Schroeder-Lowe
protocol have been presented concurrently and independently in [7] and [53]. While the
first paper conducts the proof within a deterministic, symbolic framework, the proof in
the second paper is done from scratch in the cryptographic approach; on the other hand,
the second paper proves stronger properties and further shows that chosen-plaintext-
secure encryption is insufficient for the security of the protocol.

Regarding completeness, Micciancio and Warinschi [45] showed that a sufficiently
strong encryption scheme enforces completeness for indistinguishability properties, and

7

later Horvitz and Gligor [35] strengthened this result by giving an exact characteriza-
tion of the computational requirements on the encryption scheme under which com-
pleteness holds. Later, it was shown by Bana [14] and Adão, Bana, and Scedrov [5]
that completeness also holds for a more general class of (weaker) encryption systems.
We only briefly mention that the simulatability-based results of [11, 12, 8] have shown
completeness implicitly to establish the notion of simulatability.

We stress that none of the aforementioned soundness results hold in the presence
of key cycles. The problem of soundness in the presence of key cycles was already ad-
dressed by Laud [38]. Laud’s solution provides soundness in the presence of key cycles,
but does so by weakening the notion of formal equivalence. It is assumed that key cy-
cles somehow always ‘break’ the encryption and the formal adversary is strengthened
so as to be always able to ‘see’ inside the encryptions of a key cycle. Soundness in
the presence of key cycles naturally holds under this assumption, but we feel that the
price paid is too high. Formal equivalence should reflect the ability of the formal ad-
versary to distinguish messages, which should in turn reflect the actual extent to which
the computational adversary can distinguish messages. It is often unreasonable from a
cryptographer’s point of view to a priori assume that the computational adversary can
break all key cycles. We therefore propose, in this work, to demonstrate soundness in
the presence of key cycles not by weakening encryption in the formal model, as sug-
gested by Laud, but by strengthening it in the computational one.

Lastly, we hasten to point out that this work was the direct result of two previous
conference papers [5, 4] and a PhD thesis [14] by the same authors. Although our previ-
ous treatment of key cycles [4] considered asymmetric encryption, it is overwhelmingly
similar to the treatment of symmetric encryption to be found here.

3 The Abadi-Rogaway Soundness Theorem

In this section, we provide the context and the basic notions for our work. We do this
by briefly summarizing the main definitions and results of Abadi and Rogaway’s orig-
inal work [2, 3]. In particular, we start presenting the formal model, then describe the
computational model, and then introduce the notions of soundness and completeness.

3.1 The Formal Model

In this model, messages (or expressions) are defined at a very high level of abstraction.
The simplest expressions are symbols for atomic keys and bit-strings. More complex
expressions are created from simpler ones via encryption and concatenation, which are
defined as abstract, ‘black-box’ constructors.

Definition 1 (Symmetric Expressions). Let Keys = {K1,K2,K3, . . . } be an infinite
discrete set of symbols, called the set of symmetric keys. Let Blocks be a finite subset of
{0, 1}∗. We define the set of expressions, Exp, by the grammar:

Exp ::= Keys | Blocks | (Exp, Exp) | {Exp}Keys

Let Enc ::= {Exp}Keys. We will denote by Keys(M) the set of all keys occurring in M .
Expressions of the form {M}K are called encryption terms.

8

Expressions may represent either a single message sent during an execution of the pro-
tocol, or the entire knowledge available to the adversary. In this second case, the ex-
pression contains not only the messages sent so far, but also any additional knowledge
in the adversary’s possession.

We wish to define when two formal expressions are indistinguishable to the adver-
sary. Intuitively, this occurs when the only differences between the two messages lie
within encryption terms that the adversary cannot decrypt. In order to rigorously define
this notion, we first need to formalize when an encryption term is ‘undecryptable’ by
the adversary, which in turn requires us to define the set of keys that the adversary can
learn from an expression.

An expression might contain keys in the clear. The adversary will learn these keys,
and then be able to use them to decrypt encryption terms of the expression—which
might reveal yet more keys. By repeating this process, the adversary can learn the set
of recoverable decryption keys:

Definition 2 (Subexpressions, Visible Subexpressions, Recoverable Keys, B-Keys,
Undecryptable Terms). We define the set of subexpressions of an expression M , de-
noted by sub (M), as the smallest subset of expressions such that:

– M ∈ sub (M),
– (M1,M2) ∈ sub (M) =⇒ M1 ∈ sub (M) and M2 ∈ sub (M), and
– {M ′}K ∈ sub (M) =⇒ M ′ ∈ sub (M).

We say that N is a subexpression of M , and denote it by N v M , if N ∈ sub (M).
The set of visible subexpressions of a symmetric expression M , vis (M), is the

smallest subset of expressions such that:

– M ∈ vis (M),
– (M1,M2) ∈ vis (M) =⇒ M1 ∈ vis (M) and M2 ∈ vis (M), and
– {M ′}K and K ∈ vis (M) =⇒ M ′ ∈ vis (M).

The recoverable keys of a (symmetric) expression M , R-Keys(M), are those that an
adversary can recover by looking at an expression. That is, R-Keys(M) = vis (M) ∩
Keys(M).

We say that an encryption term {M ′}K ∈ vis (M) is undecryptable in M if K /∈
R-Keys(M). Among the non-recoverable keys of an expression M , there is an impor-
tant subset denoted by B-Keys(M). The set B-Keys(M) contains those keys which en-
crypt the outermost undecryptable terms. Formally, for an expression M , we define
B-Keys(M) as

B-Keys(M) = {K ∈ Keys(M) | {M}K ∈ vis (M) but K 6∈ R-Keys(M)} .

Example 3. Let M be the following expression

(({0}K6 , {{K7}K1}K4), ((K2, {({001}K3 , {K6}K5)}K5), {K5}K2)).

In this case, Keys(M) = {K1,K2,K3, K4,K5,K6, K7}. The set of recoverable keys
of M is R-Keys(M) = {K2,K5, K6}, because an adversary sees the non-encrypted
K2, and with that he can decrypt {K5}K2 , hence recovering K5; then, decrypting twice
with K5, K6 can be revealed. We also have that B-Keys(M) = {K3,K4}.

9

The formal model allows expressions to contain key cycles:

Definition 4 (Key Cycles). We say that a set of keys {L1, . . . , Ln} is cyclic in an
expression M , if M contains encryption terms {M1}L1 , {M2}L2 , . . . , {Mn}Ln

and
Li+1 v Mi and L1 v Mn. In this case we say that we have a key cycle of length n. We
will say that M contains a key cycle if there is a set of keys that is cyclic in M .

According to our definition, expressions such as {{M}K}K are not considered cyclic.
As we will see, the original result of Abadi and Rogaway does not apply to expressions
with key cycles. We extend their formalism in order to obtain soundness in the presence
of key cycles.

3.2 Equivalence of Formal Expressions

A visible encryption term will appear ‘opaque’ to the adversary if and only if it is
protected by at least one non-recoverable key. Thus, we wish to say that two expressions
are equivalent if they differ only in the contents of their ‘opaque’ encryption terms. To
express this, Abadi and Rogaway define the pattern of an expression through which
equivalence of expressions will be obtained:

Definition 5 (Pattern (Classical)). We define the set of patterns, Pat, by the grammar:

Pat ::= Keys | Blocks | (Pat, Pat) | {Pat}Keys | 2

The pattern of an expression M , denoted by pattern(M), is derived from M by replac-
ing each encryption term {M ′}K ∈ vis (M) (where K /∈ R-Keys(M)) by 2

For two patterns P and Q, P = Q is defined the following way:

– If P ∈ Blocks ∪ Keys, then P = Q iff P and Q are identical.
– If P is of the form 2, then P = Q iff Q is of the form 2

– If P is of the form (P1, P2), then P = Q iff Q is of the form (Q1, Q2) where
P1 = Q1 and P2 = Q2.

– If P is of the form {P ′}K , then P = Q iff Q is of the form {Q′}K where P ′ = Q′.

(Note that we call these ‘classical’ patterns. This is to distinguish them from the more
complex patterns that we will consider later in this paper.)

One last complication remains before we can define formal equivalence. The first
thing coming to mind is to say that two expressions are equivalent if their patterns are
equal. However, consider two very simple formal expressions K1 and K2. Then these
formal expressions would not be equivalent. On the other hand, these two expressions
have the same meaning: a randomly drawn key. Despite being given different names,
they both represent samples from the same distribution. It does not matter if we replace
one of them with the other. More generally, we wish to formalize the notion of equiva-
lence in such a way that renaming the keys yields in equivalent expression. Therefore,
two formal expressions should be equivalent if their patterns differ only in the names of
their keys.

Definition 6 (Key-Renaming Function). A bijection σ : Keys → Keys is called a key-
renaming function. For any expression (or pattern) M , Mσ denotes the expression (or
pattern) obtained from M by replacing all occurrences of keys K in M by σ(K).

10

We are finally able to formalize the symbolic notion of equivalence:

Definition 7 (Equivalence of Expressions). We say that two expressions M and N
are equivalent, denoted by M ∼= N , if there exists a key-renaming function σ such that
pattern(M) = pattern(Nσ).

3.3 The Computational Model

The fundamental objects of the computational world are strings, strings = {0, 1}∗,
and families of probability distributions over strings. These families are indexed by a
security parameter η ∈ parameters = N (which can be roughly understood as key-
lengths). Two distribution families {Dη}η∈N and {D′

η}η∈N are indistinguishable [30,
54] if no efficient algorithm can determine from which distribution a value was sampled,
except with negligible probability:

Definition 8 (Negligible Function). A function f : N → R is said to be negligible,
written f(n) ≤ neg (n), if for any c > 0 there is an nc ∈ N such that f(n) ≤ n−c

whenever n ≥ nc.

Definition 9 (Indistinguishability). Two families {Dη}η∈N and {D′
η}η∈N, are indis-

tinguishable, written Dη ≈ D′
η , if for all PPT adversaries A,

∣∣Pr [d ←− Dη;A(1η, d) = 1]− Pr
[
d ←− D′

η; A(1η, d) = 1
]∣∣ ≤ neg (η)

In this model, pairing is an injective pairing function [·, ·] : strings × strings →
strings such that the length of the result only depends on the length of the paired
strings. An encryption scheme (formalized in the notation of [17]) is a triple of algo-
rithms (K, E ,D) with key generation K, encryption E and decryption D. Let
plaintexts, ciphertexts, and keys be nonempty subsets of strings. The set coins
is some probability field that stands for coin-tossing, i.e.randomness.

Definition 10 (Symmetric Encryption Scheme). A computational symmetric encryp-
tion scheme is a triple Π = (K, E ,D) where

– K : parameters× coins → keys is a key-generation algorithm;
– E : keys× strings× coins → ciphertexts is an encryption function;
– D : keys× strings → plaintexts is such that for all k ∈ keys and ω ∈ coins,

D(k, E(k, m, ω)) = m for all m ∈ plaintexts,
D(k, E(k, m′, ω)) =⊥ for all m′ 6∈ plaintexts.

All of K, E and D are computable in polynomial-time in the length of the security
parameter. When referring to K and E algorithms we often omit the argument corre-
sponding to coins. We use the notation k ←− K(1η), respectively y ←− E(k, x),
to denote the generation of a key, respectively a ciphertext, using a uniform source of
randomness.

This definition, note, does not include any notion of security, and this must be de-
fined separately. In fact, there are several different such definitions. Abadi and Ro-
gaway [2, 3] consider a spectrum of notions of their own devising, from ‘type-0’ to
‘type-7.’ Their main result uses the strongest of these notions, type-0:

11

Definition 11 (Type-0 Security). Let Π = (K, E ,D) be a symmetric encryption
scheme. We say that the encryption-scheme is type-0 secure if no PPT adversary A
can distinguish the pair of oracles (E(k, ·), E(k′, ·)) and (E(k, 0), E(k, 0)) as k and k′

are randomly generated, that is, for all PPT adversaries A:

Pr[k, k′ ←− K(1η) : AE(k,·),E(k′,·)(1η) = 1]−
Pr[k ←− K(1η) : AE(k,0),E(k,0)(1η) = 1] ≤ neg (η) .

Intuitively the above formula says the following: The adversary is given one of two
pairs of oracles to interact with, either (E(k, ·), E(k′, ·)) or (E(k, 0), E(k, 0)) (where the
keys were randomly generated prior to handing the pair to the adversary), but it does
not know which. Then, the adversary can perform any (probabilistic polynomial-time)
computation, including several queries to the oracles. It can even query the oracles with
messages that depend on previously given answers of the oracles. (The keys used by
the oracles for encryption do not change while the adversary queries the oracles.) After
this game, the adversary has to decide with which pair of oracles it was interacting.
The adversary wins the game if he can decide for the correct one with a probability
non-negligibly bigger than 1

2 , or (equivalently) if it can distinguish between the two. If
this difference is negligible, as a function of η, we say the encryption scheme is type-0
secure.

As Abadi and Rogaway show, type-0 security is strong enough to provide soundness
to the formal model. But to see this, we must first explain how the two models can be
related.

3.4 The Interpretation Function, Soundness and Completeness

In order to prove any relationship between the formal and computational worlds, we
need to define the interpretation of expressions and patterns. Once an encryption scheme
is picked, we can define the interpretation function Φ, which assigns to each expression
or pattern M a family of random variables {Φη(M)}η∈N such that each Φη(M) takes
values in strings. As in Abadi and Rogaway [3], this interpretation is defined in an
algorithmic way in Figure 3.4. Intuitively,

– Blocks are interpreted as strings,
– Each key is interpreted by running the key generation algorithm,
– Pairs are translated into computational pairs,
– Formal encryptions terms are interpreted by running the (probabilistic) encryption

algorithm on the interpretation of the plaintext and the interpretation of the key.

For an expression M , we will denote by [[M]]Φη the distribution of Φη(M) and by [[M]]Φ
the ensemble of {[[M]]Φη}η∈N.

Then soundness and completeness are defined in the following way:

Definition 12 (Soundness (Classical)). We say that an interpretation is sound in the
classical sense, or that an encryption scheme provides classical soundness, if the inter-
pretation Φ (resulting from the encryption scheme) is such that for any given pairs of
expressions M and N

M ∼= N ⇒ [[M]]Φ ≈ [[N]]Φ.

12

The primary result of Abadi and Rogaway given in [3] is that type-0 security provides
classical soundness if the expressions M and N have no key cycles.

Soundness has a counterpart, completeness. One can consider soundness to be the
property that formal indistinguishability always becomes computational indistinguisha-
bility. One can think of completeness as the converse: computational indistinguishabil-
ity is always the result of formal indistinguishability:

Definition 13 (Completeness (Classical)). We say that an interpretation is complete
(in the classical sense), or that an encryption scheme provides (classical) completeness,
if the interpretation Φ (resulting from the encryption scheme) is such that

[[M]]Φ ≈ [[N]]Φ ⇒ M ∼= N

for any expressions M and N .

For the proof of the soundness result, it was convenient for Abadi and Rogaway to
introduce the interpretation of any pattern M (although this is not absolutely necessary).
Therefore, we define interpretation of boxes as follows:

– 2 is interpreted by running the encryption algorithm on the fixed plaintext 0 and a
randomly generated key.

The precise definition of Φη(P) for any pattern P is given by the algorithms in Fig-
ure 1. The random variable Φη(P) is defined as INITIALIZE(1η, P) followed by
CONVERT(P). This is a random variable that has values in strings.

We note that these algorithms are fully defined for patterns, and because the gram-
mar for patterns contains the grammar for expressions as a sub-grammar, they are fully
defined for expressions as well.

4 Soundness in the Presence of Key Cycles

In this section, we will address the problem of soundness of formal encryption in the
presence of key cycles. Later we will see that key cycles do not pose any problem for
completeness.

As discussed in the introduction, previous soundness results cannot be applied to
messages that contain key cycles. One can immediately ask if there is some impossibil-
ity result regarding key cycles, or if this is just a problem in the way proof is conducted.

We start this section by showing that, soundness in the presence of key cycles is not
possible to prove with the security notion adopted by Abadi and Rogaway. We suggest
a new notion of security, KDM-security [19] as a solution for the problem. In order
to prove soundness, we will also need to extend our formal model, and after that we
conclude this section showing that with this new definition of security it is possible to
obtain soundness even in the presence of key cycles.

4.1 Type-0 Security is Not Enough

In this section we show that type-0 security is not strong enough to ensure soundness in
the case of key cycles. That is, we demonstrate that it is possible to construct encryption
schemes that are type-0, but fail to provide soundness in the presence of key cycles.

13

algorithm INITIALIZE(1η, P)
for K ∈ Keys(P) do τ(K) ←− K(1η)
let k0 ←− K(1η)

algorithm CONVERT(P)
if P = K where K ∈ Keys then

return τ(K)
if P = B where B ∈ Blocks then

return B
if P = (P1, P2) then

x ←− CONVERT(P1)
y ←− CONVERT(P2)
return [x, y]

if P = {P1}K then
x ←− CONVERT(P1)
y ←− E(τ(K), x)
return y

if P = 2, then
y ←− E(k0, 0)
return y

Fig. 1. Algorithmic components of the interpretation function

Theorem 14. Type-0 security does not imply soundness of messages with key cycles.
That is, if there exists an encryption scheme that is type-0 secure, then there exists
another encryption scheme which is also type-0 secure but does not provide soundness
for messages with key cycles.

Proof. This is shown via a simple counter-example. Assuming that there exists a type-
0 secure encryption scheme, we will use it to construct another scheme which is also
type-0 secure. However, we will show that this new scheme allows the adversary to
distinguish one particular expression M from another particular expression N , even
though M ∼= N .

Let M be ({K}K , {000}K) and let N be the expression ({K1}K2 , {000}K2). Since
these two expressions are equivalent, an encryption scheme that enforces soundness
requires that the family of distributions:

{k ←− K(1η); c1 ←− E(k, k); c2 ←− E(k, 000) : [c1, c2]}η∈N

be indistinguishable from the family of distributions:

{k1, k2 ←− K(1η); c1 ←− E(k2, k1); c2 ←− E(k2, 000) : [c1, c2]}η∈N

However, this is not implied by Definition 11. Let Π = (K, E ,D) be a type-0 secure
encryption scheme. Then, using Π , we construct a second type-0 secure encryption
scheme Π ′ = (K′, E ′,D′) as follows:

– Let K′ = K,

14

– Let E ′ be the following algorithm:

E ′(k, m, ω) =





k if m = k
E(k, k, ω) if m 6= k and E(k, m, ω) = k
E(k,m, ω) otherwise

– Let D′ be the following algorithm:

D′(k, c) =





k if c = k
D(k, k) if D(k, c) = k
D(k, c) otherwise

It is immediate that E is PPT , and Π ′ is type-0 secure. To see this, suppose that Π ′ is
not type-0 secure. As it differs from they type-0 secure Π only on k and an (m,ω) pair
such that E(k, m, ω) = k, this implies that the adversary could successfully guess k.
However, that would contradict the type-0 security of Π .

Thus, the new scheme Π ′ must also be type-0 secure. However, it does not guarantee
indistinguishability for the two distributions above. The first distribution will always
output the key k paired with the encryption of 000 with k, while the second outputs two
ciphertexts. An adversary may easily distinguish the two by using the first term of the
pair to decrypt the second and comparing the decryption with 000. ut

Remark 15. We note that in the proof, the expression M contains a key cycle of length
1. What if all key cycles are of length 2 or more? This question remains open. That is,
there is no known type-0 secure encryption scheme which fails to provide soundness
for key cycles that are of length two or more.

Because type-0 encryption implies types 1 through 7, Theorem 14 implies that
soundness with key cycles cannot be provided by the security definitions devised by
Abadi and Rogaway. In the next section, we show that this soundness property can,
however, be met with new computational definitions.

4.2 KDM-Security

In the last section, we showed that the notions of security found in [2, 3] are not strong
enough to enforce soundness in the presence of key cycles. However, key-dependent
message (KDM) security, which was introduced by Black et al. [19] (and in a weaker
form by Camenisch and Lysyanskaya [20]), is strong enough to enforce soundness even
in this case. (We note that Camenisch and Lysyanskaya also provided a natural appli-
cation of KDM security, a credential system with interesting revocation properties, and
so KDM security is of independent interest as well.)

KDM security both strengthens and weakens type-0 security. Recall that type-0
security allows the adversary to submit messages to an oracle which does one of two
things:

– It could encrypt the message twice, under two different keys, or
– It could encrypt the bit 0 twice, under the same key.

15

An encryption scheme is type-0 secure if no adversary can tell which of these is being
done. For KDM security, however, the game is slightly different. To over-simplify:

– The oracle in the KDM-security encrypts once, under one single key.
– Further, it encrypts either the message, or a string of 0’s of equivalent length.
– However, it is willing to encrypt not just messages from the adversary, but also

(more generally) functions of the secret key.

The first two of these differences make KDM security weaker than type-0 security.
Specifically type-0 security conceals both the length of the plaintext and whether two
ciphertexts were created using the same key or with two different ones. KDM security
does not necessarily conceal either of these things. The last difference, however, is
a significant strengthening. As its name suggests, KDM security remains strong even
when the messages depend on the secret key—which, as Theorem 14 shows, is not
necessarily true for type-0 security.

To provide the full picture, KDM security is defined in terms of vectors of keys and
functions over these vectors. It is also defined in terms of oracles Realk̄ and Fakek̄ ,
which work as follows: suppose that for a fixed security parameter η ∈ N, a vector of
keys is given: k̄ = {ki}i∈N with ki ←− K(1η). (In each run of the key-generation algo-
rithm independent coins are used.) The adversary can now query the oracles providing
them with a pair (j, g), where j ∈ N and g : keys∞ → {0, 1}∗ is a constant length,
deterministic function:

– The oracle Realk̄ when receiving this input returns c ←− E(kj , g(k̄));
– The oracle Fakek̄ when receiving this same input returns c ←− E(kj , 0|g(k̄)|).

The challenge facing the adversary is to decide whether it has interacted with oracle
Realk̄ or oracle Fakek̄ . Formally:

Definition 16 (Symmetric-KDM Security). Let Π = (K, E ,D) be a symmetric en-
cryption scheme. Let the two oracles Realk̄ and Fakek̄ be as defined above. We say
that the encryption scheme is (symmetric) KDM-secure if for all PPT adversaries A:

Pr
[
k̄ ←− K(1η) : ARealk̄(1η) = 1

]− Pr
[
k̄ ←− K(1η) : AFakek̄(1η) = 1

] ≤ neg (η)

An implementation of this definition in the random oracle model is provided by
Black et al. [19]. If RO is a random oracle (i.e., a randomly-chosen function from
{0, 1}∗ to {0, 1}∞) and by 〈·, · · · , ·〉 we mean the concatenation of the strings, then the
scheme of Black et al. is the triple of algorithms Π ′ = (K′, E ′,D′) where

– K′(1η): select and return k1 ←− {0, 1}η .
– E ′ (k1,m): select r ←− {0, 1}η; let y := m ⊕ RO(〈k1, r〉) (where only the first
|m| bits of the oracle’s output are used in the XOR); return 〈y, r〉.

– D′(k1, c = 〈y, r〉): let x := y ⊕ RO(〈k1, r〉); return x.

In this work, we will consider a minor variant of this scheme, modified so as to be
strictly which-key revealing—a property we will consider in our discussion of com-
pleteness (Section 5.6).6 Our scheme Π = (K, E ,D) is the triple of algorithms:

6 Another small difference is that the formalism of Black et al. assumes that symmetric encryp-
tion schemes operate only on plaintexts of a fixed, given size, while we use the more general

16

– K(1η): select k1 ←− {0, 1}η and k2 ←− {0, 1}η; return k = 〈k1, k2〉.
– E (k = 〈k1, k2〉,m): select r ←− {0, 1}η; let y := m ⊕ RO(〈k1, r〉); return
〈y, r, k2〉.

– D(k = 〈k1, k2〉, c = 〈y, r, k′〉): check that k′ = k2; if so, let x := y⊕RO(〈k1, r〉);
return x.

The scheme Π is exactly the KDM-secure scheme Π ′, except that the key now has a
second component k2 which is not used to encrypt but is appended to the ciphertext.
(Again, this seemingly-extraneous component will become important when we discuss
completeness in Section 5.6.)

We quickly prove that this addition does not invalidate the KDM-security of the
scheme: If there exists an adversary A which can distinguish the real oracle from the
fake oracle when the oracle uses our scheme, then there exists a second adversary A′

which can do the same for the scheme of Black et al. To see this, let A′ simulate A. First
A′ generates as many keys k2,j j = 1, ..., n as the maximum number of encrypting
keys that are used in A’s queries of the form 〈j, g〉. When A′ constructs the queries〈j, g〉
for oracle (using the original Black et al. encryption), it appends to each encryption in
g that is requested from the oracle the corresponding string k2,i. When A′ passes the
query 〈j, g〉 to the oracle, and get a response of the form 〈y, r〉, it returns 〈y, r, k2,j〉 to
A. In this way, A′ exactly simulates the adversary A, and so A′ will successfully attack
the scheme of Black et al. with at least the same probability with which A successfully
attacks Π . But because the scheme of Black et al. is KDM-secure, this probability must
be negligible. Hence, the probability that A can successfully attack our scheme must be
negligible as well.

Remark 17. Both the original scheme by Black et al. and the modified form of it above
use the random oracle. In fact, all known implementations of KDM-security exist in the
random-oracle model. However, we note that the general definition of KDM-security is
well-founded even in the standard model. We also note that this definition is phrased
in terms of indistinguishability. While one could also imagine analogous definitions
phrased in terms of non-malleability, an exploration of those definitions is beyond the
scope of this paper.

We note that KDM-security implies type-3 security:

Definition 18 (Type-3 Security). Let Π = (K, E ,D) be a symmetric encryption
scheme. We say that the encryption-scheme is type-3 secure if no PPT adversary A
can distinguish the oracles E(k, ·) and E(k, 0|·|) as k is randomly generated, that is, for
all PPT adversaries A:

Pr
[
k ←− K(1η) : AE(k,·)(1η) = 1

]
−Pr

[
k ←− K(1η) : AE(k,0|·|)(1η) = 1

]
≤neg (η)

In fact, the definition of type-3 encryption is exactly the same as that for KDM-security,
except that the adversary must submit concrete messages to the encryption oracle in-
stead of functions. But since the functions submitted in KDM security can be the con-
stant function that always produce a single output, the type-3 security ‘game’ is a special
case of that for KDM security.

definition which allows variable-length plaintexts. For this definition, however, the difference
is moot: the function g in Definition 16 always produces output of a fixed length.

17

On the other hand, KDM security does not attempt to conceal that two ciphertexts
were created with the same key (type-1 security) nor the length of the plaintext (type-
2 security). It will therefore be impossible for KDM security to provide soundness in
the classical sense (Definition 12). Nonetheless, a weaker form of soundness can be
achieved if the formal model is also slightly weakened.

4.3 Weakening the Symbolic Model

In this section, we develop a weaker version of the formal model—one that allows for-
mal encryption to leak partial information about the plaintext and the key. One can think
of this as a preview or a special case of Section 5, where we discuss such weakening
in general. In this section, however, we focus on the partial leakage allowed (in the
computational model) by KDM security: the length of the plaintext, and whether two
different ciphertexts were created using the same key.

To model the leakage of plaintext length, we first need to add the very concept of
‘length’ to the formal model:

Definition 19 (Formal Length). A formal length-function is a function symbol with
fresh letter ` satisfying at least the following identities:

– For all blocks B1 and B2, `(B1) = `(B2) iff |B1| = |B2|,
– For all keys K and K ′, `(K) = `(K ′),
– If `(M1) = `(N1), `(M2) = `(N2) then `((M1,M2)) = `((N1, N2)),
– If `(M) = `(N), then for all K, `({M}K) = `({N}K), and
– For all keys K and K ′, `({M}K) = `({M}K′).

We would like to emphasize that these are the identities that a formal length function
minimally has to satisfy. There may be more. In fact, if we only assume these properties,
there is no hope to obtain completeness. We also remark, that it follows that for any key-
renaming function σ, and expression M , `(M) = `(Mσ).

Given this, it is straightforward to add the required leakage to the formal model. If
patterns represents those aspects of an expression that can be learned by the adversary,
then patterns must now reveal the plaintext-length and key-names for undecryptable
terms:

Definition 20 (Pattern (Type-3)). We define the set of patterns, Pat, by the grammar:

Pat ::= Keys | Blocks | (Pat, Pat) | {Pat}Keys | 2Keys,`(Exp)

The type-3 pattern of an expression M , denoted by pattern3(M), is derived from M
by replacing each encryption term {M ′}K ∈ vis (M) (where K /∈ R-Keys(M)) by
2K,`(M ′).

Note that the only difference between a type-3 pattern and a classical pattern is that an
undecryptable term {M}K becomes 2K,`(M) (i.e.labeled with the key and length) in
type-3 patterns instead of merely 2 in classical patterns.

Our notion of formal equality must be updated as well.

18

Definition 21 (Formal Equivalence (Type-3)). For two patterns P and Q, P =3 Q is
defined in the following way:

– If P ∈ Blocks ∪ Keys, then P =3 Q iff P and Q are identical.
– If P is of the form 2K,`(M ′), then P =3 Q iff Q is of the form 2K,`(N ′), and

`(M ′) = `(N ′) in the sense of Definition 19.
– If P is of the form (P1, P2), then P =3 Q iff Q is of the form (Q1, Q2) where

P1 =3 Q1 and P2 =3 Q2.
– If P is of the form {P ′}K , then P =3 Q iff Q is of the form {Q′}K where P ′ =3 Q′.

We say that expressions M and N are equivalent in the type-3 sense, denoted by M ∼=3

N , if there exists a key-renaming function σ such that pattern3(M) =3 pattern3(Nσ).
(Since a key-renaming function replaces all occurrences of K with σ(K), we note that
under σ, 2K,`(M) will become 2σ(K),`(Mσ).)

Lastly, the above change to formal equivalence requires that the notions of soundness
and completeness be similarly altered:

Definition 22 (Soundness (Type-3)). We say that an interpretation is type-3 sound, or
that an encryption scheme provides soundness in the type-3 sense, if the interpretation
Φ (resulting from the encryption scheme) is such that

M ∼=3 N ⇒ [[M]]Φ ≈ [[N]]Φ.

for any pair of expressions M and N .

Definition 23 (Completeness (Type-3)). We say that an interpretation is type-3 com-
plete, or that an encryption scheme provides completeness in the type-3 sense, if the
interpretation Φ (resulting from the encryption scheme) is such that for any pair of
expressions M and N ,

[[M]]Φ ≈ [[N]]Φ ⇒ M ∼=3 N.

4.4 Soundness for Key Cycles

Below, we present our main soundness result for key cycles: if an encryption scheme is
KDM secure, it also provides type-3 soundness even in the presence of key cycles. We
then show that type-0 security does not imply, nor is implied by KDM security.

Proposition 24. Let Π = (K, E ,D) be a computational symmetric encryption scheme
such that for each η, if k, k′ ←− K(1η), then |k| = |k′|, and for each m plaintext,
|E(k, m, w)| = |E(k′,m, w′)| for all w, w′ ←− coins. If `(M) = `(N) and the length-
function ` satisfies the equalities listed in Definition 19, then |Φη(M)| = |Φη(N)|.
Proof. Observe, that if |m| = |m′|, then |E(k, m,w)| = |E(k′,m′, w′)| because of
type-3 security. The rest is straightforward from Definition 19.

Theorem 25 (Symmetric KDM Security Implies Soundness). Let Π = (K, E ,D)
be a computational symmetric encryption scheme such that for each η, if k, k′ ←−
K(1η), then |k| = |k′|, and for each m plaintext, |E(k,m, w)| = |E(k′,m, w′)| for all
w, w′ ←− coins.

If Π is KDM-secure and the length-function ` satisfies only the equalities listed in
Definition 19, then Π provides type-3 soundness.

19

Proof. We first redefine the interpretation of patterns. The only thing we have to change
in the interpretation of Abadi and Rogaway is the interpretation of a box. Now, we
interpret a pattern 2K,`(M) for a given security parameter η as Φη({0|Φη(M)|}K). That
is, the interpretation function (that used to encrypt a single 0 under a random key) now
encrypts a string of 0’s of the same requisite length (length of Φη(M)) under the correct
key τ(K).

The proof in this case is a somewhat reduced hybrid argument. In a standard hy-
brid argument, like the one that Abadi and Rogaway used to prove their soundness
result, several patterns are put between M and N ; then, using security, it is proven
that soundness holds between each two consecutive patterns, and therefore soundness
holds for M and N . In our case, we first directly prove that [[M]]Φ is indistinguishable
from [[pattern3(M)]]Φ. Then, since that holds for N too, and since pattern3(M) differs
from pattern3(N) only in the name of keys, [[pattern3(M)]]Φ is indistinguishable from
[[pattern3(N)]]Φ, therefore the result follows. KDM security is used to show that [[M]]Φ
and [[pattern3(M)]]Φ are indistinguishable.

For an arbitrary (formal) key K, let ι(K) denote the index of K. For an expression
M , a set of formal (unrecoverable) keys S, and a function τ : Keys \ S → keys, we
define a function fM,S,τ : coinse(M)×keys∞ → strings (where e(M) is the number
of encryptions in M) recursively in the following way (ki is the i’th component of k̄):

– For M = B ∈ Blocks, let fB,S,τ : keys∞ → strings be defined as fB,S,τ (k̄) =
B;

– For M = K ∈ Keys∩S, let fK,S,τ : keys∞ → strings be defined as fK,S,τ (k̄) =
kι(K);

– For M = K ∈ Keys\S, let fK,S,τ : keys∞ → strings be defined as fK,S,τ (k̄) =
τ(K);

– For M = (M1,M2), let f(M1,M2),S,τ : coinse(M1) × coinse(M2) × keys∞ →
strings be defined as the computational pairing f(M1,M2),S,τ (ωM1 , ωM2 , k̄) =
[fM1,S,τ (ωM1 , k̄), fM2,S,τ (ωM2 , k̄)];

– For M = {N}K and K ∈ S, let f{N}K ,S,τ : coins × coinse(N) × keys∞ →
strings be defined as f{N}K ,S,τ (ω, ωN , k̄) = E(kι(K), fN,S,τ (ωN , k̄), ω);

– For M = {N}K and K 6∈ S, let f{N}K ,S,τ : coins × coinse(N) × keys∞ →
strings be defined as f{N}K ,S,τ (ω, ωN , k̄) = E(τ(K), fN,S,τ (ωN , k̄), ω).

We note that this function is constant length because according to our assumptions,
keys are constant-length (for the same η) and the length of an encryption only depends
on the length of the message and η. We first prove that [[M]]Φ ≈ [[pattern3(M)]]Φ.
Suppose that [[M]]Φ 6≈ [[pattern3(M)]]Φ. This means that there is an adversary A that
distinguishes the two distributions, that is

Pr
[
x ←− [[M]]Φη : A(1η, x) = 1

]− Pr
[
x ←− [[pattern3(M)]]Φη : A(1η, x) = 1

]

is a non-negligible function of η. We will show that this contradicts the fact that the sys-
tem is (symmetric) KDM-secure. To this end, we construct an adversary that can distin-
guish whether oracle F is Realk̄ or Fakek̄ . From now on, let S = Keys \ R-Keys(M).
Consider the following algorithm:

20

algorithm BF (1η,M)
for K ∈ R-Keys(M) do τ(K) ←− K(1η)
y ←− CONVERT2(M, M)
b ←− A(1η, y)
return b

algorithm CONVERT2(M ′, M) with M ′ v M
if M ′ = K where K ∈ R-Keys(M) then

return τ(K)
if M ′ = B where B ∈ Blocks then

return B
if M ′ = (M1,M2) then

x ←− CONVERT2(M1, M)
y ←− CONVERT2(M2,M)
return [x, y]

if M ′ = {M1}K with K ∈ R-Keys(M) then
x ←− CONVERT2(M1, M)
y ←− E(τ(K), x)
return y

if M ′ = {M1}K with K /∈ R-Keys(M) then
ω ←− coinse(M1)

y ←− F(ι(K), fM1,S,τ (ω, .))
return y

This algorithm applies the distinguisher A(1η, ·) to distribution [[M]]Φ whenF is Realk̄ ,
and to distribution of [[pattern3(M)]]Φ when F is Fakek̄ . If A(1η, ·) can distinguish
[[M]]Φ and [[pattern3(M)]]Φ, then BF (1η, ·) can distinguish Realk̄ and Fakek̄ —a con-
tradiction. Hence [[M]]Φ ≈ [[pattern3(M)]]Φ.

In a similar manner, we can show that [[N]]Φ ≈ [[pattern3(N)]]Φ. Finally, it is easy
to see that [[pattern3(M)]]Φ = [[pattern3(N)]]Φ, because the two patterns differ only by
key renaming. Hence [[M]]Φ ≈ [[N]]Φ. ut

We conclude our consideration of KDM security by demonstrating what Black et
al. claimed informally: the notion of KDM security is ‘orthogonal’ to the previous def-
initions of security. In particular, we show that KDM security neither implies nor is
implied by type-0 security.

Proposition 26. Type-0 security does not imply (symmetric) KDM-security. If there ex-
ists an encryption scheme that is type-0 secure, there exists an encryption scheme which
is also type-0 secure but not KDM-secure.

Proof. Suppose that there exists a type-0 secure encryption scheme. In the proof of
Theorem 14, we constructed a type-0 secure scheme Π ′ such that with Π ′, the in-
terpretations of ({K}K , {000}K) and ({K1}K2 , {000}K2) are distinguishable. If all
type-0 encryptions schemes are KDM-secure, then Π ′ is as well. However, by the same
method as in the proof of Theorem 25, this would mean that with Π ′, the interpreta-
tion of ({K}K , {000}K) and of ({K1}K2 , {000}K2) are both indistinguishable from

21

the distribution of [E(k, 0|k
′|, ω), E(k, 000, ω′)], as k, k′ ←− K(1η) and ω, ω′ ←−

coins, that is, the interpretations of ({K}K , {000}K) and of ({K1}K2 , {000}K2) are
indistinguishable—a contradiction. ut
Note, that in the above proof, we do not need the restriction about length that we needed
in Theorem 25. The reason is, that the plaintexts submitted to the oracles for encryption,
namely (k, 000) and (k1, 000), have the same distribution, and so their lengths have the
same distribution as well. Without the assumptions on the length, Theorem 25 would
not be true, not because our formal length function is not good enough to cover that
case as for example [k1, k2] and [k, k] would have different distribution of lengths.

Proposition 27. KDM security does not imply type-0 security. That is, there is an en-
cryption scheme that is KDM-secure, but not type-0 secure.

Proof. The encryption scheme described in Section 4.2 is KDM secure, but reveals
length and which-key, so it is not type-0. ut

5 Soundness and Completeness of Expansions of the AR Logic for
Symmetric Encryption

We saw earlier, how to expand the Abadi-Rogaway logic to handle length and which-
key revealing (type-3) encryption schemes by indexing the boxes with length and keys.
Motivated by this, we now provide a general treatment of soundness and completeness
for the Abadi-Rogaway type logics of formal encryptions. We present a general method
to handle encryptions that leak some information. We also allow not only computa-
tional, but purely probabilistic interpretations as well, and equivalence notions other
then computational indistinguishability.

In Subsection 5.1 we present a general probabilistic framework for symmetric en-
cryptions, which includes both the computational and the information-theoretic encryp-
tion schemes. Then, in Subsection 5.2, we show a general way to handle partial leakage
of information in the formal view. This will be done essentially via an equivalence
relation on the set of (symbolic) encryption terms, which is meant to express which
encryption terms are (computational) indistinguishable for an adversary. In that sec-
tion, we also introduce an important notion of this equivalence relation that we call
properness. This notion is essential, as properness is exactly the property that makes
an Abadi-Rogaway type hybrid argument go through. Finally, in the remaining subsec-
tions, we present the interpretation, the general soundness and completeness results,
and show that soundness and completeness theorems for length-revealing, and which
key revealing cryptographic schemes are particular cases of our general results. As a
purely probabilistic example, we consider the One-Time Pad, and show soundness and
completeness for it as well.

5.1 A General Treatment for Symmetric Encryptions

We provide a general probabilistic framework for symmetric encryption, which contains
both the computational and the information-theoretic description as special cases. Keys,

22

plaintexts and ciphertexts are elements of some discrete set strings. This is ({0, 1}∗)∞
in the case of a computational treatment, and it is {0, 1}∗ for the information-theoretic
description. The elements of ({0, 1}∗)∞ are sequences in {0, 1}∗, corresponding to a
parameterization by the security parameter.

A fixed subset, plaintext ⊆ strings represents the messages that are allowed to
be encrypted. Another subset, keys ⊆ strings is the possible set encrypting keys that
corresponds to the range of the key generation algorithm K. In order to be able to build
up longer messages from shorter ones, we assume that an injective pairing function is
given: [. , .] : strings × strings → strings. The range of the pairing function
will be called pairs: pairs := Ran[. , .]. A symmetric encryption scheme has the
following constituents:

Key-Generation. Key-generation is represented by a random variableK : ΩK → keys,
over a discrete probability field (ΩK, PrK). In a given scheme, more than one key-
generation algorithms are allowed.

Encryption. For a given k ∈ keys, and a given x ∈ plaintext, E(k, x) is a ran-
dom variable over some discrete probability field (ΩE ,PrE). The values of this random
variable are in strings and are denoted by E(k, x)(ω), whenever ω ∈ ΩE .

Decryption. An encryption must be decryptable, so we assume that for each k ∈ keys,
a function D : (k, y) 7→ D(k, y) is given satisfying D(

k, E(k, x)(ω)
)

= x for all
ω ∈ ΩE and x ∈ plaintext.

If any of these operations are given (as input) an element that is not in the domain,
then an error message ⊥ is returned.

Indistinguishability. The notion of indistinguishability is important both in case of com-
putational and information-theoretic treatments of cryptography. It expresses that there
is only very small probability to tell two probability distributions apart.

An equivalence relation called indistinguishability is defined on distributions over
strings. We denote this relation by ≈. We say that two random variables taking val-
ues in strings are equivalent (indistinguishable) if (and only if) their distributions are
equivalent; we use ≈ for denoting this equivalence between random variables as well.
We require, indistinguishability to be invariant under pairing and its inverse; for ≈, we
require the followings:

(i) Random variables with the same distribution are indistinguishable;
(ii) For random variables F : ΩF → strings and G : ΩG → strings, if F ≈ G,

the following must hold: If πi denotes the projection onto one of the components
of strings× strings, then πi ◦ [·, ·]−1 ◦ F ≈ πi ◦ [·, ·]−1 ◦G for i = 1, 2;

(iii) If F ′ : ΩF → strings, G′ : ΩG → strings are also indistinguishable ran-
dom variables such that F and F ′ are independent and G and G′ are also inde-
pendent, then ωF 7→ [F (ωF), F ′(ωF)] and ωG 7→ [G(ωG), G′(ωG)] are indistin-
guishable random variables; moreover, if α, β : strings → strings are functions
that preserve ≈ (i.e.α ◦ F ≈ α ◦ G and β ◦ F ≈ β ◦ G whenever F ≈ G), then
ωF 7→ [(α ◦ F)(ωF), (β ◦ F)(ωF)] and ωG 7→ [(α ◦ G)(ωG), (β ◦ G)(ωG)] are
indistinguishable random variables if F ≈ G.

23

Indistinguishability needs to satisfy some further properties under encryption and de-
cryption that we will specify under the definition of encryption schemes below.

Definition 28 (General Encryption Scheme). An encryption scheme is a quadruple
Π = ({Ki}i∈I , E ,D,≈) where each Ki is a key-generation, E is an encryption, D
decrypts ciphertexts encrypted by E , and ≈ is the indistinguishability defined above.

We require that for any i, j ∈ I , the probability distribution ofKi be distinguishable
from any constant in strings, the distributions of Ki and of Kj be distinguishable
whenever i 6= j, and also the joint distribution (k, k′) be distinguishable from the
distribution (k, k) if k and k′ are independently generated: k ←− Ki, k′ ←− Ki.

The indistinguishability relation ≈, besides satisfying the properties stated before,
needs to be such that if F and G are random variables taking values in strings, and
Ki is a key-generation such that the distribution of [Ki, F] is indistinguishable from the
distribution of [Ki, G], then:

(i) Random variables (ωE , ωK, ω) 7→ E(Ki(ωK), F (ω)
)
(ωE) and (ωE , ωK, ω) 7→

E(Ki(ωK), G(ω)
)
(ωE) are indistinguishable;

(ii) (ωK, ω) 7→ D(Ki(ωK), F (ω)
)

and (ωK, ω) 7→ D(Ki(ωK), G(ω)
)

are also indis-
tinguishable random variables.

Here the probability over ΩKi × ΩF is the joint probability of Ki and F , which are
here not necessarily independent. Similarly for G. (Note, that if F and G are not taking
plaintext values in (i) or ciphertext values in (ii), then simply error message is returned,
this does not jeopardize the definition.)

Example 29 (Computational Indistinguishability and Encryption). The standard
notion of computational indistinguishability of [54], Definition 9, is a special case of
our general definition of indistinguishability. In this case strings = ({0, 1}∗)∞ =
strings∞. Random variables of computational interest have the form F : ΩF →
strings∞ and have independent components; i.e., for a security parameter η ∈ N, de-
noting by Fη : ΩF → strings the η’th component of F , it is required Fη and Fη′ to
be independent random variables whenever η 6= η′. Indistinguishability then is phrased
with the ensemble of probability distributions of the components of the random vari-
ables. Lastly, the computational encryption as we defined it in Definition 10 is a special
case of our general definition of encryption schemes.

The simplest example for indistinguishability is that it holds between two random
variables if and only if their distributions are identical. With this indistinguishability
notion, we finish this section by presenting a more detailed example for the One-Time
Pad.

Example 30 (Information-Theoretical Equivalence and the One-Time Pad). Con-
sider strings := {0, 1}∗ with the following pairing function: For any two strings
x, y ∈ strings we can define the pairing of x and y as [x, y] := 〈x, y, 0, 1|y|〉 The
number of 1’s at the end indicate how long the second string is in the pair, and the 0
separates the strings from the 1’s. Let blocks be those strings that end with 100. The
ending is just a tag, it shows that the string is a block.

24

Indistinguishability. As we mentioned, let us now call two distributions indistinguish-
able, if they are identical, and denote this relation by =d.

Key-Generation. In case of the OTP, the length of the encrypting key must match
the length of the plaintext. Thus, we need a separate key-generation for each length.
That is, for each n > 3, Kn is a random variable over some discrete probability field
(ΩKn , PrKn) such that its values are equally distributed over keysn := {k | k ∈
strings, |k| = n, k ends with 010}. Let keys :=

⋃∞
4 keysn. For k ∈ keys, let

core(k) denote the string that we get from k by cutting the tag 010.

Encryption. Let the domain of the encryption function, DomE , be those elements
(k, x) ∈ keys×strings, for which |k| = |x|+3, and let E(k, x) := 〈core(k)⊕x, 110〉.
The tag 110 informs us that the string is a ciphertext. Notice that this encryption is not
probabilistic, hence E(k, x) is not a random variable (that is, it can be considered as a
constant random variable). Notice also, that the tag of the plaintext is not dropped, that
part is also encrypted.

Decryption. The decryption function D(k, x) is defined whenever |k| = |x|, and, natu-
rally the value of D(k, x) is the first |k| − 3 bits of k ⊕ x.

5.2 Equivalence of Expressions

In this section, we will use the notions of blocks, keys, expressions, subexpressions
introduced in Subsection 3.1.

In their treatment, Abadi and Rogaway defined equivalence of expressions via re-
placing encryption terms encrypted with non-recoverable keys in an expression by a
box; two expressions then were said to be equivalent if once these encryption terms
were replaced by the boxes, the obtained patterns looked the same up to key renaming.
This method implicitly assumes, that an adversary cannot distinguish any undecrypt-
able terms. However, if we want to allow leakage of partial information, we need to
modify the notion of equivalence.

Before introducing our notion of equivalence of expressions, we postulate an equiv-
alence notion ≡K on the set of keys, and another equivalence, ≡C on the set of valid
encryption terms. The word valid, defined precisely below, is meant for those encryp-
tion terms (and expressions) that “make sense”. The equivalence on the set of valid
expressions will be defined with the help of ≡K and ≡C.

The reason for postulating equivalence on the set of keys is that we want to allow
many key-generation processes in the probabilistic setting. We therefore have to be able
to distinguish formal keys that were generated by different key-generation processes.
We assume that an equivalence relation ≡K is given on the set of keys such that each
equivalence class contains infinitely many keys. Let QKeys := Keys

/≡K.

Definition 31 (Key-Renaming Function). A bijection σ : Keys → Keys is called key-
renaming function if σ(K) ≡K K for all K ∈ Keys. For any expression M , Mσ
denotes the expression obtained from M by replacing all occurrences of keys K in M
by σ(K).

25

The set Exp is often too big to suit our purposes. For example, sometimes we require
that certain messages can be encrypted with certain keys only. We therefore define that
a set of valid expressions satisfies at least the following properties:

Definition 32 (Valid Expressions). A set of valid expressions is a subset ExpV of Exp
such that:

(i) all keys and all blocks are contained in ExpV ;
(ii) if M ∈ ExpV , then sub(M) ⊂ ExpV and all possible pairs of elements in sub(M)

are also in ExpV ;
(iii) for any key-renaming function σ, M ∈ ExpV iff Mσ ∈ ExpV .

Given a set of valid expressions, the set of valid encryption terms is EncV := Enc ∩
ExpV .

Example 33 (Valid Expressions for One-Time Pad). We introduce valid expressions
that are suitable for the formal modeling of the One-Time Pad implementation discussed
in Example 30. We assume that some length function l : Keys → {4, 5, . . . } is given
on the keys symbols. The length of a block is defined as l(B) := |B| + 3. We add 3
to match the length of the tag from Example 30. We define the length function on any
expression in Exp by induction:

– l((M, N)) := l(M) + 2l(N) + 1,
– l({M}K) := l(M) + 3, if l(M) = l(K)− 3, and
– l({M}K) := 0, if l(M) 6= l(K)− 3.

The valid expressions are defined as those expressions in which the length of the en-
crypted subexpressions match the length of the encrypting key, and, in which no key is
used twice to encrypt. (This latter condition is necessary to prevent leaking information
because of the properties of the OTP.) Two keys are said to be equivalent according to
≡K iff l assigns the same length to them. Thus, we define the set of valid expressions
for OTP as ExpOTP = {M ∈ Exp | M ′ v M implies l(M ′) > 0, and each key
encrypts at most once in M}.

Equivalence of valid expressions is meant to incorporate the notion of security into
the model: we want two expressions to be equivalent when they look the same to an
adversary. If we think that the encryption is so secure that no partial information is re-
vealed, then all undecryptable terms should look the same to an adversary. If partial
information, say repetition of the encrypting key, or length is revealed, then we have
to adjust the notion of equivalence accordingly. We do this by introducing an equiva-
lence relation on the set of valid encryption terms in order to capture which ciphertexts
an adversary cannot distinguish; in other words, what partial information (length, key,
etc. . .) can an adversary retrieve from the ciphertext.

Definition 34 (Equivalence of Encryption Terms). We assume defined an equiva-
lence relation, ≡C on the set of valid encryption terms, with the property that for any
M,N ∈ EncV and key-renaming function σ, M ≡C N if and only if Mσ ≡C Nσ.

Let QEnc := EncV
/≡C.

26

Since we required that M ≡C N ∈ EncV if and only if Mσ ≡C Nσ whenever σ is a
key-renaming function, σ induces a renaming on QEnc, which we also denote by σ.

Example 35 (Length-Revealing). Using the length-function of Definition 19, we can
consider encrypted terms to be indistinguishable for an adversary if and only if the en-
crypted messages have the same length. For this case, we define ≡C so that it equates
encryption terms with the same length, that is, {M}K ≡1 {M ′}K′ if and only if
`(M) = `(M ′) (where we used ≡1 to denote this particular equivalence). An element
of QEnc = EncV

/≡1 contains all encryption terms for which the encrypted message
has a specific length.

Example 36 (Which-Key Revealing). We can also consider the situation when an ad-
versary can recognize that two encryption terms were encrypted with different keys.
For this case, we need to define ≡C (which we denote now with ≡2) so that two en-
cryption terms are equivalent if and only if they are encrypted with the same key, that
is, {M}K ≡2 {M ′}K′ if and only if K = K ′.

Example 37 (One-Time Pad). As in the previous cases, we must find a suitable equiv-
alence relation for formal expressions. One possibility is to label boxes again with the
encrypting keys. Another possibility is to label the boxes with the length as well. In
the OTP scheme, the key reveals the length of the ciphertext. Therefore, we can use
the first, that is a simpler possibility. For this case, we define ≡C (which we denote
now with ≡OTP) so that two encryption terms are equivalent if and only if they are
encrypted with the same key, that is, {M}K ≡OTP {M ′}K′ if and only if K = K ′.
This is almost the same as the which-key revealing case, except that the set of valid
expressions is different.

Definition 38 (Formal Logic of Symmetric Encryption). A formal logic for symmet-
ric encryption is a triple ∆ = (ExpV ,≡K,≡C) where ExpV is a set of valid expres-
sions, ≡K is an equivalence relation on Keys, and ≡C is an equivalence relation on
EncV . We require the elements of QKeys to be infinite sets, and that for any key renam-
ing function σ relative to QKeys,

(i) if M ∈ Exp, then M ∈ ExpV if and only if Mσ ∈ ExpV ;
(ii) if M,N ∈ EncV , then M ≡C N if and only if Mσ ≡C Nσ;

(iii) replacing an encryption term within a valid expression with another equivalent
valid encryption term results in a valid expression.

To define the equivalence of expressions, we first assign to each valid expression an
element in the set of patterns, Pat, defined the following way:

Definition 39 (Pattern). We define the set of patterns, Pat, by the grammar:

Pat ::= Keys | Blocks | (Pat, Pat) | {Pat}Keys | ¤QEnc

The pattern of a valid expression M , denoted by pattern(M), is derived from M by
replacing each undecryptable term {M ′}K v M (K /∈ R-Keys(M)) by 2µ({M ′}K),
where µ({M ′}K) ∈ QEnc denotes the equivalence class containing {M ′}K .

27

Definition 40 (Equivalence of Expressions). We say that two valid expressions M and
N are equivalent, denoted by M ∼= N , if there exists a key-renaming function σ such
that pattern(M) = pattern(Nσ). For a pattern Q, Qσ denotes the pattern obtained by
renaming all the keys and the box-indexes (which are equivalence classes in QEnc) in
Q with σ.

Example 41 (Which-Key Revealing and One-Time Pad). In the case when the el-
ements of QEnc contain encryption terms encrypted with the same key, Example 36,
there is a one-to-one correspondence between QEnc and Keys, and therefore we can
index the boxes with keys instead of the elements in QEnc: 2K , K ∈ Keys. If

N = (({0}K8 , {K2}K1), ((K7, {({101}K9 , {K8}K5)}K5), {K5}K7)),

the pattern according to the above definition is

pattern2(N) = (({0}K8 , 2K1), ((K7, {(2K9 , {K8}K5)}K5), {K5}K7)).

Then, two expressions are equivalent, if their patterns given by pattern2 are the same
up to key renaming. Let ∼=2 denote this equivalence on Exp. The pattern for OTP is the
same as pattern2, except that it is defined on the set of valid expression from Exam-
ple 33. We denote it by patternOTP, and the resulting equivalence of valid expressions
by ∼=OTP.

Example 42 (Length Revealing). For the case of length revealing, boxes can be in-
dexed by the formal length, and two boxes are identical if their index is the same. That
is, the pattern of N in the previous example is

pattern1(N) = (({0}K8 , 2`(K2)), ((K7, {(2`(101), {K8}K5)}K5), {K5}K7)),

and two expressions are equivalent if and only if their patterns outside the boxes are
the same, up to key renaming, and the boxes in the corresponding places are equal
according to the lengths. Let ∼=1 denote this definition of equivalence on Exp.

Proper Equivalence of Ciphers. In order to be able to prove soundness and complete-
ness we need to have some restrictions on ≡C. The condition that we found the most
natural for our purposes is called proper equivalence and is defined next. This condition
is enough for both soundness and completeness.

Definition 43 (Proper Equivalence of Ciphers). We say that an equivalence relation
≡C on EncV is proper, if for any finite set of keys S, if µ ∈ QEnc contains an encryption
term {N}K with K /∈ S, then µ also contains an element C such that Keys(C)∩S = ∅,
and K 6v C.

In other words, for any finite set of keys S, if the equivalence class µ contains an element
{N}K for some K not in S, then it is possible to find in µ another representative C such
that no keys of C are in S, and K appears in C at most as an encrypting key. This way,
fixing a set of keys S, one can obtain representatives for all classes that do not contain

28

keys from S. In particular this implies that if µ has infinitely many encrypting keys, that
is, the set

µkey := {K ∈ Keys | there is a valid expression M such that {M}K ∈ µ}

is infinite, then there is an element in µ, in which no keys from S ∪{K} appear. In fact,
we show in Proposition 46 that the cardinality of the set µkey is either 1 or ∞.

Example 44 (Which-Key Revealing). Relation≡2 of Example 36 (i.e.two ciphers are
equivalent iff they have the same encrypting key) is clearly proper. If {M}K ∈ µ,
K /∈ S, then C = {K ′}K works for any K ′ /∈ S; there is such a K ′, since we
assumed that there are infinitely many keys. Choosing C = {B}K (B ∈ Blocks) also
works since Blocks is not empty. The same is true for OTP, but we have to require
`(K ′) = `(K)− 3.

Example 45 (Length Revealing). Relation ≡1 of Example 35 (i.e.two ciphers are
equivalent if and only if the encrypted messages have the same length) is clearly proper.
If {M}K ∈ µ, K /∈ S, then a good choice is C = {M ′}K where M ′ is constructed by
assigning to each key in M different from K, a new key K ′ not in S. We can do this
since we assumed that there are infinitely many keys. Then, since key renaming does
not change the length, `(M) = `(M ′), and hence properness follows.

The following propositions will be useful for proving our general soundness and
completeness results.

Proposition 46. Let ∆ = (ExpV ,≡K,≡C) be such that≡C is proper. The equivalence
relation ≡C is such that for any equivalence class µ ∈ QEnc, µkey has either one, or
infinitely many elements. Moreover, if σ is a key renaming that does nothing else but
switches two keys L1 and L2, then {M}Lσ ≡C {M}L as long as L 6= L1, L2 when
|µ({M}L)key| = 1.

Proof. Let µ ∈ QEnc, and assume that there are more than one encrypting keys in µkey,
that is, there are at least two different keys L and L1 such that {M}L, {M1}L1 ∈ µ
for some valid expressions M and M1. Since ≡C is proper and {M1}L1 ∈ µ, if we
consider S = {L} (L1 6= L thus L1 6∈ S) then µ has an element of the form {M ′}L′

in which no key of S appears and in which L1 may only appear as an encrypting key.
Therefore, we have that

L 6∈ Keys({M ′}L′). (1)

Since we assumed that each equivalence class in QKeys contains infinitely many ele-
ments (recall Definition 38), there is a key K 6= L such that K ≡K L, and

K /∈ Keys({M}L) ∪ Keys({M ′}L′). (2)

Defining σ to do nothing else but to switch the keys K and L, we have that {M}Lσ =
{Mσ}K and (by (1) and (2)) {M ′}L′σ = {M ′}L′ . By construction, we also have
that {M}L ≡C {M ′}L′ which implies by Definition 34 that {M}Lσ ≡C {M ′}L′σ.
Merging these three results we obtain by transitivity {Mσ}K ≡C {M ′}L′ . Since

29

{M ′}L′ ∈ µ, it must hold that {Mσ}K ∈ µ. Therefore, there are infinitely many
encrypting keys in µ since there are infinitely many choices for K.

For the second part of the proof, suppose that σ is a key-renaming function that
only switches the values of L1 and L2. If {M}L is an encryption term such that
|µ({M}L)key| = 1, and L1, L2 are such that L 6= L1, L2, then using properness
and S = {L1, L2}, there is an encryption term C ≡C {M}L such that Keys(C) ∩
{L1, L2} = ∅. Then Cσ = C, and {M}Lσ ≡C Cσ = C ≡C {M}L.

For the other case, when |µ({M}L)key| = ∞, consider a new term {M ′}L′ ≡C

{M}L such that L′ /∈ {L, L1, L2}. Applying the same reasoning as above we obtain
{M ′}L′σ ≡C {M ′}L′ , and {M}Lσ ≡C {M ′}L′σ ≡C {M ′}L′ ≡C {M}L. ut

Proposition 47. Let ∆ = (ExpV ,≡K,≡C) be such that ≡C is proper. If σ is a key-
renaming function (relative to ≡K), then for any µ ∈ QEnc, |µkey| = |σ(µ)key|.

Proof. If |µkey| = ∞, then |σ(µ)key| = ∞, since for any {M}K ∈ µ, {M}Kσ =
{Mσ}σ(K) ∈ σ(µ). Since σ is a bijection, and since any µ contains either only one or
infinitely many elements, the claim follows. ut

The next proposition states that if an equivalence relation ≡C is proper, then given
a set of valid ciphers {{Ni}Li}n

i=1, corresponding to equivalence classes µ1, . . . , µn

(eventually repeated), such that none of the Lis are in S, then it is possible to choose a
representative of each µj , denoted by Cj , such that no key of S occurs in any Cj , the
Lis occur at the most as encrypting keys in the Cjs, and no key occurs in two Cjs unless
the corresponding two equivalence classes both have the same, single, encrypting key.
Intuitively, one can construct a representative for each class that is independent of the
representatives of all the other classes (except the case when there is a single encrypting
key in the class), and at the same time independent of S.

Proposition 48. Let ∆ = (ExpV ,≡K,≡C) be such that ≡C is proper, and let C =
{{Ni}Li}n

i=1 be a set of valid ciphers. Let µ1, . . . , µn denote the equivalence-classes
of all elements in C with respect to ≡C.

If S is a finite set of keys such that Li /∈ S for all i ≤ n, then for each µj there is
an element Cj ∈ µj such that

(i) Keys(Cj) ∩ S = ∅,
(ii) Li 6v Cj for all i ∈ {1, . . . , n}, and

(iii) if µj = µi, then Cj = Ci; if µj 6= µi, then Keys(Cj) ∩ Keys(Ci) 6= ∅ if and only
if (µj)key = (µi)key = {K} for some key K. In this case Keys(Cj) ∩ Keys(Ci) =
{K}, K 6v Cj , and K 6v Ci.

Proof. Proof goes by induction. The statement is clearly true if n = 1, since ≡C is
proper. Suppose it is true for n− 1. Let {N1}L1 , {N2}L2 ,. . . , {Nn}Ln be valid expres-
sions, and let S be a set of keys such that Li /∈ S. Without loss of generality, we can
assume, that the numbering is such that there is an l, 1 ≤ l ≤ n, such that

|(µj)key| =
{

1 if j ≤ l
∞ if j > l.

30

Case 1: Let us first assume that l = n and that there is an m ∈ {1, . . . , n−1} such that
Ln = Lm. Since the statement is assumed to be true for n − 1, we can choose Cj for
j ≤ n− 1 such that conditions (i), (ii), (iii) hold for these {Cj}n−1

j=1 and S. If µn = µj

for some j ≤ n− 1, then there is nothing to prove, Cn = Cj has already been chosen.
If there is no such j, then consider

Sn−1 :=







n−1⋃

j=1

Keys(Cj) ∪
n−1⋃

i=1

{Li}

 \ {Ln}


 ∪ S

Given Sn−1 and {Nn}Ln , according to the assumption of properness of ≡C, there is a
C ∈ µn such that Keys(C)∩Sn−1 = ∅ and Ln 6v C. Let us define Cn := C. Condition
(i) follows from the fact that Keys(C) ∩ Sn−1 = ∅ and S ⊆ Sn−1; (ii) is true, since for
all j ≤ n− 1 (a) Lm 6v Cj by the induction hypothesis (IH); (b) Ln 6v Cj because we
assumed that Lm = Ln; and (c) Li 6v Cj for i ≤ n− 1 also by IH. For j = n we have
Cj = Cn = C hence (d) Lm = Ln 6v C by construction of C; and (e) Li 6v C for
i ≤ n − 1 and i 6= m, because either Li = Ln 6v C by the previous case or Li 6= Ln

and in this case, by construction of C, Keys(C)∩Sn−1 = ∅ and Li ∈ Sn−1. Finally, for
case (iii) we have by construction of C that Keys(C) ∩ Sn−1 = ∅ hence for j ≤ n− 1,
K ∈ Keys(Cj) ∩ Keys(C) implies that K = Ln; but we have just proved in (ii) that
Ln 6v Cj and Ln 6v C hence both Cj and C are of the form {·}Ln . Finally, since
l = n, we have that |(µj)key| = |(µn)key| = 1, hence (µj)key = (µn)key = {Ln}. The
converse is immediate. The case i, j ≤ n− 1 follow immediately by IH.

Case 2: Suppose now that l = n but there is no m ∈ {1, . . . , n−1} such that Ln = Lm.
We have that {{Ni}Li}n−1

i=1 and S′ := S ∪ {Ln} satisfy the conditions of the IH. We
can then choose Cj for j ≤ n − 1 such that conditions (i), (ii), (iii) hold replacing S
by S′. Again, if µn = µj for some j ≤ n− 1, then Cn = Cj has already been chosen.
Condition (i) follows because Keys(Cj) ∩ S ⊆ Keys(Cj) ∩ S′ = ∅ by IH; (ii) holds
because for all j ≤ n−1 (a) Ln 6v Cj because by IH we have Keys(Cj)∩(S∪{Ln}) =
∅; and (b) Li 6v Cj for i ≤ n−1 by IH. For j = n we have Cn = Ck for some k ≤ n−1
hence (c) Ln 6v Cn = Ck because of case (b); and (d) Li 6v Cn = Ck for i ≤ n − 1
also by IH. Finally (iii) follows from IH because µn = µj for some j ≤ n− 1.

If there is no such j, then consider

Sn−1 :=




n−1⋃

j=1

Keys(Cj) ∪
n−1⋃

i=1

{Li}

 ∪ S

We should first notice that Ln 6∈ Sn−1: by IH, Keys(Cj) ∩ S′ = Keys(Cj) ∩ (S ∪
{Ln}) = ∅ for j ≤ n− 1; by hypothesis Ln 6= Lm for m ≤ n− 1, and by hypothesis
of the proposition Ln 6∈ S.

Given Sn−1 and {Nn}Ln , according to the assumption of properness of ≡C, there
is a C ∈ µn such that Keys(C) ∩ Sn−1 = ∅ and Ln 6v C. Let us define Cn := C.
Condition (i) follows from the fact that Keys(C) ∩ Sn−1 = ∅ and S ⊆ Sn−1; (ii) is
true, since for all j ≤ n− 1 (a) Ln 6v Cj because by IH, Keys(Cj) ∩ (S ∪ {Ln}) = ∅;
and (b) Li 6v Cj for i ≤ n − 1 also by IH. For j = n we have Cn = C hence (c)

31

Ln 6v C by construction of C; and (d) Li 6v C for i ≤ n − 1 because Li ∈ Sn−1

and by construction of C, Keys(C) ∩ Sn−1 = ∅. Finally, (iii) follows as well, because
by construction of C, Keys(C) ∩ Sn−1 = ∅ implies Keys(C) ∩ Keys(Cj) = ∅ for all
j ≤ n− 1. The cases i, j ≤ n− 1 follow immediately by IH.

Case 3: Suppose now that l < n and that there is an m ∈ {1, . . . , n − 1} such that
Ln = Lm. Select {N ′

n}L′n such that {N ′
n}L′n ≡C {Nn}Ln

and L′n /∈ {Li}n
i=i. This is

possible since in this case we have that |(µn)key| = ∞.
One now has that {{Ni}Li

}n−1
i=1 ∪{N ′

n}L′n and S′ := S∪{L′n} satisfy the conditions
of the IH and the result follows similarly to the previous case.

Case 4: Suppose now that l < n but there is no m ∈ {1, . . . , n−1} such that Ln = Lm.
Again, {{Ni}Li

}n−1
i=1 and S′ := S∪{Ln} satisfy the conditions of the IH and the result

follows similarly to Case 2. ut
Given sets C and S as in the conditions of the proposition, let µ(C) denote the set

of equivalence classes of the elements in C and let R(C, S) denote the nonempty set

R(C, S) :=
{
{Cν}ν∈µ(C)

∣∣∣∣
Cν ∈ ν, and {Cν}ν∈µ(C) and S satisfy conditions
(i), (ii), and (iii) of Proposition 48

}

We will need the following proposition for the general completeness theorem. For
µ ∈ QEnc, let ‖µkey‖ = µkey if |µkey| = 1, and ‖µkey‖ = ∅ if |µkey| = ∞ (by
Proposition 46, the only possible cases).

Proposition 49. Let ∆ = (ExpV ,≡K,≡C) be such that ≡C is proper, S,U finite sets
of keys, and C = {M}L an encryption term such that Keys(C) ∩ S = ∅. Then, for any
key-renaming function σ, there is a key-renaming function σ′ such that:

(i) σ′ is the identity map on S \ ‖µ(Cσ)key‖;
(ii) σ′

(
Keys(C) \ ‖µ(C)key‖

) ∩ (S ∪ U) = ∅;
(iii) Cσ ≡C Cσ′; and
(iv) σ′ changes only finitely many keys.

Proof. Let S′ = S \ ‖µ(Cσ)key‖ and S′′ be a set of keys such that each equiv-
alence class of ≡K has the same number of elements in S′ and S′′ (possible be-
cause we required each class to have an infinite number of keys) and S′′ ∩ (S′ ∪
Keys(C) ∪ Keys(Cσ)) = ∅. Let σ1 be a key-renaming function that switches the
keys of S′ and S′′ and leaves all other keys unchanged. Let σ2 be defined by cases:
if ‖µ(Cσ)key‖ = {σ(L)}, let σ2 be the same as σ on Keys(C), map elements of
Keys(Cσ) \ Keys(C) bijectively to Keys(C) \ Keys(Cσ), and be the identity map else-
where; if ‖µ(Cσ)key‖ = ∅, let σ2 be the same as above except that σ2(L) is defined to
be any key K ′ /∈ S′ ∪ S′′ ∪ Keys(C) ∪ Keys(Cσ), σ2(K ′) = L and σ2(σ(L)) = σ(L)
(these last two for σ2 to remain a bijection). In either case σ2 is the identity map on S′′.

Let σ′′ := σ−1
1 ◦ σ2 ◦ σ1. Then, σ1 first maps all elements of S′ onto S′′, which

are then unchanged by σ2, and finally they are mapped back to S′ by σ−1
1 . Hence

Condition (i) holds for σ′′.
Let us now prove that σ′′ satisfies Condition (iii), that is, Cσ ≡C Cσ′′.

32

1. Since Keys(C) is disjoint from both S′ and S′′ we have that σ1 is the identity map
on Keys(C), therefore σ2(σ1(K)) = σ2(K) for all K ∈ Keys(C).
(a) If ‖µ(Cσ)key‖ 6= ∅, then σ2(K) = σ(K) for all K ∈ Keys(C), hence

σ2(σ1(K)) = σ2(K) = σ(K) for all K ∈ Keys(C). Hence Cσ1σ2 = Cσ.
(b) If ‖µ(Cσ)key‖ = ∅, then σ2(K) = σ(K) for all K ∈ Keys(C) \ {L}.

Let us define ρ that switches keys K ′ and σ(L), and is the identity else-
where. By Proposition 46, Cσ1σ2ρ ≡C Cσ1σ2. Let K ∈ Keys(C). If K =
L, then ρ(σ2(σ1(L))) = ρ(σ2(L)) = ρ(K ′) = σ(L). If K 6= L, then
ρ(σ2(σ1(K))) = ρ(σ2(K)) = ρ(σ(K)) = σ(K) since σ(K) /∈ {K ′, σ(L)}.
Hence Cσ1σ2ρ = Cσ and by transitivity we obtain Cσ ≡C Cσ1σ2.

In both cases we obtain Cσ ≡C Cσ1σ2(= {Mσ2}σ2(L)).
2. By properness of ≡C and σ2(L) /∈ S′ ∪ S′′, there is an encryption term C ′ ≡C

Cσ1σ2 such that Keys(C ′) ∩ (S′ ∪ S′′) = ∅. Therefore, C ′ = C ′σ−1
1 .

3. Finally, by definition of ≡C and 2 we also have that C ′σ−1
1 ≡C Cσ1σ2σ

−1
1 and so

Cσ ≡C Cσ1σ2 ≡C C ′ ≡C C ′σ−1
1 ≡C Cσ1σ2σ

−1
1 = Cσ′′ by definition of σ′′.

Condition (iv) holds trivially from the way we constructed σ′′.
Finally, we construct σ′ from σ′′ such that σ′

(
Keys(C)\‖µ(C)key‖

)∩(S∪U) = ∅.
We show that this construction carries the properties (i), (iii) and (iv) of σ′′ over to σ′.

If for all K ∈ Keys(C) \ ‖µ(C)key‖ we have that σ′′(K) 6∈ (S ∪ U), then let
σ′ = σ′′. Obviously this σ′ satisfies Conditions (i)-(iv).

If there is a K ∈ Keys(C) \ ‖µ(C)key‖ such that σ′′(K) = K ′′ ∈ (S ∪ U), then
pick any L2 ≡K K, such that L2 6∈ (S ∪ U ∪ S′′ ∪ Keys(C)) and σ′′(L2) = L2, that
is, L2 is a key that was never used before. It is possible to choose L2 as all these sets
are finite. Let ρ be a key-renaming function that switches L2 and K and consider the
substitution ρσ′′ = σ′′ ◦ ρ. This substitution is equal to σ′′ except for the values given
to L2 and K. Let us prove Conditions (i)-(iv) for ρσ′′.

To prove (i) note that L2 /∈ S ⊇ S′, and K ∈ Keys(C), but Keys(C) ∩ S = ∅.
For all other keys ρσ′′ is equal to σ′′ that is the identity in S′. For (ii) we have by
Proposition 46 that Cρ ≡C C hence Cρσ′′ ≡C Cσ′′ ≡C Cσ. Note that if |µ(C)key| =
1, then ‖µ(C)key‖ = {L}, so K 6= L by hypothesis and L2 6= L ∈ Keys(C) by
construction. It is obvious that ρσ′′ only changes finitely many keys as σ′′ does. Finally,
(ρσ′′)

(
Keys(C) \ ‖µ(C)key‖

) ∩ (S ∪ U) ⊂ σ′′
(
Keys(C) \ ‖µ(C)key‖

) ∩ (S ∪ U) as
we removed one key from the intersection, σ′′(ρ(K)) = L2 6∈ (S ∪ U).

Define then the new σ′′ as ρσ′′ and iterate this procedure until all coincidences with
(S ∪ U) are removed. At each step one key is removed from the intersection. This
procedure terminates as Keys(C) is finite and then the resulting renaming function is
the desired σ′ as it satisfies Conditions (i)-(iv). ut

One may ask if we can make σ′ identity in all S. However, that is not possible
when σ(L) ∈ S and |µ(Cσ)key| = 1. As an example, consider the relation ≡C of
Example 36 (two terms are equivalent if and only if they have the same encrypting
key), S = {L1}, and C = {M}L. Given the substitution σ that switches L and L1 one
will never be able to create σ′ such that Cσ = {Mσ}L1 ≡C Cσ′ because one will
always need σ′(L) = L1 to obtain the equivalence. This problem does not occur when
|µ(Cσ)key| = ∞ because we have an infinite number of keys to map the encrypting
key L.

33

5.3 Interpretation

To each valid formal expression M , the interpretation assigns a random variable Φ(M)
taking values in strings. We do not give one specific interpretation function though,
we will just say that a function Φ is an interpretation if it satisfies certain properties.
We assume, that a function φ is fixed in advance, which assigns to each formal key a
key-generation algorithm. If Φ(B) ∈ strings (constant random variable) is given for
blocks, then, the rest of Φ is determined the following way: First, run the key-generation
algorithm assigned by φ for each key in Keys(M). Then, using the outputs of these key-
generations, translate the formal expressions according to the following rules: For each
key, use the output of the corresponding key-generation. For blocks, just use Φ(B). For
each pair, apply [·, ·] to the interpretations of the expressions inside the formal pair.
For each formal encryption, run the encryption algorithm using the key string that was
output by the key generation, on the interpretation of the formal expression inside the
formal encryption. The randomness of Φ(M) comes from the initial key-generation,
and from running the encryption algorithm independently every time you encounter a
formal encryption. The precise definition is quite technical and given in Definition 51,
but it is probably clear enough from the following example:

Example 50. For M = (({0}K10 ,K5), {K10}K5), the interpretation is Φ(M) : (ΩE ×
ΩE)× (Ωφ(K5) ×Ωφ(K10)) → strings, where Φ(M)(ω1, ω2, ω3, ω4) is

[
[E(φ(K10)(ω4), Φ(0))(ω1), φ(K5)(ω3)], E(φ(K5)(ω3), φ(K10)(ω4))(ω2)

]
.

There are four instances of randomness, two coming from the generation of keys by the
key-generation algorithm (for K5 and for K10), and the other two from the encryptions
{0}K10 and {K10}K5 .

Definition 51 (Interpretation of Formal Expressions). Let Π = ({Ki}i∈I , E ,D,≈)
be a general symmetric encryption scheme, with {(ΩKi , PrKi)}i∈I denoting the prob-
ability fields for key generation, and with (ΩE ,PrE) denoting the probability field for
the randomness of encryption. Let ExpV be a set of valid expressions. For each valid
expression M , let the probability space (ΩM , PrM) be defined recursively as

(ΩK , Pr K) := ({ω0},1{ω0}) for K ∈ Keys;

(ΩB ,Pr B) := ({ω0},1{ω0}) for B ∈ Blocks;

(Ω(M,N), Pr (M,N)) := (ΩM ×ΩN , Pr M ⊗ Pr N);
(Ω{M}K

, Pr {M}K
) := (ΩE ×ΩM , Pr E ⊗ Pr M).

Where ({ω0},1{ω0}) is just the trivial probability-space with one elementary event,
ω0 only; the tensor product stands for the product probability. Suppose that a function
φ : Keys → {Ki}i∈I is given assigning abstract keys to key generation algorithms, such
that φ(K) = φ(K ′) if and only if K ≡K K ′. Let ι : {1, . . . , |Keys(M)|} → Keys(M)
be a bijection enumerating the keys in Keys(M). Let

(ΩKeys(M),PrKeys(M)) :=(
Ωφ(ι(1)) × · · · ×Ωφ(ι(|Keys(M)|)),Prφ(ι(1)) ⊗ · · · ⊗ Prφ(ι(|Keys(M)|))

)
.

34

The function (M, M ′) 7→ (ΦM (M ′) : ΩM ′ ×ΩKeys(M) → strings) defined whenever
M ′ v M , is called an interpreting function, if it satisfies the following properties:

ΦM (B)(ω0, ω) = ΦN (B)(ω0, ω
′) for all M , N valid expressions, B ∈ Blocks,

B v M , B v N , and arbitrary ω ∈ ΩKeys(M), ω′ ∈ ΩKeys(N). Let Φ(B) :=
ΦM (B).
ΦM (K)(ω0, (ω1, . . . , ω|Keys(M)|)) = φ(K)(ωι−1(K)) for K ∈ Keys(M), with ωj ∈
Ωφ(ι(j)).
ΦM ((M ′,M ′′))((ω′, ω′′), ω) = [ΦM (M ′)(ω′, ω), ΦM (M ′′)(ω′′, ω)] for all ω′ ∈
ΩM ′ , ω′′ ∈ ΩM ′′ , and ω ∈ ΩKeys(M) if (M ′,M ′′) v M .
ΦM ({M ′}K)((ωE , ω′), ω) = E(ΦM (K)(ω0, ω), ΦM (M ′)(ω′, ω))(ωE) for all ω′∈
ΩM ′ , ωE ∈ ΩE , ω ∈ ΩKeys(M) if {M ′}K v M .

Let Φ(M) := ΦM (M), and let [[M]]Φ denote the distribution of Φ(M).

Clearly, the definition is not necessarily well-defined depending on what DomE is. We
simply assume, that DomE is such that this does not cause a problem, (another possibil-
ity is to restrict the set of valid expressions to those elements for which the interpretation
is well-defined).

Example 52 (Interpretation for Computational Systems). We discussed the inter-
pretation for computational systems in Section 3.4. The algorithm there includes boxes,
which should be left out for now, and what remains is a special case of the general
interpretation presented here, with the considerations of Example 29.

Example 53 (Interpretation for One-Time Pad). The interpretation of the valid ex-
pressions that we gave in Example 33 for the OTP is defined similarly to the computa-
tional case, with some minor changes regarding the tagging of the messages. Also, there
is no security parameter in this encryption scheme, so the interpretation outputs a single
random variable for each formal expression (rather than a family of such variables). We
present here the full algorithm:

algorithm INTERPRETATIONOTP(M)
for K ∈ Keys(M) do τ(K) ←− Kl(K)

y ←− CONVERTOTP(M)
return y

algorithm CONVERTOTP(N)
if N = K where K ∈ Keys then

return τ(K)
if N = B where B ∈ Blocks then

return 〈B, 100〉
if N = (N1, N2) then

return [CONVERTOTP(N1), CONVERTOTP(N2)]
if N = {N1}K then

return 〈E(τ(K), CONVERTOTP(N1)), 110〉

35

5.4 Soundness

An interpretation assigns a random variable Φ(M) (and the distribution [[M]]Φ of Φ(M))
to a formal valid expression M . On the set of valid expressions the equivalence ∼=
equates expressions that a formal adversary supposedly cannot distinguish, whereas the
equivalence ≈ equates random variables (and distributions) that a probabilistic adver-
sary is not supposed to be able to distinguish. The question is, how the formal and the
probabilistic equivalence are related through the interpretation. We say that soundness
holds if M ∼= N implies [[M]]Φ ≈ [[N]]Φ, whereas we say that completeness holds if
[[M]]Φ ≈ [[N]]Φ implies M ∼= N .

The key to a soundness theorem is to have enough boxes in the definition of for-
mal equivalence, i.e., there should be enough elements in QEnc. It is clear that in the
extreme case, when the equivalence on encryption terms, ≡C, is defined so that two
encryption terms are equivalent iff they are the same, soundness holds trivially for all
interpretations; but this would be completely impractical, it assumes a formal adversary
that can see everything inside every encryption. It is also immediate, that if soundness
holds with a given ≡C (and a given interpretation), and ≡′C is such that for any two en-
cryption terms M and N , M ≡′C N implies M ≡C N (i.e.≡′C has more boxes), then,
keeping the same interpretation, soundness holds with the new ≡′C as well. Hence, in a
concrete situation, the aim is to introduce enough boxes to achieve soundness, but not
too many, to sustain practicality. One way to avoid having too many boxes is to require
at the same time completeness: we will see later, that obtaining completeness requires
that we do not have too many boxes.

The following theorem claims the equivalence of two conditions. It is almost trivial
that condition (i) implies condition (ii). The claim that (ii) implies (i) can be summarized
the following way: if soundness holds for pairs of valid expressions M ′ and N ′ with a
special relation between them (described in (ii)), then soundness holds for all expres-
sions (provided that they do not have encryption cycles). In other words, if M ′ ∼= N ′

implies [[M ′]]Φ ≈ [[N ′]]Φ for certain specified pairs M ′ and N ′, then M ∼= N implies
[[M]]Φ ≈ [[N]]Φ for any two pairs of valid expressions M and N . The relation between
M ′ and N ′ is that N ′ is obtained from M ′ via substitution of all undecryptable terms
(that are encrypted with some key K) by the representative of its equivalence class.

For definition of key cycles and B-Keys, see Section 3.1. R(C, S), is defined in
Section 5.2. Given an encryption term {N}K , we denote by µ({N}K) its equivalence
class and by Cµ({N}K) a representative of its class.

Theorem 54 (Soundness). Let ∆ = (ExpV ,≡K,≡C) be a formal logic for symmet-
ric encryption such that ≡C is proper and for each M ∈ ExpV , B-Keys(M) is not
cyclic in M . Let Π = ({Ki}i∈I , E ,D,≈) be a general encryption scheme, and Φ an
interpretation of ExpV in Π . The following conditions are equivalent:

(i) Soundness holds for Φ: M ∼= N , implies Φ(M) ≈ Φ(N).
(ii) For any set of valid encryption terms C = {{Ni}Li}n

i=1, and finite set of keys S
such that Li /∈ S (i ∈ {1, . . . , n}), there is an element {Cν}ν∈µ(C) of R(C, S)
such that the followings hold:
if

{{Nij}K

}l

j=1
⊆ C and M ∈ ExpV are such that

1. {Ni1}K , {Ni2}K , . . . , {Nil
}K v M ,

36

2. K does not occur anywhere else in M ,
3. if {M1}L ∈ vis (M) but L 6∈ R-Keys(M), then {M1}L ∈ C ∪ {Cν}ν∈µ(C),
4. R-Keys(M) ⊆ S.

then, if we denote by M ′ the expression obtained from M by replacing each {Nij
}K

with Cµ({Nij
}K), we have that [[M]]Φ ≈ [[M ′]]Φ.

Proof. The proof of this theorem is motivated by the soundness proof in [3]. The idea of
the proof is the following: starting from two acyclic expressions M0 = M ∼= N = N0,
we create expressions M1, . . . , Mb and N1, . . . , Nb′ such that Mi+1 is obtained from
Mi via a replacement of encryption terms as described in condition (ii). Acyclicity en-
sures that the encrypting key of the replaced encryption terms will not occur anywhere
else. Similarly for Ni+1 and Ni. We do this so that Mb and Nb′ will differ only by key
renaming. Then, by condition (ii), [[Mi+1]]Φ ≈ [[Mi]]Φ, and [[Ni+1]]Φ ≈ [[Ni]]Φ. But,
[[Mb]]Φ = [[Nb′]]Φ, and therefore the theorem follows.

Now in detail. Condition (ii) follows from (i) easily: For any set {Cµ({Nij
}K)}l

i=1

provided by Proposition 48, the encrypting key of Cµ({Nij
}K) is not contained in S

hence it is not a recoverable key of M . Therefore, while computing the pattern of M ′,
Cµ({Nij

}K) will be replaced by the box 2µ({Nij
}K), which is the same box as the one

that replaces {Nij}K in M when the pattern of M is computed. Hence M ∼= M ′, and
therefore, since soundness is assumed, and B-Keys(M ′) is not cyclic in M ′, we have
that [[M]]Φ ≈ [[M ′]]Φ.

In order to prove that (i) follows from (ii), consider two equivalent valid expressions
M and N , such that M ∼= N . Then, by definition, there exists a bijection σ on Keys
(preserving ≡K) such that pattern(M) = pattern(Nσ). This means that the “boxes”
occurring in pattern(M) must occur in pattern(Nσ) and vice-versa. Also, the subex-
pressions of pattern(M) and of pattern(Nσ) outside the boxes must agree as well.
Hence,

R-Keys(M) = R-Keys(Nσ) = R-Keys(N)σ.

Let L1, L2, . . . , Lb (Li 6= Lj if i 6= j) denote the keys in B-Keys(M), and let L′1, L′2,
. . ., L′b′ (L′i 6= L′j if i 6= j) denote the keys in B-Keys(N)σ. B-Keys(M) and B-Keys(N)
(and therefore B-Keys(Nσ) as well) are not cyclic by hypothesis, so without loss of
generality, we can assume that the Lis and the L′is are numbered in such a way that Li

encrypts Lj (respectively, L′i encrypts L′j) only if i < j (for a more detailed argument
about this, see [3]; intuitively this means that those keys in B-Keys(M) that are deeper
in M have a higher number.

Consider now the set of expressions that are subexpressions of M or N and have
the form {M ′}Li or {N ′}L′i , and also, the set S. Condition (ii) then provides a set with
elements of the form Cµ({M ′}Li

) and Cµ({N ′}L′
i
).

Let M0 = M . Let M1 be the expression obtained from M0 by replacing all subex-
pressions in M0 of the form {M ′}L1 by Cµ({M ′}L1) given by the assumption. Let then
Mi, i ≥ 2, be the expression obtained from Mi−1 by replacing all subexpressions in
Mi−1 of the form {M ′}Li by Cµ({M ′}Li

). We do this for all i ≤ b and it is easy to see
that in Mb replacing the subexpressions of the form Cµ({M ′}Li

) by 2µ({M ′}Li
) for all

i, we obtain pattern(M).

37

Note that in Mi−1, Li can only occur as an encrypting key. The reason for this is that
if Li is a subexpression of M , then it has to be encrypted with some non-recoverable
key, otherwise Li would be recoverable; moreover, it has to be encrypted with some
key in B-Keys(M) because a subexpression of M is either recoverable or ends up in a
box when we construct pattern(M). Now, the element in B-Keys(M) that encrypts Li

has to be an Lj with j < i. But, all subexpressions in M of the form {M ′}Lj
were

already replaced by Cµ({M ′}Lj
) when we constructed Mj . According to the properties

listed in proposition 48, Li may only appear in Cµ({M ′}Lj
) as the encrypting key, and

then Li = Lj , a contradiction. So Li cannot appear in Mi−1 in any other place than an
encrypting key. Observe as well, that R-Keys(Mi) = R-Keys(M).

From assumption (ii), it follows then that [[Mi−1]]Φ ≈ [[Mi]]Φ, for all i, 1 ≤ i ≤ b.
Hence,

[[M]]Φ = [[M0]]Φ ≈ [[Mb]]Φ. (3)

Carrying out the same process for Nσ through (Nσ)0, (Nσ)1, . . . , (Nσ)b′ we arrive at

[[(Nσ)]]Φ = [[(Nσ)0]]Φ ≈ [[(Nσ)b′]]Φ. (4)

Since we supposed that M ∼= N , that is, pattern(M) = pattern(Nσ), and therefore
Mb = pattern(M) and (Nσ)b′ = pattern(Nσ), we have

[[Mb]]Φ = [[(Nσ)b′]]Φ. (5)

Then, it is clearly true that
[[N]]Φ = [[Nσ]]Φ (6)

because permuting the keys in N does not have any effect in the distributions. Putting
together Equations (3), (4), (5) and (6) the soundness result follows: [[M]]Φ ≈ [[N]]Φ.

ut
Remark 55. The reader might ask why we do not have a similar general theorem for key
cycles and KDM-like security. The reason is that this general soundness theorem tells
us under which conditions the several steps of the Abadi-Rogaway hybrid argument can
be carried out. One of the conditions is that by doing one step of replacement, we must
obtain equivalent interpretations, provided that we have the appropriate security notion.
However, in our theorem using KDM security to solve the key cycles issue, there is
only one step of replacement! All the replacements of undecryptable terms are done at
once. Therefore, in a general theorem (without assuming a specific security level), the
condition of the theorem would have to be exactly what we would want to prove, and
that makes no sense.

We illustrate this general theorem by applying it to three detailed examples. First,
we consider encryption schemes which may reveal the length of the plaintext, but which
conceal whether or not two ciphertexts were created using the same key. In the termi-
nology of Abadi and Rogaway [3] these are known as ‘type-1’ encryption schemes:

Definition 56 (Type-1 Security). Let Π = (K, E ,D) be symmetric encryption scheme.
We say that the encryption-scheme is type-1 secure if no PPT adversary A can distin-
guish the pair of oracles (E(k, ·), E(k′, ·)) and (E(k, 0|·|), E(k, 0|·|)) as k and k′ are

38

independently generated, that is, for all PPT adversaries A:

Pr
[
k, k′ ←− K(1η) : AE(k,·),E(k′,·)(1η) = 1

]
−

Pr
[
k ←− K(1η) : AE(k,0|·|),E(k,0|·|)(1η) = 1

]
≤ neg (η) .

In this example (which ends with Corollary 58) we use our general soundness the-
orem to prove soundness for these schemes.

Example 57 (Type-1 Soundness). Let ExpV be the set of elements in M ∈ Exp for
which B-Keys(M) is not cyclic. The equivalence relation≡1 is as in Example 35, which
is proper by Example 45; the equivalence relation≡K is trivial here, all keys are equiva-
lent. The elements µ ∈ QEnc are in one-to-one correspondence with the possible length,
so the patterns that we obtain this way are the same that we defined in Example 42, and
the equivalence of expressions is∼=1 that is defined in the same example. In order to see
that condition (ii) of the general soundness theorem is satisfied for type-1, we use the
following equivalent definition of type-1 secure encryption schemes: an encryption-
scheme is type-1 secure if no PPT adversary A can distinguish the pair of oracles
(E(k, ·, ·, 0), E(k′, ·, ·, 0)) and (E(k, ·, ·, 1), E(k, ·, ·, 1)) as k and k′ are independently
generated, that is, for all PPT adversaries A:

Pr
[
k, k′ ←− K(1η) : AE(k,·,·,0),E(k′,·,·,0)(1η) = 1

]
−

Pr
[
k ←− K(1η) : AE(k,·,·,1),E(k,·,·,1)(1η) = 1

]
≤ neg (η)

where oracle E(k, ·, ·, 0), upon the submission of two messages with equal length en-
crypts the first, while oracle E(k, ·, ·, 1) encrypts the second.

To show that condition (ii) of Theorem 54 holds, we first have to choose {Cν}ν∈µ(C)

for a given set C = {{Ni}Li}n
i=1. We can choose any family {Cν}ν∈µ(C) such that all

the Cν are encrypted with the same key, let us call it L0, that is not present in any of
the {Ni}Li neither in M . This is possible because, as it is easy to check, νkey = Keys
for all ν ∈ QEnc. Then, let M be as in condition (ii) of Theorem 54. We need to show
that if {{Nij}L}l

j=1 ⊆ C and if we denote by M ′ the expression obtained from M by
replacing each {Nij}L with Cµ({Nij

}L), then [[M]]Φ ≈ [[M ′]]Φ.
Suppose that [[M]]Φ 6≈ [[M ′]]Φ. This means that there is an adversary A that is able to

distinguish the two distributions, that is Pr[x ←− [[M]]Φη : A(1η, x) = 1] − Pr[x ←−
[[M ′]]Φη : A(1η, x) = 1] is a non-negligible function of η. We will show that this
contradicts type-1 security. To this end, we construct an adversary that can distinguish
between the two pairs of oracles above. This adversary is the following probabilistic
algorithm that has access to the oracles f and g:

algorithm Bf,g(1η,M)
for K ∈ Keys(M) \ {L,L0} do τ(K) ←− K(1η)
y ←− CONVERT2(M)
b ←− A(1η, y)
return b

39

algorithm CONVERT2(N)
if N = K where K ∈ Keys then

return τ(K)
if N = B where B ∈ Blocks then

return B
if N = (M1,M2) then

x ←− CONVERT2(M1)
y ←− CONVERT2(M2)
return [x, y]

if N = {M1}L then
x ←− CONVERT2(M1)
y ←− CONVERT2(Mν) (where Cµ({M1}L) = {Mν}L0)
z ←− f(x, y)
return z

if N = {M1}L0 then
x ←− CONVERT2(M1)
y ←− g(x, x)
return y

if N = {M1}K (K 6∈ {L,L0}) then
x ←− CONVERT2(M1)
y ←− E(τ(K), x)
return y

Note that the algorithm CONVERT2 does almost the same as the algorithm CONVERT
of Figure 1, except that while CONVERT carries out all the necessary encryptions,
CONVERT2 makes the oracles carry out the encryptions for L and L0. It is easy to see
that if the pair of oracles (f, g) is (E(k, ·, ·, 0), E(k′, ·, ·, 0)), then CONVERT2(M) is a
random sample from [[M]]Φη , whereas if the pair of oracles is (E(k, ·, ·, 1), E(k, ·, ·, 1)),
then CONVERT2(M) is a random sample from [[M ′]]Φη . Thus, Pr[k, k′ ←− K(1η) :
BE(k,·,·,0),E(k′,·,·,0)(1η,M) = 1] = Pr[x ←− [[M]]Φη : A(1η, x) = 1] and Pr[k ←−
K(1η) : BE(k,·,·,1),E(k,·,·,1)(1η,M) = 1] = Pr[x ←− [[M ′]]Φη : A(1η, x) = 1]. But,
according to our assumption, [[M]]Φ and [[M ′]]Φ can be distinguished, that is, Pr[x ←−
[[M]]Φη : A(1η, x) = 1] − Pr[x ←− [[M ′]]Φη : A(1η, x) = 1] is a non-negligible
function of η and so, there is an adversary Bf,g(1η, ·) such that

Pr[k, k′ ←− K(1η) : BE(k,·,·,0),E(k′,·,·,0)(1η,M) = 1]−
Pr[k ←− K(1η) : BE(k,·,·,1),E(k,·,·,1)(1η, M) = 1]

is also a non-negligible function of η. This implies that our scheme cannot be type-
1 secure, which contradicts the assumption. Hence, we cannot have [[M]]Φ 6≈ [[M ′]]Φ
and so condition (ii) of the general soundness theorem is satisfied, which implies that
soundness holds for the type-1 case. To summarize, we have that

Corollary 58 (Type-1 Soundness). Let Π be a type-1 secure encryption scheme such
that for each η security parameter, if k, k′ ←− K(1η), then |k| = |k′|, and for any m

40

plaintext, |E(k,m, w)| = |E(k′,m,w′)| for all w,w′ ←− coins. Then, if the length-
function satisfies only the equalities defined in Definition 19, then for any M and N
expressions such that B-Keys(M) and B-Keys(N) are not cyclic in M and N respec-
tively, M ∼=1 N implies [[M]]Φ ≈ [[N]]Φ.

Otherwise, for arbitrary length-function ` (that is, one satisfying possible more
equations), if for all pairs of expressions M and N , `(M) = `(N) implies that the
binary length of [[M]]Φη is the same as the binary length of [[N]]Φη for each security
parameter η, then for any M and N expressions, M ∼=1 N implies [[M]]Φ ≈ [[N]]Φ.

Having considered the leakage of plaintext-length in the previous example, we now
turn to another kind: whether or not two ciphertexts share a key. Schemes which conceal
plaintext-length but reveal this information are called ‘type-2’ in the terminology of
Abadi and Rogaway, or are ‘message-concealing’ and ‘length-concealing’ but may be
‘which-key revealing.’ For this type of encryption, no adversary should be able to tell
whether a ciphertext contains a (possibly long) plaintext or the single-bit plaintext 0:

Definition 59 (Type-2 Security). Let Π = (K, E ,D) be symmetric encryption scheme.
We say that the encryption-scheme is type-2 secure if no PPT adversary A can distin-
guish the oracles E(k, ·) and E(k, 0) as k is randomly generated, that is, for all PPT
adversaries A:

Pr
[
k ←− K(1η) : AE(k,·)(1η) = 1

]
−Pr

[
k ←− K(1η) : AE(k,0)(1η) = 1

]
≤ neg (η) .

In the next example (which ends with Corollary 62) we apply Theorem 54 to type-2
encryption schemes.

Example 60 (Type-2 Soundness). Let ExpV be the set of elements in M ∈ Exp for
which B-Keys(M) is not cyclic; the equivalence relation≡2 is as in Example 36, which
is proper as shown in Example 44; the equivalence relation ≡K is trivial here, all keys
are equivalent. The elements µ ∈ QEnc are in one-to-one correspondence with the keys,
so we can say QEnc ≡ Keys, and thus the boxes are labeled with keys. The patterns
pattern2 and the equivalence of expressions∼=2 were defined in Example 41. Then for a
set C = {{Ni}Li}n

i=1 as in condition (ii) of the Theorem 54, we can take CLi := {0}Li ,
and the condition is satisfied, because the following proposition holds:

Proposition 61. Let M ∈ ExpV and L ∈ Keys(M). Let {M1}L, {M2}L, . . . , {Ml}L v
M , be such that that L does not occur anywhere else in M . Then, denoting by M ′ the
expression that is obtained from M by replacing each {Mi}L that is not contained in
any other Mj (j 6= i) with {0}L, we have that [[M]]Φ ≈ [[M ′]]Φ whenever the expres-
sions are interpreted with a type-2 encryption scheme.

Proof. We can assume, without loss of generality, that {Mi}L is a subexpression of
{Mj}L only if i < j. Suppose that [[M]]Φ 6≈ [[M ′]]Φ. This means that there is an
adversary A that is able to distinguish the two distributions, that is Pr[x ←− [[M]]Φη :
A(1η, x) = 1]−Pr[x ←− [[M ′]]Φη : A(1η, x) = 1] is a non-negligible function of η. We
will show that this contradicts type-2 security. To this end, we construct an adversary
that can distinguish between oracle E(k, ·) and E(k, 0). This adversary is the following
probabilistic algorithm that has access to the oracle f :

41

algorithm Bf (1η, M)
for K ∈ Keys(M) \ {L} do τ(K) ←− K(1η)
y ←− CONVERT2(M)
b ←− A(1η, y)
return b

algorithm CONVERT2(N)
if N = K where K ∈ Keys then

return τ(K)
if N = B where B ∈ Blocks then

return B
if N = (N1, N2) then

x ←− CONVERT2(N1)
y ←− CONVERT2(N2)
return [x, y]

if N = {N1}L then
x ←− CONVERT2(N1)
y ←− f(x)
return y

if N = {N1}K (K 6= L) then
x ←− CONVERT2(N1)
y ←− E(τ(K), x)
return y

Note that the algorithm CONVERT2 does almost the same as the algorithm CONVERT
of Figure 1, except that while CONVERT carries out all the necessary encryptions,
CONVERT2 makes the oracles carry out the encryptions for L. It is easy to see that if
the oracle f is E(k, ·), then CONVERT2(M) is a random sample from [[M]]Φη , whereas
if the oracle is E(k, 0), then CONVERT2(M) is a random sample from [[M ′]]Φη . Thus,
Pr[k ←− K(1η) : BE(k,·)(1η,M) = 1] = Pr[x ←− [[M]]Φη : A(1η, x) = 1] and
also Pr[k ←− K(1η) : BE(k,0)(1η,M) = 1] = Pr[x ←− [[M ′]]Φη : A(1η, x) =
1]. But, according to our assumption, [[M]]Φ and [[M ′]]Φ can be distinguished, that is,
Pr[x ←− [[M]]Φη : A(1η, x) = 1] − Pr[x ←− [[M ′]]Φη : A(1η, x) = 1] is a non-
negligible function of η and so, there is an adversary Bf (1η, ·) that can distinguish
the oracles E(k, ·) and E(k, 0), for randomly generated keys k. This implies that our
scheme cannot be type-2 secure, which contradicts the assumption. Hence, we cannot
have [[M]]Φ 6≈ [[M ′]]Φ. ut
Hence, condition (ii) of the general soundness theorem is satisfied, which implies that
soundness holds also for the type-2 case.

Corollary 62 (Type-2 Soundness). Let Π be a type-2 secure encryption scheme, and
let M and N be two valid expressions such that B-Keys(M) and B-Keys(N) are not
cyclic in M and N respectively. Then, M ∼=2 N implies [[M]]Φ ≈ [[N]]Φ.

In our last example (which ends with Corollary 65) we apply Theorem 54 to the
One-Time Pad.

42

Example 63 (Soundness for One-Time Pad). We have introduced the formalism for
OTP in Examples 30, 33, 37, 41, 44. Then for a set C = {{Ni}Li}n

i=1 as in condition
(ii) of Theorem 54, take CLi

:= {0l(Li)−3}Li
. It is not hard to check that within this

setting, condition (ii) of Theorem 54 is satisfied, which is an immediate consequence of
the following proposition:

Proposition 64. Let M ∈ ExpOTP and K0 ∈ Keys(M). Let {M0}K0 v M , be such
that that K0 does not occur anywhere else in M . Then, denoting by M ′ the expres-
sion that is obtained from M by replacing {M0}K0 with {0l(K0)−3}K0 , we have that
[[M]]Φ ≈ [[M ′]]Φ when Φ is the interpretation for OTP.

Proof. The basic properties of the OTP ensure that Φ({M0}K0) is evenly distributed
over the set of l(K0) long strings ending with 110, no matter what M0 is. So the distri-
bution of Φ({M0}K0) agrees with the distribution of Φ({0l(K0)−3}K0). Also, since K0

is assumed not to occur anywhere else, ΦM (K0) is independent of the interpretation
of the rest of the expression M , and therefore, Φ({M0}K0) and Φ({0l(K0)−3}K0) are
both independent of the interpretation of the rest of the expression. Hence, replacing
Φ({M0}K0) with Φ({0l(K0)−3}K0) will not affect the distribution. ut

Hence, condition (ii) of the general soundness theorem is satisfied, which implies
that soundness holds also for the OTP case.

Corollary 65 (OTP Soundness). Let M and N be two valid expressions in ExpOTP

such that B-Keys(M) and B-Keys(N) are not cyclic in M and N respectively. Then,
M ∼=OTP N implies that [[M]]Φ and [[N]]Φ have the same probability distributions.

5.5 Parsing Process

The technique that we present in this section will be very useful in the course of prov-
ing our completeness results. The idea can be summarized as follows: given a sample
element x ←− [[M]]Φ, x is built from blocks and randomly generated keys which are
paired and encrypted. Some of the keys that were used for encryption when x was built
might be explicitly contained in x, and in this case, using these keys, we can decrypt
those ciphers that were encrypted with these revealed keys. The problem is though, that
looking at x, it might not be possible to tell where blocks, keys, ciphers and pairs are in
the string of bits, since we did not assume in general that we tag strings as we did for
OTP. However, and we will exploit this fact repeatedly in our proofs, if we know that
x was sampled from [[M]]Φ for a fixed, known expression M , then by looking at M ,
we can find in x the locations of blocks, keys, ciphers and pairs, and we can also tell
from M , where the key decrypting a certain cipher is located. We present a machinery
that, using the form of an expression M , extracts from an x ←− [[M]]Φ everything that
is possible via decryption and depairing, and distributes the extracted elements over a
special Cartesian product of copies of strings.

Throughout this section, we assume given a logic ∆ = (ExpV ,≡K,≡C), a general
symmetric encryption scheme Π = ({Ki}i∈I , E ,D,≈), and an interpretation Φ for Π .
For i = 1, 2, let [·, ·]−1

i := πi ◦ [·, ·]−1, where [·, ·] is the computational pairing, defined
in Section 5.1. Let

EXP ::= strings | (EXP, EXP) | {EXP}strings

43

For example, (({a}b, {c}d), ((e, {({f}g, {b}f)}f), {f}e)) is an element of EXP if
a, b, c, d, e, f, g ∈ strings.

Definition 66. Let M ∈ ExpV and {L1, . . . , Ln} an enumeration of R-Keys(M) in the
order they can be recovered. For 1 ≤ i ≤ n, N v M , and y ∈ strings, we define
BN,M,y

i : strings → EXP , and GLi,M : strings → strings in the following way:

BK,M,y
i (x) := x for K ∈ Keys, BB,M,y

i (x) := x for B ∈ Blocks

B(M1,M2),M,y
i (x) :=

(
[·, ·]−1

1 (x), [·, ·]−1
2 (x)

)

B{N}K ,M,y
i (x) :=

{ {
BN,M,y

i (D(GK,M (y), x))
}
GK,M (y)

for K ∈ {L1, . . . , Li−1},
x otherwise.

Let BM
i (x) := BM,M,x

i (x), and BM : strings → EXP with BM := BM
n+1. The

function BM
i (x) parses x according to M until everything that can be decrypted with

the keys L1, . . . , Li−1 is decrypted, and returns an element of EXP . This has to reveal
the string corresponding to Li, and let GLi,M (x) be such string. BM parses everything
that is decryptable. If something is not in the domain of the corresponding operation,
then the algorithm outputs an error message ⊥. Let T (M) be the image of BM .

The following lemma essentially claims that if the interpretation is such that conditions
(i) and (ii) below hold, then for any two valid expressions M and N , the distribution
of BM (x), where x is sampled from [[M]]Φ (let BM ([[M]]Φ) denote this distribution),
is indistinguishable from the distribution of BN (y), where y is sampled from [[N]]Φ
whenever [[M]]Φ ≈ [[N]]Φ.

For a function f on strings, let f([[M]]Φ) denote the probability distribution of
f(x) as x is sampled from [[M]]Φ.

Lemma 67. Let ∆ = (ExpV ,≡K,≡C) be a formal logic for symmetric encryption,
and Φ be an interpretation of ExpV in Π = ({Ki}i∈I , E ,D,≈). Suppose that this
realization satisfies the following properties for any K, K ′,K ′′ ∈ Keys, B1 6= B2 ∈
Blocks, M,M ′, N ∈ ExpV :

(i) no pair of [[K]]Φ, [[B1]]Φ, [[B2]]Φ, [[(M, N)]]Φ, [[{M ′}K′]]Φ are equivalent with re-
spect to ≈; that is, keys, blocks, pairs, ciphers are distinguishable.

(ii) If [[(K, {M}K)]]Φ ≈ [[(K ′′, {M ′}K′)]]Φ, then K ′ = K ′′.

Let M and N be two valid formal expressions. If [[M]]Φ ≈ [[N]]Φ, then BM = BN and
BM ([[M]]Φ) ≈ BN ([[N]]Φ).

Proof. We just sketch the proof, a more detailed version can be found in [14]. Let M
and N be expressions such that [[M]]Φ ≈ [[N]]Φ. Since we assumed condition (i) and
since the equivalence ≈ is assumed to be invariant under depairing, the pairs that are
not encrypted in M and in N must be in the same positions, and so BM

1 = BN
1 must

hold. Since these are obtained by repeated application of the inverse of the pairing
function, projecting and coupling, BM

1 ([[M]]Φ) ≈ BN
1 ([[N]]Φ) by our assumptions on

indistinguishability in Section 5.1.

44

Let R-Keys(M) = {L1, . . . , Lc(M)} be an enumeration of all recoverable keys in
M such that they can be recovered in this order. There must be a position in the im-
age of BM

1 that corresponds to L1, that gives us the function GL1,M . But applying
GL1,M to [[N]]Φ must also reveal a key because GL1,M ([[M]]Φ) ≈ GL1,M ([[N]]Φ), so
the corresponding entry in N must also be a recoverable key; let’s call it L′1. Clearly,
GL1,M = GL′1,N . BM

2 can now be obtained as a composition of BM
1 with a function that

decrypts all entries of BM
1 (x) (using GL1,M (x)) that correspond to encryption terms in

M with encrypting key L1, and further applications of the inverse of pairing, projec-
tion and coupling again. As BM

1 ([[M]]Φ) ≈ BN
1 ([[N]]Φ), the pairs again must be in the

same positions here, and because of condition (ii) of the Lemma, those encryptions that
are done with GL1,M (x) = GL′1,N (x) must also be in the same positions. Therefore,
BM

2 = BN
2 and BM

2 ([[M]]Φ) ≈ BN
2 ([[N]]Φ). Then again, GL2,M can be identified, and

an L′2 ∈ R-Keys(N) such that GL2,M = GL′2,N and so on until all recoverable keys are
recovered and everything that was decryptable has been decrypted. ut

5.6 Completeness

We finally present our completeness result. First, note that the theorem below does not
mention key cycles. Secondly, note that Condition (i) requires that different types of
objects, blocks, keys, pairs and encryption terms should be distinguishable to achieve
completeness; this can be ensured by tagging each object with its type, as suggested
in [3]. Thirdly, Condition (ii) (which we call weak confusion-freeness) is equivalent to
the property of weak key-authenticity introduced by Horvitz and Gligor [35] in the case
of type-0 schemes. This property essentially means that decrypting with the wrong key
should be detectable in a probabilistic sense.

The proof consists of two separate parts. In the first, it is shown that conditions (i)
and (ii) imply that if M and N are valid expressions and [[M]]Φ ≈ [[N]]Φ, then there is a
key-renaming function σ, such that apart from the boxes, everything else in the patterns
of M and Nσ is the same, and the boxes in the two patterns must be in the same posi-
tions. Moreover, condition (iii) implies that picking any two boxes of the pattern of Nσ,
there is a key-renaming function σ1 such that applying it to the indexes of these boxes,
we obtain the corresponding boxes in the pattern of M . Then the theorem follows, if we
can prove that using these pairwise equivalences of boxes, we can construct a σ′ that
leaves untouched the recoverable keys of Nσ (all the keys outside the boxes), and that
maps the indexes of all the boxes of Nσ into the indexes of the boxes of M .

Theorem 68 (Completeness). Let ∆ = (ExpV ,≡K,≡C) be a formal logic for sym-
metric encryption such that ≡C is proper. Let Φ be an interpretation in Π =
({Ki}i∈I , E ,D,≈). Completeness for Φ holds, if and only if the following conditions
are satisfied: For any K, K ′,K ′′ ∈ Keys, B1 6= B2 ∈ Blocks, M,M ′, N ∈ ExpV ,

(i) no pair of [[K]]Φ, [[B1]]Φ, [[B2]]Φ, [[(M, N)]]Φ, [[{M ′}K′]]Φ is equivalent with respect
to ≈; that is, keys, blocks, pairs, encryption terms are distinguishable,

(ii) if [[(K, {M}K)]]Φ ≈ [[(K ′′, {M ′}K′)]]Φ, then K ′ = K ′′,
(iii) for any two pairs ({M1}L1 , {M2}L2) and ({N1}L′1 , {N2}L′2) of valid encryp-

tion terms, we have that [[({M1}L1 , {M2}L2)]]Φ ≈ [[({N1}L′1 , {N2}L′2)]]Φ implies
({M1}L1 , {M2}L2) ∼= ({N1}L′1 , {N2}L′2).

45

Proof. The only if part is trivial. In order to prove the if part, consider two expressions
M and N such that [[M]]Φ ≈ [[N]]Φ. By condition (i) and (ii), Lemma 67 is applicable,
so, BM ([[M]]Φ) ≈ BN ([[N]]Φ), and T (M) = T (N).

In each entry of T (M) and T (N), the distribution corresponds either to the inter-
pretation of a key, a block, or an undecryptable cipher (i.e.one that corresponds to a
box). Naturally, the same blocks must be in the same positions of T (M) and T (N),
using the fact that the distributions of BM ([[M]]Φ) and BN ([[N]]Φ) are indistinguishable
and condition (i). Hence, the patterns of M and N contain the same blocks in the same
positions. Also by indistinguishability of BM ([[M]]Φ) and BN ([[N]]Φ) and condition (i),
the entries in T (M) and T (N) containing strings sampled from key generation algo-
rithm must be in the same places. Furthermore, the indistinguishability of BM ([[M]]Φ)
and BN ([[N]]Φ) also implies that repetitions of a key generation outcome must occur
in the same positions of T (M) and T (N). (This is a consequence of the properties of
key-generation stated in Definition 28.) Therefore the key symbols in the patterns of M
and N change together, so it is possible to rename the recoverable keys of N (with a
≡K preserving function σ) so that the keys in the pattern of Nσ are the same as the
keys in the pattern of M .

Finally, indistinguishability of BM ([[M]]Φ) and BN ([[N]]Φ) and condition (i) also
imply that undecryptable ciphers occur exactly in the same entries of T (M) and T (N).
This means that in the patterns of M and N boxes appear in the same positions. This fact
together with the conclusions of the previous paragraph implies that, apart from boxes,
everything else in the patterns of M and Nσ must be the same. Replacing N with Nσ,
we can assume from now on that the recoverable keys of N and M are identical (i.e.
R-Keys(M) = R-Keys(N)), and that the patterns of M and N are the same.Therefore,
we only have to show that there is a key renaming τ that carries the boxes of N into the
boxes of M without changing the recoverable keys.

Suppose that there are l boxes altogether in the pattern of M (and hence in the
pattern of N). Let {M1}L1 , {M2}L2 ,. . . , {Ml}Ll

be the l undecryptable terms in M
that turn into boxes (in M) and {N1}L′1 , {N2}L′2 , . . . , {Nl}L′l the corresponding un-
decryptable terms in N . We denote by µi and νi the (possibly repeated) equivalence
classes of {Mi}Li and {Ni}L′i , respectively, with respect to ≡C. Then, as we said
above, we have that for i, j ≤ l, [[({Mi}Li , {Mj}Lj)]]Φ ≈ [[({Ni}L′i , {Nj}L′j)]]Φ holds
since BM ([[M]]Φ) and BN ([[N]]Φ) are indistinguishable, and thus, by condition (iii),
({Mi}Li , {Mj}Lj) ∼= ({Ni}L′i , {Nj}L′j). By definition of ∼= , there exists a key-
renaming function σij such that (2µi , 2µj) = (2σij(νi),2σij(νj)), that is, there exists
a key-renaming function σij such that µi = σij(νi) and µj = σij(νj).

What remains to show is that there exists a single key-renaming function τ that does
not change the recoverable keys of M and N (recall, R-Keys(M) = R-Keys(N)), and
that maps the boxes in the pattern of N into the corresponding boxes in the pattern of
M .

Firstly, we assumed that ≡C is proper, therefore, by Proposition 48, each 2νi of
N has a representative Ci such that Ci does not contain elements of R-Keys(N) =
R-Keys(M). Moreover, for any two different νi and νj , the only common element of
the sets Keys(Ci) and Keys(Cj) may be the encrypting key, and this only happens if
there is a single encrypting key for all elements in νi and νj . Note that we use Ci to

46

denote the representatives of the equivalence classes of encryption terms in N , that is
representatives of νi, and not the representatives of equivalence classes (µi) of encryp-
tion terms in M . Let U =

⋃l
i=1(‖(µi)key‖ ∪ ‖(νi)key‖). (The definition of ‖ · ‖ is just

before Proposition 49.)
Now we can define substitution τ inductively by first defining a sequence τk for k =

1, . . . , l. By Proposition 49, considering the sets S1 =
(⋃l

i=2(Keys(Ci)∪‖(µi)key‖)∪
R-Keys(N)

) \ (
Keys(C1) ∪ ‖(µ1)key‖

)
and U , and the encryption term C1 it is pos-

sible to modify σ12 such that the σ′12 that we get leaves elements of S1 untouched,
σ′12(Keys(C1) \ ‖(ν1)key‖)∩ (S1 ∪U) = ∅, but it still holds that σ′12(ν1) = σ12(ν1) =
µ1. Define τ1 := σ′12.

For the induction step suppose that we have defined τk such that:

(a) τk is the identity map on Sk =
(⋃l

i=k+1(Keys(Ci) ∪ ‖(µi)key‖) ∪ R-Keys(N)
) \(⋃k

i=1(Keys(Ci) ∪ ‖(µi)key‖)
)
;

(b) τk

(⋃k
i=1(Keys(Ci) \ ‖(νi)key‖)

) ∩ U = ∅; and
(c) τk(νi) = µi for all i ≤ k.

Clearly, τ1 satisfies these conditions.
In order to define τk+1, first check if Ck+1 = Ci for some i ≤ k. If so, then

clearly νk+1 = νi, and considering σi(k+1), one obtains µk+1 = σi(k+1)(νk+1) =
σi(k+1)(νi) = µi. Therefore we can define τk+1 = τk, and with that, τk+1(νk+1) =
τk+1(νi) = µi = µk+1. The other conditions follow trivially.

If there is no such i, consider σ1(k+1) and Uk =
⋃l

i=1 τk(Keys(Ci))∪U . By Propo-
sition 49, it is possible to alter σ1(k+1) into σ′ such that:

(i) σ′ is the identity map on S′k =
(⋃l

i=1(Keys(Ci) ∪ τk(Keys(Ci))) ∪ R-Keys(N)
) \(

Keys(Ck+1) ∪ ‖(µk+1)key‖
)
;

(ii) σ′(Keys(Ck+1) \ ‖(νk+1)key‖) ∩ (Sk ∪ Uk) = ∅; and
(iii) σ′(νk+1) = µk+1.

Our goal is now to combine τk and σ′.
We define τk+1 to be equal to τk on

⋃k
i=1 Keys(Ci), to be equal to σ′ on Keys(Ck+1),

to map
(⋃k

i=1 τk (Keys(Ci))∪σ′ (Keys(Ck+1))
)\ (⋃k

i=1 Keys(Ci)∪Keys(Ck+1)
)

bi-
jectively to

(⋃k
i=1 Keys(Ci)∪Keys(Ck+1)

)\(⋃k
i=1 τk(Keys(Ci))∪σ′ (Keys(Ck+1))

)
(this part is not uniquely determined), and to be the identity map everywhere else.

If τk+1 is well defined, then it has the following properties:

(a’) τk+1 is the identity function in Sk+1, since τk is the identity in Sk, σ′ is the identity
in S′k and Sk+1 ⊆ Sk ∩ S′k;

(b’) τk+1

(⋃k+1
i=1 (Keys(Ci) \ ‖(νi)key‖)

) ∩ U = ∅, since for all K ∈ ⋃k
i=1 Keys(Ci),

τk+1(K) = τk(K) and by (b) τk

(⋃k
i=1(Keys(Ci)\‖(νi)key‖)

)∩U = ∅, and for all
K ∈ Keys(Ck+1), τk+1(K) = σ′(K) and by (ii) σ′(Keys(Ck+1) \ ‖(νk+1)key‖)∩
(Sk ∪ Uk) = ∅; and

(c’) τk+1(νi) = µi for all i ≤ k + 1 by (c) and (iii).

47

We now show that τk+1 is a well defined bijection. For that, we have to show that for
any key that is changed by both τk and σ′, that is, K ∈ (⋃k

i=1 Keys(Ci)
)∩Keys(Ck+1),

we have τk(K) = σ′(K), and that for the keys that only τk or σ′ change, that is,
L ∈ (⋃k

i=1 Keys(Ci)
) \ Keys(Ck+1), and L′ ∈ Keys(Ck+1) \

(⋃k
i=1 Keys(Ci)

)
, we

have τk(L) 6= σ′(L′).
Take K ∈ (⋃k

i=1 Keys(Ci)
)∩Keys(Ck+1). Then K ∈ Keys(Ck+1)∩Keys(Ci) for

some i ≤ k. By construction of the family Cj we have that

(νk+1)key = (νi)key = {K} = {L′k+1} = {L′i}. (7)

Then we have that σi(k+1)(νi) = µi and σi(k+1)(νk+1) = µk+1. Combining these
with (7) and Proposition 47, we obtain that σi(k+1)(K) = Li and σi(k+1)(K) = Lk+1,
hence

Li = Lk+1. (8)

Using again (7), Proposition 47, and the fact that τk(νi) = µi and σ′(νk+1) = µk+1,
one obtains that τk(K) = τk(L′i) = Li and σ′(K) = σ′(L′k+1) = Lk+1, which by (8)
imply τk(K) = Li = Lk+1 = σ′(K).

Let us now prove the other case. If L ∈ (⋃k
i=1 Keys(Ci)

) \ Keys(Ck+1) and L′ ∈
Keys(Ck+1) \

(⋃k
i=1 Keys(Ci)

)
, then we have to show that τk(L) 6= σ′(L′). Suppose

the contrary, τk(L) = σ′(L′). Since L ∈ ⋃k
i=1 Keys(Ci), we have σ′(L′) = τk(L) ∈

Uk, and so σ′(L′) ∈ (Sk ∪ Uk). Therefore, (ii) gives us that L′ /∈ Keys(Ck+1) \
‖(νk+1)key‖, that by the way L′ was chosen implies L′ ∈ ‖(νk+1)key‖. Hence

(νk+1)key = {L′} and L′k+1 = L′. (9)

Using (9), Proposition 47 and the fact that σ′(νk+1) = µk+1, one obtains (µk+1)key =
{Lk+1}, and σ′(L′) = σ′(L′k+1) = Lk+1. Hence τk(L) = σ′(L′) = Lk+1 ∈ U which
implies, by (b), that L /∈ ⋃k

i=1(Keys(Ci) \ ‖(νi)key‖). This further implies, by the way
we selected L, that there is an i ≤ k with L ∈ ‖(νi)key‖, that is,

L = L′i for some i ≤ k and (νi)key = {L′i}. (10)

By (10), Proposition 47, and τk(νi) = µi, we obtain that τk(L) = τk(L′i) = Li, and so

Lk+1 = σ′(L′) = τk(L) = Li. (11)

By the definition of σi(k+1), we have σi(k+1)(νi) = µi and σi(k+1)(νk+1) = µk+1.
Combining these with (10), (9) and Proposition 47 we obtain that σi(k+1)(L′i) = Li

and σi(k+1)(L′k+1) = Lk+1. Using (11) and the fact that σi(k+1) is a bijection we
obtain

L′i = L′k+1. (12)

Composing (10), (12) and (9) we obtain that L = L′i = L′k+1 = L′, which is a contra-
diction since we have chosen L and L′ from disjoint sets.

Define τ := τl. This τ satisfies the required properties, that is, it leaves the recov-
erable keys of M and N untouched (as each Sk is disjoint from them), but it maps the
boxes of the pattern of N into the corresponding boxes in the pattern of M , and that is
what we needed to complete the proof. ut

48

Remark 69. Observe, that condition (iii) of the theorem is trivially satisfied when there
is only one box, that is, when all encryption terms are equivalent under ≡C. Also, if
completeness holds for a certain choice of ≡C, then, if ≡′C is such that M ≡C N
implies M ≡′C N—i.e.when ≡′C results fewer boxes—then completeness holds for
≡′C as well. Therefore, we can say, that the key to completeness is not to have too many
boxes.

Example 70 (Completeness for Type-1 and Type-2 Encryption Schemes). The com-
pleteness results for type-1 and type-2 encryption schemes are special cases of the pre-
vious theorem, because the formal language we introduced for these schemes is such
that ≡C is proper, and the conditions of the theorems are analogous. In condition (i) of
Corollaries 71 and 73 there is only one block, because our interpretation for computa-
tional schemes imply that those are distinguishable.

Corollary 71 (Type-1 Completeness). Let Π be a type-1 secure encryption scheme .
We have that, [[M]]Φ ≈ [[N]]Φ implies M ∼=1 N for any pair of expressions M and N
if and only if the following conditions hold: for any K,K ′, K ′′ ∈ Keys, B ∈ Blocks,
M,M ′, N ∈ Exp,

(i) no pair of [[K]]Φ, [[B]]Φ, [[(M,N)]]Φ, [[{M ′}K′]]Φ are equivalent with respect to ≈,
(ii) if [[(K, {M}K)]]Φ ≈ [[(K ′′, {M ′}K′)]]Φ, then K ′ = K ′′, and

(iii) if [[{M}K]]Φ ≈ [[{M ′}K′]]Φ then `(M) = `(M ′).

Condition (iii) above requires that encryption of messages with different length
should be detectable. Definition 56 allows that encryptions of messages of different
length may be detected but does not enforce it. That suffices for soundness, but com-
pleteness requires that it should be detectable when ciphertexts contain messages of
different lengths. Moreover, there is only hope for completeness, if ` is such that it cor-
rectly indicates what expressions have interpretations of equal lengths, and which ones
have differing lengths. If ` is such, that is, if `(M) = `(N) if and only if the inter-
pretations of M and N have equal lengths (up to negligible probability), then a purely
computational condition that implies condition (iii) is the notion of strictly length re-
vealing:

Definition 72 (Strictly Length Revealing Scheme). Let Π = (K, E ,D) be a symmet-
ric encryption scheme. We say that the encryption-scheme is strictly length revealing if
it is type-1 secure, but for any natural n, there exists a PPT adversary A such that

Pr
[
k ←− K(1η) : AE(k,·)(1η) = 1

]
− Pr

[
k ←− K(1η) : AE(k,0n)(1η) = 1

]

is a non-negligible function of η.

For type-2 systems, we have the following corollary:

Corollary 73 (Type-2 Completeness). Let Π be a type-2 secure encryption scheme.
We have that,[[M]]Φ ≈ [[N]]Φ implies M ∼=2 N for any pair of expressions M and N
if and only if the following conditions hold: for any K,K ′, K ′′ ∈ Keys, B ∈ Blocks,
M,M ′, N,N ′ ∈ Exp,

49

(i) no pair of [[K]]Φ, [[B]]Φ, [[(M,N)]]Φ, [[{M ′}K′]]Φ are equivalent with respect to ≈,
(ii) if [[(K, {M}K)]]Φ ≈ [[(K ′′, {M ′}K′)]]Φ, then K ′ = K ′′,

(iii) if [[({M}K , {M ′}K)]]Φ ≈ [[({N}K′ , {N ′}K′′)]]Φ then K ′ = K ′′.

The conditions of the theorem are similar to the ones for the type-1 case except for
condition (iii). This condition requires that encryption with different keys should be de-
tectable. Definition 59 allows that encrypting with different keys may be detectable, but
it does not require it. That suffices for soundness, but such detection is required for com-
pleteness. It is easily shown that condition (iii) is implied by the purely computational
definition of a strictly key revealing encryption scheme:

Definition 74 (Strictly Which-Key Revealing Scheme). Let Π = (K, E ,D) be a sym-
metric encryption scheme. We say that the encryption-scheme is strictly key revealing if
it is type-2 secure, but there exists a PPT adversary A such that

Pr[k, k′ ←− K(1η) : AE(k,·),E(k′,·)(1η) = 1]−
Pr[k ←− K(1η) : AE(k,·),E(k,·)(1η) = 1] ≤ neg (η)

is a non-negligible function of η.

Example 75. Suppose we use the KDM secure encryption scheme that we introduced
after Definition 16 for interpretation, along with the concrete pairing function defined
in Example 30. It is easy to see that this encryption scheme is both strictly length and
strictly which-key revealing. Then the formal model for type-3 systems (boxes indexed
with both length and encrypting key) is not only sound, but also complete if we use the
following length function defined recursively: l(B) := {|B|}η∈N, l(K) := {2η}η∈N,
l((M, N)) := {l(M)η + 2l(N)η + 1}η∈N, l({M}K) := {l(M)η + 2η}η∈N. Then we
define l(M) = l(N) to hold iff it there is an η0 such that for any η > η0, l(M)η =
l(N)η holds. Conditions (i) and (ii) of the theorem are easily shown to hold as the
distributions of different types cannot be confused, and the correct decrypting key can
easily detected via the appended second part of the key. Condition (iii) holds because of
the way we chose our length function along with the strictly length and strictly which-
key revealing property.

Example 76 (Completeness for One-Time Pad). The formal logic for OTP that we
presented in Examples 33, 37, 41, 44 is such that ≡C is proper. Furthermore, condi-
tion (i) of Theorem 68 is satisfied due to the tagging we presented in Example 30.
Condition (ii) is also satisfied because of the tagging: the reason ultimately is that de-
crypting with the wrong key will sometimes result invalid endings. Condition (iii) is
also satisfied, since the pairs of encryption terms must be encrypted with different keys
(in OTP, we cannot use keys twice), and the equivalence [[({M1}L1 , {M2}L2)]]Φ ≈
[[({N1}L′1 , {N2}L′2)]]Φ implies that the corresponding lengths in the two encryption
terms must be the same: l({M1}L1) = l({N1}L′1) and l({M2}L2) = l({N2}L′2),
which then implies that (¤l({M1}L1),¤l({M2}L2)) = (¤l({N1}L′1

),¤l({N2}L′2
)). There-

fore, ({M1}L1 , {M2}L2) ∼= ({N1}L′1 , {N2}L′2). In conclusion, the formal logic we
introduced for our implementation of the OTP is complete.

Corollary 77 (OTP Completeness). Let M and N be two valid expressions in ExpOTP.
If [[M]]Φ and [[N]]Φ have the same probability distributions, then M ∼=OTP N.

50

6 Conclusions and Further Work

We have studied extensions of the Abadi-Rogaway logic of indistinguishability for for-
mal cryptographic expressions, considering and solving two problems that were left
uncovered by the original result.

The first uncovered problem is the case of soundness in the presence of key cycles.
Computational soundness for expressions without key cycles was proved in Abadi and
Rogaway [3] under the assumption that a computational encryption scheme satisfies a
strong version of semantic security (type-0). We have considered a modification of their
logic in the case of encryption schemes both which-key revealing and message-length
revealing. In the presence of key cycles, we have proved that the computational sound-
ness property follows from the key-dependent message (KDM) security proposed by
Black et al. [19]. We obtain our soundness result by strengthening the computational
model rather than weakening the formal model. We have also shown that the computa-
tional soundness property neither implies nor is implied by type-0 security, and thus the
original Abadi-Rogaway result could not have been demonstrated for key cycles using
the security notions described in their work. We refer the reader to [4] for a discussion
of soundness in the presence of key cycles for the case of public-key encryption. Sim-
ilarly to the symmetric-key setting, it is shown that soundness follows from (public-)
KDM security, and that soundness does not imply, nor is implied by, CCA-2 security.

The other uncovered problem of the original Abadi-Rogaway result addressed in
this paper concerned the possibility of leakage of information by an encryption scheme.
As said before, the original result assumed a very strong notion of security (type-0)
which is not actually achieved by many encryption schemes. Thus, one might won-
der if a similar result might be derived for weaker schemes. We have showed that for
symmetric encryption, subtle differences between security definitions can be faithfully
reflected in the formal symbolic setting. We have introduced a general probabilistic
framework which includes both the computational and the information-theoretic en-
cryption schemes as special cases. We have established soundness and completeness
theorems in this general framework, as well as new applications to specific settings: an
information-theoretic interpretation of formal expressions in One-Time Pad, and also
computational interpretations in type-1 (length-revealing), type-2 (which-key reveal-
ing) and type-3 (which-key and length revealing) encryption schemes based on compu-
tational complexity.

Our work presents several directions for future research. Independently of any sound-
ness considerations, several questions about KDM security remain unanswered. There
is no known implementation of KDM security in the standard model, although there are
several natural candidates (e.g., Cramer-Shoup [25]). Conversely, there remains to be
found a natural (i.e., non-constructed) example of an encryption scheme which is secure
in the sense of type-0 (or CCA-2) but is not KDM-secure. Further, even the constructed
examples fail to provide KDM security only when presented with key cycles of length
1. It may in fact be possible that type-0/CCA-2 security implies KDM security when all
key cycles are of length 2 or more.

With regard to soundness in the presence of key cycles, it seems desirable to ex-
tend our results from the passive-adversary setting to that of the active adversary. Also,
our results do not completely unite the two models. We show that the relationship be-

51

tween the formal and computational models requires more than type-0/CCA-2 security.
While it demonstrates that KDM security is also necessary, it does not show it to be
sufficient—even when conjoined with CCA-2 security (asymmetric encryption). That
is, this investigation is not complete; it is more than likely that additional properties will
be revealed as soundness is more fully explored.

Also, one might consider various expansions of the formal setting that would al-
low additional operations such as xor, pseudorandom permutations, or exponentiation.
Soundness and completeness of such richer formal settings would, of course, need ex-
ploration. In particular, the definition of patterns appears to be rather subtle in such
richer settings. We would also like to understand how our methods fit with the methods
of [42].

Lastly, one might consider exploring partial leakage in the setting of asymmetric
encryption. One might also extend our methods and investigate formal treatment of
other cryptographic primitives. It would be interesting to see if our methods could be
combined with the methods of [11, 22].

Acknowledgments. We want to thank M. Abadi, M. Backes, J. Black, R. Canetti, A. Gor-
don, J. Guttman, S. Hohenberger, R. Küsters, A. Lysyanskaya, D. Micciancio,
J. Mitchell, T. Shrimpton, D. Unruh, and B. Warinschi for their valuable comments
and informative discussions. Some of our joint work was done during the Protocol
eXchange meetings; we thank S. Pinsky, E. Zieglar, and G. Dinolt for organizing the
meetings and providing a conducive and encouraging atmosphere. Lastly we thank the
anonymous referees for their thoughtful comments and suggestions.

This work was done while the first author was a visiting student at the University of
Pennsylvania.

References

1. M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpretation. In
N. Kobayashi and B. C. Pierce, editors, Proceedings of the 4th International Symposium
on Theoretical Aspects of Computer Software (TACS), volume 2215 of Lecture Notes in
Computer Science, pages 82–94, Sendai, Japan, October 29–31 2001. Springer.

2. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). In J. van Leeuwen, O. Watanabe, M. Hagiya, P. D. Mosses,
and T. Ito, editors, Proceedings of the 1st IFIP International Conference on Theoretical Com-
puter Science (IFIP TCS), volume 1872 of Lecture Notes in Computer Science, pages 3–22,
Sendai, Japan, August 17–19 2000. Springer.

3. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology, 15(2):103–127, January 2002. Pre-
liminary version presented at IFIP TCS’00.

4. P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness of formal encryption in the presence
of key-cycles. In S. De Capitani di Vimercati, P. Syverson, and D. Gollmann, editors, Pro-
ceedings of the 10th European Symposium on Research in Computer Security (ESORICS),
volume 3679 of Lecture Notes in Computer Science, pages 374–396, Milan, Italy, September
12–14 2005. Springer.

52

5. P. Adão, G. Bana, and A. Scedrov. Computational and information-theoretic soundness
and completeness of formal encryption. In Proceedings of the 18th IEEE Computer Secu-
rity Foundations Workshop (CSFW), pages 170–184, Aix-en-Provence, France, June 20–22
2005. IEEE Computer Society Press.

6. M. Backes and C. Jacobi II. Cryptographically sound and machine-assisted verification
of security protocols. In H. Alt and M. Habib, editors, Proceedings of the 20th Annual
Symposium on Theoretical Aspects of Computer Science (STACS), volume 2607 of Lecture
Notes in Computer Science, pages 675–686, Berlin, Germany, February 27–March 1 2003.
Springer.

7. M. Backes and B. Pfitzmann. A cryptographically sound security proof of the Needham-
Schröeder-Lowe public-key protocol. IEEE Journal on Selected Areas in Communications,
22(10):2075–2086, December 2004. Preliminary version presented at FSTTCS’03.

8. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryp-
tographic library. In Proceedings of the 17th IEEE Computer Security Foundations Work-
shop (CSFW), pages 204–218, Pacific Grove, CA, USA, June 28–30 2004. IEEE Computer
Society Press. Full version available at IACR ePrint Archive, Report 2004/059.

9. M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. IEEE Transac-
tions on Dependable and Secure Computing, 2(2):109–123, April 2005. Preliminary version
presented at S&P’05.

10. M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive systems. Available
at IACR ePrint Archive, Report 2004/082.

11. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations. In S. Jajodia, V. Atluri, and T. Jaeger, editors, Proceedings of the 10th ACM
Conference on Computer and Communications Security (CCS), pages 220–230, Washington
D.C., USA, October 27–30 2003. ACM Press. Full version available at IACR ePrint Archive,
Report 2003/015, January 2003.

12. M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a simulatable
cryptographic library. International Journal of Information Security, 4(3):135–154, June
2005. Preliminary version presented at ESORICS’03.

13. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryptographic li-
brary with nested operations (extended abstract). In S. Jajodia, V. Atluri, and T. Jaeger,
editors, Proceedings of the 10th ACM Conference on Computer and Communications Secu-
rity (CCS), Washington D.C., USA, October 27–30 2003. ACM Press. Preprint on IACR
ePrint 2003/015.

14. G. Bana. Soundness and Completeness of Formal Logics of Symmetric Encryption. PhD
thesis, University of Pennsylvania, July 2004. Available at IACR ePrint Archive, Report
2005/101, April 2005.

15. M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations of equational
theories against passive adversaries. In L. Caires, G. Italiano, L. Monteiro, C. Palamidessi,
and M. Yung, editors, Proceedings of the The 32nd International Colloquium on Automata,
Languages and Programming (ICALP), volume 3580 of Lecture Notes in Computer Science,
pages 652–663, Lisbon, Portugal, July 11–15 2005. Springer.

16. D. Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty
minority. Journal of Cryptology, 4(2):75–122, 1991.

17. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric
encryption. In 38th Annual Symposium on Foundations of Computer Science (FOCS ’97),
pages 394–403, October 1997.

18. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of se-
curity for public-key encryption schemes. In H. Krawczyk, editor, Advances in Cryp-
tology CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, pages 26–

53

45, Santa Barbara, CA, USA, August 23–27 1998. Springer. Full version available at
http://www.cs.ucsd.edu/users/mihir/papers/relations.html.

19. J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-
dependent messages. In K. Nyberg and H. Heys, editors, Proceedings of the 9th Annual
International Workshop on Selected Areas in Cryptography (SAC), volume 2595 of Lecture
Notes in Computer Science, pages 62–75, St. John’s, Newfoundland, Canada, August 15–16
2002. Springer.

20. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In B. Pfitzmann, editor, Advances in Cryptology
- EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 98–118,
Innsbruck, Austria, May 6–10 2001. Springer.

21. R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 13(1):143–202, 2000.

22. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pages 136–145, Las
Vegas, NV, USA, October 14–17 2001. IEEE Computer Society Press. Full version available
at IACR ePrint Archive, Report 2000/067.

23. R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authenti-
cation and key-exchange protocols, March 5–7 2006. To Appear. Full version available at
IACR ePrint Archive, Report 2004/334.

24. V. Cortier and B. Warinschi. Computationally sound, automated proofs for security proto-
cols. In M. Sagiv, editor, Proceedings of the 14th European Symposium on Programming
(ESOP), volume 3444 of Lecture Notes in Computer Science, pages 157–171, Edinburgh,
UK, April 4–8 2005. Springer.

25. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adap-
tive chosen ciphertext attack. In H. Krawczyk, editor, Advances in Cryptology CRYPTO ’98,
volume 1462 of Lecture Notes in Computer Science, pages 13–25, Santa Barbara, CA, USA,
August 23–27 1998. Springer.

26. A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic polynomial-
time semantics for a protocol security logic. In L. Caires, G. Italiano, L. Monteiro,
C. Palamidessi, and M. Yung, editors, Proceedings of the The 32nd International Collo-
quium on Automata, Languages and Programming (ICALP), volume 3580 of Lecture Notes
in Computer Science, pages 16–29, Lisbon, Portugal, July 11–15 2005. Springer.

27. A. Datta, R. Küsters, J. C. Mitchell, and A. Ramanathan. On the relationships between
notions of simulation-based security. In J. Kilian, editor, Proceedings of the 2nd Theory of
Cryptography Conference (TCC), volume 3378 of Lecture Notes in Computer Science, pages
476–494, Cambridge, MA, USA, February 10–12 2005. Springer.

28. D. Dolev and A. C. Yao. On the security of public-key protocols. IEEE Transactions on In-
formation Theory, 29(2):198–208, March 1983. Preliminary version presented at FOCS’81.

29. S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral
majority. In A. J. Menezes and S. A. Vanstone, editors, Advances in Cryptology - CRYPTO
’90, volume 537 of Lecture Notes in Computer Science, pages 77–93, Santa Barbara, CA,
USA, August 11–15 1991. Springer.

30. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and Systems
Sciences, 28(2):270–299, April 1984. Preliminary version presented at STOC’82.

31. J. D. Guttman, F. J. Thayer, and L. D. Zuck. The faithfulness of abstract protocol analysis:
Message authentication. In P. Samarati, editor, Proceedings of the 8th ACM Conference
on Computer and Communications Security (CCS), pages 186–195, Philadelphia, PA, USA,
November 05–08 2001. ACM Press.

32. J. Herzog. Computational Soundness of Formal Adversaries. Master thesis, Massachussets
Institute of Technology, 2002.

54

33. J. Herzog. Computational Soundness for Standard Assumptions of Formal Cryptog-
raphy. PhD thesis, Massachussets Institute of Technology, May 2004. Available at
http://theory.lcs.mit.edu/∼jherzog/papers/herzog-phd.pdf.

34. J. Herzog, M. Liskov, and S. Micali. Plaintext awareness via key registration. In D. Boneh,
editor, Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 548–564, Santa Barbara, CA, USA, August 17–21 2003. Springer.

35. O. Horvitz and V. Gligor. Weak key authenticity and the computational completeness of for-
mal encryption. In D. Boneh, editor, Advances in Cryptology - CRYPTO 2003, volume 2729
of Lecture Notes in Computer Science, pages 530–547, Santa Barbara, CA, USA, August
17–21 2003. Springer.

36. R. Impagliazzo and B. M. Kapron. Logics for reasoning about cryptographic constructions.
In 44th IEEE Symposium on Foundations of Computer Science (FOCS), pages 372–383,
Cambridge, MA, USA, October 11–14 2003. IEEE Computer Society Press.

37. R. Janvier, Y. Lakhnech, and L. Mazaré. Completing the picture: Soundness of formal en-
cryption in the presence of active adversaries. In M. Sagiv, editor, Proceedings of the 14th
European Symposium on Programming (ESOP), volume 3444 of Lecture Notes in Computer
Science, pages 172–185, Edinburgh, UK, April 4–8 2005. Springer.

38. P. Laud. Encryption cycles and two views of cryptography. In Proceedings of the 7th Nordic
Workshop on Secure IT Systems (NORDSEC), number 31 in Karlstad University Studies,
pages 85–100, Karlstad, Sweden, November 7–8 2002.

39. P. Laud. Symmetric encryption in automatic analyses for confidentiality against active adver-
saries. In Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P), pages
71–85, Oakland, CA, USA, May 9–12 2004. IEEE Computer Society Press.

40. P. Laud and R. Corin. Sound computational interpretation of formal encryption with com-
posed keys. In J. I. Lim and D. H. Lee, editors, Proceedings of the 6th International Con-
ference on Information Security and Cryptology (ICISC), volume 2971 of Lecture Notes in
Computer Science, pages 55–66, Seoul, Korea, November 27–28 2003. Springer.

41. P. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic polynomial-time
framework for protocol analysis. In M. Reiter, editor, Proceedings of the 5th ACM Confer-
ence on Computer and Communications Security (CCS), pages 112–121, San Francisco, CA,
USA, November 3–5 1998. ACM Press.

42. U. Maurer. Indistinguishability of random systems. In L. Knudsen, editor, Advances in
Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages
110–132, Amsterdam, The Netherlands, April 28–May 2 2002. Springer.

43. S. Micali and P. Rogaway. Secure computation. In J. Feigenbaum, editor, Advances in
Cryptology - CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages 392–
404, Santa Barbara, CA, USA, August 11–15 1991. Springer.

44. D. Micciancio and S. Panjwani. Adaptive security of symbolic encryption. In J. Kilian,
editor, Proceedings of the 2nd Theory of Cryptography Conference (TCC), volume 3378 of
Lecture Notes in Computer Science, pages 169–187, Cambridge, MA, USA, February 10–12
2005. Springer.

45. D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway logic of
encrypted expressions. Journal of Computer Security, 12(1):99–130, 2004. Preliminary
version presented at WITS’02.

46. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In M. Naor, editor, Proceedings of the 1st Theory of Cryptography Conference
(TCC), volume 2951 of Lecture Notes in Computer Science, pages 133–151, Cambridge,
MA, USA, February 19–21 2004. Springer.

47. J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-
time calculus for the analysis of cryptographic protocols. Full, revised version available

55

at http://theory.stanford.edu/people/jcm/publications.htm. Prelim-
inary version under the title “Probabilistic Bisimulation and Equivalence for Security Anal-
ysis of Network Protocols” in FOSSACS’04, Springer LNCS Vol. 2987.

48. B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic security of reactive systems.
Electronic Notes in Theoretical Computer Science, 32:59–77, 2000. Preliminary version
presented at WSAIF’99.

49. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive
systems. In P. Samarati, editor, Proceedings of the 7th ACM Conference on Computer and
Communications Security (CCS), pages 245–254, Athens, Greece, November 01–04 2000.
ACM Press. Extended version (with M. Shunter) available as IBM Research Report RZ
3206, 2000, http://www.zurich.ibm.com/security/models.

50. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application
to secure message transmission. In Proceedings of the 2001 IEEE Symposium on Security
and Privacy (S&P), pages 184–200, Oakland, CA, USA, May 14–16 2001. IEEE Computer
Society Press.

51. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and cho-
sen ciphertext attack. In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91, vol-
ume 576 of Lecture Notes in Computer Science, pages 433–444, Santa Barbara, CA, USA,
August 11–15 1991. Springer.

52. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In 40th IEEE Symposium on Foundations of Computer Science (FOCS), pages
543–553, New York, NY, USA, October 17–19 1999. IEEE Computer Society Press.

53. B. Warinschi. A computational analysis of the Needham-Schröeder-(Lowe) protocol. In
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW), pages
248–262, Pacific Grove, CA, USA, June 30–July 2 2003. IEEE Computer Society Press.

54. A. C. Yao. Theory and applications of trapdoor functions. In 23rd IEEE Symposium on
Foundations of Computer Science (FOCS), pages 80–91, Chicago, IL, USA, November 3–5
1982. IEEE Computer Society Press.

