Language Design for Computationally Sound
Communications Abstractions

Pedro Addo!* and Cédric Fournet?

1 Center for Logic and Computation, IST, Lisboa, Portugal
2 Microsoft Research

Abstract. We are interested in computationally sound implementations for lan-
guages of distributed communicating processes, with secure high-level primitives
for authentication and secrecy, but without explicit cryptography. We develop
such an implementation for a variant of the pi calculus [6]. In this language, se-
curity properties can be studied using traces and equivalences that account for
the presence of an arbitrary (abstract) adversary that controls the network. The
cryptographic implementation of the language uses standard primitives and as-
sumptions; it guarantees that these abstract properties also hold in a concrete,
distributed setting, against probabilistic polynomial-time active adversaries.

At FCC’06, we intend to review and discuss the design space for programming
languages with cryptographically sound implementations. In particular, we moti-
vate some unusual design choices for our language, we discuss its current limita-
tions, and we consider possible extensions.

1 Computational Soundness for Communicating Processes

When designing and verifying secure systems, a certain level of idealization is needed
to provide manageable mathematical treatment. Accordingly, two views of cryptogra-
phy have evolved over the years. In the first view, cryptographic protocols are expressed
algebraically, within simple languages. This formal view is suitable for automated com-
puter tools, but may be too abstract. In the second view, cryptographic primitives are
probabilistic algorithms that operate on bitstrings. This view involves probabilities and
limits in computing power; it is harder to handle formally, especially when dealing with
large protocols. Getting the best of both views is appealing, and is the subject of active
research that aims at building security abstractions with formal semantics and sound
computational implementations. Many recent works focus on the soundness of crypto-
graphic primitives specified using an abstract, Dolev-Yao semantics [4, 5,7-9, 11-13].
Although their results yield stronger cryptographic guarantees, they do not suffice in
general to establish the security properties of programs that use cryptographic proto-
cols.

* Partially supported by FCT grant SFRH/BD/8148/2002. Additional support from
FEDER/FCT project Fiblog POCTI/2001/MAT/37239 and FEDER/FCT project QuantLog
POCI/MAT/55796/2004.

To this end, we are interested in the design and implementation of distributed pro-
cess calculi with higher-level security primitives. Hence, at ICALP’06, we present a
first computationally sound and complete implementation for a variant of the pi calcu-
lus. In this position paper, we only outline our approach—we refer to [6] for additional
definitions, results, discussions, and related work.

The calculus features distributed principals, reliable messaging, name mobility, and
authentication primitives, but neither explicit cryptography nor probabilistic behaviors.
Taking advantage of existing techniques from concurrency, it supports simple reason-
ing, based on labeled transitions and observational equivalence. We precisely define its
concrete implementation. We establish general soundness and completeness results in
the presence of active probabilistic polynomial-time (PPT) adversaries, for both trace
properties and observational equivalences, essentially showing that high level reasoning
accounts for all low-level adversaries.

The concrete implementation relies on standard cryptographic primitives, compu-
tational security definitions, and networking assumptions. It also combines typical dis-
tributed implementation mechanisms (abstract machines, marshaling and unmarshaling,
multiplexing, and basic communications protocol). This puts interesting design con-
straints on our high-level semantics, as we need to faithfully reflect low-level properties
and limitations and, at the same time, remain as abstract as possible. In particular, our
high-level environments should be given precisely the same capabilities as low-level
PPT adversaries.

Instead, we could have proceeded in two steps, by first compiling high-level com-
munications to an intermediate calculus with formal, explicit cryptography (in the spirit
of [2, 3]), then establishing the soundness of this calculus with regards to computational
cryptography. However, this second soundness problem seems considerably more del-
icate than ours, inasmuch as we would need to provide an implementation for a richer
calculus that enables any direct usage of formal cryptography. In contrast, for instance,
our language mentions principals, but never mentions their underlying cryptographic
keys, so no high-level program may ever leak a key, or create an encryption cycle.

2 Language Design Issues

At FCC’06, we intend to discuss our approach, in particular as regards design choices,
existing limitations, and possible extensions. We briefly present some of these issues.

Computational Setting There is a discrepancy between implicit, dynamic concurrency
in process calculi—reflected in their labeled transition semantics, and even in their syn-
tax for parallel composition—and interactions between concrete Turing machines—
traditionally used by cryptographers to define computational indistinguishability. Ma-
chines are sequential: one machine runs at a time, and may block the whole computa-
tion; moreover, interactions between machines are quite static and limited. For instance,
as in Laud’s and Blanchet’s low-level calculi [10, 12], the machines that implement our
processes input one low-level bitstring, run for a bounded amount of time, then output
one low-level bitstring.

We do not impose such a discipline on high-level programs, inasmuch as we can
safely compile their internal concurrency using local scheduling and multiplexing tech-
niques, and rely on the adversary for global scheduling. This approach seems preferable
for establishing abstract security properties, but also requires some care in the imple-
mentation, e.g. to prevent information leaks by traffic analysis once the scheduling is
fixed.

Communications Primitives As expected in a process calculus, our language supports
abstract reliable messaging between principals: message senders and receivers are au-
thenticated; message contents is protected; and messages are delivered at most once to
their intended recipient. These guarantees can be systematically enforced using signa-
tures, MACs, encryptions, and anti-replay caches.

On the other hand, we let the adversary in full control of the network: it can inter-
cept, delay, or even block permanently any communication between principals. Hence,
the simple pi calculus rule ¢(M).P | ¢(z).Q — P | Q{M/z}, which models silent
communication “in the ether”, would be too abstract for situations where the two pro-
cesses communicating on channel c are located on different machines. Instead, we use
non-standard rules, such that every communication is mediated by the adversary, using
one intercepted-output step followed later (if the adversary decides so) by a forwarded-
message-input step that carries the same message.

Non-Determinism and Infinite Behaviors The semantics of process calculi naturally
feature unbounded, infinite, and non-deterministic computations, which are often cru-
cial for reasoning about process equivalences. On the other hand, low-level implemen-
tations are necessarily polynomial and probabilistic. Our approach is to keep an abstract
process-calculus semantics, to provide a partial polynomial, deterministic implemen-
tation for each local process, and to add sufficient side conditions that exclude any
behaviors that may not be observable by polynomial adversaries. Although these con-
ditions are serious in principle, they are easily met by our examples and applications so
far, and they can (probably) be generalized.

Thus, we exclude any observable internal non-determinism in source processes, the
reason being that, in our cryptographic setting, a process could otherwise be used by the
adversary as an oracle to guess a particular key in linear time, one bit at a time. However,
we still allow external non-determinism, under the control of the adversary. Besides,
we require that the size of any high-level trace, measured abstractly, be bounded by a
polynomial in the size of the inputs. This excludes, for instance, any brute-force attack
by coding a decryption algorithm as a high-level process, and any observation of the
cost of an internal computation. Pragmatically, we also provide replicated inputs and
pattern matching to avoid trivial sources of divergence and non-determinism.

Wire-Level Traffic Analysis Our adversary observes all traffic, but it may not learn
much about its payload. Technically, we distinguish two kinds of output transitions from
processes to the environment (which represents the adversary). Intended outputs carry
messages sent to a principal controlled by the adversary; their label describe their high-
level content. Intercepted outputs carry messages between the observed principals; their
content is opaque. For instance,

— if the principal ¢ is controlled by the adversary, the output label a:c(Hello, 3) in-
forms the adversary that principal a sends the pair Hello, 3;

— in contrast, if neither a nor ¢ has been compromised, the output label is blinded,
of the form vi.a:c(_) where 7 represents an opaque handle to the actual message
content: the payload identifier ¢ may only be used to forward the message to c.

Our high-level labeled semantics is thus parameterized by an erasure function from
explicit labels to blinded labels. This function reflects the amount of information gained
by observing traffic; it may be tuned, for example, to further erase the sender or the
receiver principals (reflecting some local, anonymous broadcast medium, as in [1]) or
on the contrary leak partial information on the message payload (such as its size).

Signature Values and Covert Channels Our language features transferable authenti-
cation, in the form of certificates issued by principals. Intuitively, certificates are sup-
ported by underlying public-key signatures, but the correspondence between the two
turns out to be problematic.

In a first implementation, we attempted to rely solely on the usual computational
assumptions on signatures; in order to obtain both soundness and completeness, we
had to complicate the high-level semantics of certificates to accommodate the facts that
signatures of the same certificate by the same principal may actually be different, and
that the adversary may also produce different signature values from those received in
certificates. For instance, an adversary could send the same certificate with different
signature values to principals a and b, then forward all messages from a and b to ¢, and
finally observe which signature values c uses when sending messages to compromised
principals. Hence, the adversary may learn whether c obtained the certificate from a or
b. Although this attack is minor, it still needs to be reflected in the high-level semantics
to obtain general theorems. Alternatively, our implementation can further require that
the signature algorithm be deterministic, thereby shielding the programmer from these
technicalities, at the cost of an additional cryptographic assumption.

References

1. M. Abadi and C. Fournet. Private authentication. Theoretical Computer Science,
322(3):427-476, 2004. Special issue on Foundations of Wide Area Network Computing.
Parts of this work were presented at PET’02 (LNCS 2482) and ISSS°02 (LNCS 2602).

2. M. Abadi, C. Fournet, and G. Gonthier. Authentication primitives and their compilation. In
Proceedings of the 27th ACM Symposium on Principles of Programming Languages (POPL
2000), pages 302-315. ACM, 2000.

3. M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel abstractions.
Information and Computation, 174(1):37-83, 2002.

4. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology, 15(2):103-127, 2002.

5. P. Addo, G. Bana, and A. Scedrov. Computational and information-theoretic soundness and
completeness of formal encryption. In Proceedings of the 18th IEEE Computer Security
Foundations Workshop (CSFW), pages 170-184. IEEE Computer Society Press, 2005.

6. P. Addo and C. Fournet. Cryptographically sound implementations for communicating pro-
cesses (extended abstract). In 33rd International Colloquium on Automata, Languages and

10.

11.

12.

13.

Programming (ICALP), LNCS 4052, pages 83-94. Springer-Verlag, 2006. Draft technical
report available from http://research.microsoft/com/ fournet.

. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryp-

tographic library. In Proceedings of the 17th IEEE Computer Security Foundations Workshop
(CSFW), pages 204-218. IEEE Computer Society Press, 2004.

. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested

operations. In Proceedings of the 10th ACM Conference on Computer and Communications
Security (CCS), pages 220-230. ACM Press, 2003.

. M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a simulatable

cryptographic library. International Journal of Information Security, 4(3):135-154, 2005.
B. Blanchet. A computationally sound mechanized prover for security protocols. In Proceed-
ings of the 2006 IEEE Symposium on Security and Privacy (S&P). IEEE Computer Society
Press, 2006. To Appear.

V. Cortier and B. Warinschi. Computationally sound, automated proofs for security proto-
cols. In Proceedings of the 14th European Symposium on Programming (ESOP), volume
3444 of LNCS, pages 157-171. Springer-Verlag, 2005.

P. Laud. Secrecy types for a simulatable cryptographic library. In Proceedings of the 12th
ACM Conference on Computer and Communications Security (CCS), pages 26-35. ACM
Press, 2005.

D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In Proceedings of the 1st Theory of Cryptography Conference (TCC), volume
2951 of LNCS, pages 133-151. Springer-Verlag, 2004.

