
Towards a Quantitative Analysis of Security
Protocols

Pedro Adão 1,5,6

CLC, Department of Mathematics, IST, Lisbon, Portugal

Paulo Mateus 2,5

CLC, Department of Mathematics, IST, Lisbon, Portugal

Tiago Reis 3,5,7

Department of Computer Science, ETH Zurich, Switzerland
and

CLC, Department of Mathematics, IST, Lisbon, Portugal

Luca Viganò 4

Department of Computer Science, ETH Zurich, Switzerland

Abstract

This paper contributes to further closing the gap between formal analysis and con-
crete implementations of security protocols by introducing a quantitative extension
of the usual Dolev-Yao intruder model. This extended model provides a basis for
considering protocol attacks that are possible when the intruder has a reasonable
amount of computational power, in particular when he is able, with a certain prob-
ability, to guess encryption keys or other particular kind of data such as the body of
a hashed message. We also show that these extensions do not augment the compu-
tational complexity of the protocol insecurity problem in the case of a finite number
of interleaved protocol sessions.

Key words: Security protocols, Dolev-Yao intruder, probabilistic
intruder, symbolic protocol analysis, computational protocol
analysis.

Submitted for publication in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Adão, Mateus, Reis, Viganò

1 Introduction

In the last years, a number of tools have been proposed for the formal anal-
ysis of security protocols, e.g. [1,8,10,15,22,24,26,28,30]). These tools have
helped prove several protocols correct and have uncovered flaws in several
other protocols. However, there are many protocols that have not yet been
analyzed and which, in fact, are out of the scope of these tools. One of the
main reasons for this is that the tools analyze protocols under the assumptions
of perfect cryptography and that the protocol messages are exchanged over a
network that is under the control of a Dolev-Yao (DY) intruder [16]. That
is, protocols are analyzed by considering the standard protocol-independent,
asynchronous model of an active intruder who controls the network but can-
not break cryptography (in particular, the intruder can intercept messages and
analyze them, but only if he possesses the corresponding keys for decryption,
and he can generate messages from his knowledge and send them under any
agent name). Hence, the DY model is too weak to specify several types of
security protocols, namely, those including coin tossing and intrinsic crypto-
graphic primitives (such as zero-knowledge proof systems, oblivious transfer,
secure computation, and bit commitment).

Moreover, it is well known that there are protocols that can be proved se-
cure for the DY model, but are insecure when considering specific cryptosys-
tems. For example, a “correct” implementation of the Needham-Schroeder-
Lowe protocol can be attacked if El-Gamal is used as the underlying cryp-
tosystem [31]. However, problems with the real implementation of the pro-
tocols are not addressed by the current generation of security protocol anal-
ysis tools, and even when results that relate symbolic and complexity mod-
els [2,3,4,5,6,9,11,12,14,19,20,23,29] are exploited, the equivalence is up to a
negligible function and so attacks might be found when we are in the “real
world”.

The main goal of our work is to further close the gap between formal
analysis and concrete implementations of security protocols by introducing a
quantitative extension of the classical Dolev-Yao model, which we call pDY .
This allows us to consider protocol attacks that are possible when the intruder
has a reasonable amount of computational power, in particular when he is able
to guess encryption keys or other particular kind of data.

We formalize such an intruder model by extending the DY model with
additional structure and intruder capabilities. As an example, while in the
DY model encryption is considered a “black box” operation that can only

1 Email: pad@math.ist.utl.pt
2 Email: pmat@math.ist.utl.pt
3 Email: tireis@inf.ethz.ch
4 Email: vigano@inf.ethz.ch
5 Partially supported by FEDER/FCT project QuantLog POCI/MAT/55796/2004.
6 Additional support from FCT grant SFRH/BD/8148/2002.
7 Additional support from FCT grant SFRH/BD/22928/2005.

2

Adão, Mateus, Reis, Viganò

be undone with the right decryption key, in the pDY model we introduce
new intruder deduction rules, parameterized by the encryption scheme that
is being used, which allow the intruder to obtain the decryption key from the
encrypted message. Similarly, as another relevant example, we also introduce
a deduction rule where we allow the intruder to deduce the body of a hashed
message. As one may expect, these operations (should) only occur in the “real
world” with small probability, hence the derivations obtained using these rules
should also reflect attacks that are almost infeasible.

When using the DY model, it is customary to formalize interleaved ex-
ecutions of a protocol as an infinite-state transition system, which can then
be searched for states that represent protocol attacks (e.g. a state where the
intruder gets hold of some data that was intended to be a secret between two
honest agents). This transition system defines a computation tree in the stan-
dard way, where the root is the initial system state and children represent the
ways that a state can evolve in one transition. In the pDY model, we extend
this search tree so that each possible transition is weighed with a probability;
for instance, a state where it is possible to guess a key will have a successor
that includes the knowledge of that key, but this transition will be weighed
with the probability of guessing the key. Since each transition of the tree
will be weighed with the probability of that transition, we can compute the
probabilities associated with the branches of the tree, and in the end we will
be able to tell with which probability each attack is possible.

Another contribution of our work is to show that the computational com-
plexity of protocol insecurity in the case of a finite number of interleaved
protocol sessions is not augmented by our extensions. As shown, for instance,
in [25], searching for an attack in the classical DY intruder model is an NP-
complete problem when considering finite numbers of protocol sessions, and
we prove that if we consider the extended probabilistic intruder model pDY ,
the problem remains NP-complete.

We proceed as follows. In Section 2, we introduce the intruder deduction
problem for the classical DY intruder model and provide a complexity analysis
of the decision version of a model-checking algorithm for finite numbers of
protocol sessions. In Section 3, we introduce a quantitative extension of the
classical DY model and provide a complexity analysis of the corresponding
extension of the model-checking algorithm. In Section 4, we consider a simple
example to illustrate how our probabilistic intruder pDY can be applied for
protocol analysis. In Section 5 we compare with related work and give an
outlook on future research directions.

2 Model checking protocols under the Dolev-Yao in-
truder

Roughly speaking, a Dolev-Yao intruder [16] is an agent that completely con-
trols the network but cannot break cryptography. By controlling the network

3

Adão, Mateus, Reis, Viganò

we mean that the intruder can impersonate other agents, prevent messages
from reaching their destination, or reroute them to other agents. The in-
truder can also generate messages from the knowledge he has acquired and
send them to any agent, but he cannot break encryption unless he knows the
corresponding key and cannot compute the content of a hashed message unless
he knows it already. For this reason, the knowledge of the intruder plays a
fundamental role in the DY model.

In fact, one of the core problems of security protocol analysis is the so-
called intruder deduction problem: given a state of the protocol execution,
can the intruder derive a given message M? Derivation here is relative to the
terms the intruder currently knows, i.e. relative to the closure under a set of
deduction rules of his initial knowledge augmented with the messages that he
has observed during protocol execution.

The intruder deduction problem provides the basis for solving a number of
practically relevant protocol analysis problems. One can, for instance, use it
to determine whether the intruder is able to construct a message of the form
that some honest agent is expecting to receive, or whether he is able to obtain
a message that is intended to be a secret, e.g. a key shared by two honest
agents.

Since the DY intruder model abstracts away cryptography, complexity
and probability, it reduces attacks to unexpected protocol interleavings that
leak information to the attacker. Hence, security is reduced to checking a
safety condition; roughly speaking, is it true that the attacker never ob-
tains/produces some private data? Model checking is particularly appealing
to deal with such problems. The basic idea for model checking a safety con-
dition is to check whether it is possible to reach a state where the condition
fails. The model-checking algorithm consists in generating all possible reach-
able states and checking for each of these states whether the condition holds
or not.

In general, in the case of an arbitrary number of protocol sessions that can
be executed in an interleaved way, the problem is undecidable since it can be
reduced to the halting problem. Under the restriction to a finite number of
sessions, the problem of searching for an attack in the DY intruder model is
an NP-complete problem [25] (and therefore checking if a protocol is secure is
co-NP complete).

The approach that we consider in this paper is general and technology-
independent, and can thus be effectively incorporated in different techniques
and tools for security protocol analysis. For concreteness, we consider the
constraint-based on-the-fly-model-checker OFMC [1,7,30]. 8 We will now sum-
marize the key definitions and results that underlie OFMC (as well as a num-

8 OFMC has been developed in the context of the AVISPA project. The AVISPA Tool is
a fully automated protocol analysis environment that comprises of OFMC and three other
tools (called CL-AtSe, SATMC, and TA4SP) and that has been successfully applied for the
push-button analysis of a large number of industrial-scale security protocols.

4

Adão, Mateus, Reis, Viganò

ber of other approaches and tools), which in Section 3 we will then extend to
model the probabilistic intruder that we consider here. More concretely, we
now give a model-checking algorithm inspired to the approach of OFMC for
finite numbers of sessions and provide a detailed complexity analysis of this
algorithm. To that end, we begin by considering the context-free grammar
given in [7] for formalizing protocol descriptions:

Definition 2.1 Let C and V be disjoint countable sets of constants (denoted
by lowercase letters) and variables (denoted by uppercase letters). The syntax
of our protocol specification language is defined by the following context-free
grammar:

ProtocolDescr ::= (State,Rule∗,AttackRule∗)

Rule ::= LHS⇒RHS

AttackRule ::= LHS

LHS ::= State NegFact Condition

RHS ::= State

State ::= PosFact (. PosFact)∗

NegFact ::= (. not(PosFact))∗

PosFact ::= state(Msg) | msg(Msg) | i knows(Msg) | secret(Msg ,Msg)

Condition ::= (∧∧∧ Msg 6= Msg)∗

Msg ::= AtomicMsg | ComposedMsg

ComposedMsg ::= 〈Msg ,Msg〉 | {Msg}Msg | {|Msg |}Msg | Msg(Msg) | Msg−1

AtomicMsg ::= C | V | N | fresh(C,N)

We write L(n) for the context-free language associated with the nonterminal
n. We write vars(t) to denote the set of variables occurring in a (message,
fact, or state) term t, and when vars(t) = ∅, we say that t is ground, and write
ground(t). We straightforwardly extend the functions vars and ground to the
more complex terms.

In this paper, we give a quick intuitive top-down explanation of the used
grammar. We refer the reader to [7] for a detailed explanation.

A protocol is represented by a term in L(ProtocolDescr), that is, a triple
(I, R, AR), where I is the initial state, R is the set of transition rules, and AR
is the set of rules for identifying an attack state.

A state denotes the internal status of the network and is represented by
a set of positive facts. There are four types of positive facts: (i) state(Msg),
which represents the local state of an honest agent; (ii) msg(Msg), which
represents a message in transit through the network (i.e. one sent but not

5

Adão, Mateus, Reis, Viganò

yet received); (iii) i knows(Msg), which represents a message known by the
intruder; and (iv) secret(Msg ,Msg), which represents a secret message, where
secret(m, a) means that m is a secret and that agent a is allowed to know it.

Rule describe state transitions. The left-hand side lhs of a rule r = lhs ⇒
rhs consists of a set of positive facts P , a set of negative facts N , and a con-
dition Cond , where vars(P) ⊇ vars(N) ∪ vars(Cond). Negative facts are
negations of positive facts, and usually only negations of state and secret facts
are considered. Conditions are just conjunctions of inequalities of messages.
Intuitively, the rules model the communication steps of honest agents exe-
cuting a protocol. More specifically, rules model the transitions of the honest
agents executing a protocol, i.e. transitions in which honest agents send a mes-
sage in reply to another message they have received. The states where such
a transition are enabled are described by the lhs of the associated rule. The
state after the execution of the step is described by the rhs of the rule, which
consists only of positive facts. Attack rules model the conditions for which an
attack on the protocol is possible, and consist only of a lhs that characterizes
the states for which the attack condition holds.

Message terms are used to describe all relevant information, like the in-
truder knowledge, keys, states of the network, etc. Messages can be either
atomic or composed. An atomic message is a constant, a variable, a natural
number, or a fresh constant. The fresh constants are used to model the cre-
ation of random data, e.g. nonces, during a protocol session. Following [7], we
model each fresh data item by a unique term fresh(c,n), where c is an identifier
and the number n denotes the particular protocol session that c is intended
for. Messages can be composed using pairing 〈m1,m2〉, or the cryptographic
operators {m2}m1

and {|m2|}m1
(for asymmetric and symmetric encryption of

m2 with m1), f(m) (for application of the function f to the message m, rep-
resenting a hash-function or key-table), or m−1 (for the asymmetric inverse
of m).

Before we present the model-checking algorithm for protocols described in
the language above, we consider a simplification presented in [7]. First, we
assume that AR is constituted just by one attack rule. Moreover, we only
consider protocols (I, R, AR) where the rules r = lhs ⇒ rhs ∈ R are of the
form

msg(m1).state(m2).P1.N1 ∧ Cond ⇒ state(m3).msg(m4).P2 , (1)

where N1 is a set of negative facts that do not contain i knows or msg facts,
P1 and P2 are sets of positive facts that do not contain state or msg facts.
Moreover, we require that if i knows(m) ∈ P1 then i knows(m) ∈ P2; this
ensures that the intruder knowledge is monotonic, i.e. that the intruder never
forgets messages during transitions.

The state facts appearing in both the lhs and the rhs of the rule mean that
the rule describes a transition of an honest agent. Also, in both sides we have
a msg fact representing the incoming message that the agent expects to receive

6

Adão, Mateus, Reis, Viganò

in order to make the transition (in the lhs) and the agent’s answer message (in
the rhs). The rule corresponding to the initial (respectively, final) protocol
step contains no incoming (respectively, outgoing) message. However, the
rule form (1) is not a restriction, as one may always insert a dummy message
that can be generated by the intruder. In fact, as argued in [7], rules of the
form (1) are adequate to describe a very large class of industrial-scale security
protocols (including protocols in the Clark/Jacob protocol library [13] as well
as Internet protocols such as Kerberos, SET, IPSec, IKE, TLS, and H.530).

The basic idea underlying model checking for a protocol description (I, R, AR)
is to build a state transition system modeling interleaved executions of the pro-
tocol by starting from the initial state I, which contains the initial knowledge
of the honest protocol agents and of the intruder, and compute each successor
state by applying the transition rules in R. For each of these successor states,
we check whether an attack-rule in AR can be applied. If this is the case, then
we have found an attack, otherwise we compute the next successor states and
iterate the process until an attack is found or no more states can be generated.
The latter situation only occurs in the case of a finite number of sessions.

In Definition 2.3 below, we give (the decision version of) a model-checking
algorithm for finite numbers of protocol sessions under the classical Dolev-Yao
intruder. This algorithm is (implicitly) given in [7] but its complexity is not
investigated there. To provide a complexity analysis of the algorithm, we need
to formalize the ways for generating successor states and for finding attacks.
We start by describing how to generate successor states. Since rules model
protocol steps, the successor states of a state S are obtained by analyzing the
rules that are applicable to this S, that is, the rules for which S “satisfies”
the pre-condition associated to the lhs.

Let substitutions σ be mappings from V to L(Msg). As we will formally
define below, a rule is applicable to a state if (i) the positive facts are contained
in the state for some substitution σ of the rule’s variables, (ii) the negative
facts under σ are not contained, and (iii) the condition Cond is satisfied under
σ. Recall that the right-hand side rhs of a rule lhs ⇒ rhs is just a set of positive
facts, where vars(lhs) ⊇ vars(rhs). The successors of a state S are then the
states generated by replacing in S the facts that match the positive facts of
the lhs of some applicable rule with the rhs of that rule.

Observe that the intruder has the power to replace the messages involved
in the applicable rule with any messages he knows or can generate from his
knowledge. For this reason, it is essential to describe the set of messages
known by the intruder.

Definition 2.2 For a set M of messages, we define the Dolev-Yao intruder
knowledge DY(M) as the smallest set closed under the generation (G) and
analysis (A) rules given in Fig. 1.

The generation rules express that the intruder can compose messages from
known messages using pairing, asymmetric and symmetric encryption, and

7

Adão, Mateus, Reis, Viganò

m ∈ M
m ∈ DY(M)

Gaxiom

m1 ∈ DY(M) m2 ∈ DY(M)

〈m1,m2〉 ∈ DY(M)
Gpair

m1 ∈ DY(M) m2 ∈ DY(M)

{m2}m1 ∈ DY(M)
Gcrypt

m1 ∈ DY(M) m2 ∈ DY(M)

{|m2|}m1 ∈ DY(M)
Gscrypt

m1 ∈ DY(M) m2 ∈ DY(M)

m1(m2) ∈ DY(M)
Gapply

〈m1,m2〉 ∈ DY(M)

mi ∈ DY(M)
Apair

{m2}m1 ∈ DY(M) m−1
1 ∈ DY(M)

m2 ∈ DY(M)
Acrypt

{m2}m−1
1
∈ DY(M) m1 ∈ DY(M)

m2 ∈ DY(M)
A−1

crypt

{|m2|}m1 ∈ DY(M) m−1
1 ∈ DY(M)

m2 ∈ DY(M)
Ascrypt

Fig. 1. The generation and analysis rules of the classical DY intruder.

function application. The analysis rules describe how the intruder can de-
compose messages. Note that no rules are given that allow the intruder to
analyze function applications, for example to recover m from f(m). Moreover,
note that this formalization correctly handles non-atomic keys, for instance
m ∈ DY({{|m|}f(k1,k2), k1, k2, f}).

We are now able to give an analytical presentation of the set of successor
states, but before let us fix some notation. Let P1 be obtained from P1 by
removing all i knows facts

P1 = P1 \ {f | ∃m. f = i knows(m)} .

We define the applicability of a rule r of the form (1) by the function Applicable
that maps a state S and the left-hand side lhs of r to the ground substitution
σ, under which the rule can be applied to the state:

Applicablelhs(S) = {σ |
ground(σ) ∧ dom(σ) = vars(m1) ∪ vars(m2) ∪ vars(P1)

∧ {m1σ} ∪ {mσ|i knows(m) ∈ P1} ⊆ DY({m|i knows(m) ∈ S})
∧ state(m2σ) ∈ S ∧ P1σ ⊆ S

∧ (∀f. not(f) ∈ N1 =⇒ fσ 6∈ S) ∧ σ ` Cond}.

Moreover, we define the successor function

SuccR(S) =
⋃
r∈R

Stepr(S)

that, given a set R of rules of the form (1) and a state S, yields the corre-
sponding set of successor states by means of the Step function

8

Adão, Mateus, Reis, Viganò

Steplhs⇒rhs(S) = {S ′ | ∃σ.

σ ∈ Applicablelhs(S)

∧ S ′ = (S\(state(m2σ) ∪ P1σ)) ∪ i knows(m4σ) ∪ P2σ}.

As described before, the transition system that models a protocol (I, R, AR)
is built by applying the successor function to the initial state I of the protocol
and then to its successors. In this way, we obtain the set of reachable states,
and it is important to note that this set is a ground model. No reachable state
contains variables because of the way we define the transition.

Formally, the set of reachable states of the protocol (I, R, AR) is the set

Reach(I, R) =
⋃

n∈N
Succn

R(I) .

Finally, we describe how to characterize insecure states. For this pur-
pose, we introduce an attack predicate isAttackAR(S) that is true when an
attack determined by the attack-rule AR is found at state S. This attack
predicate isAttackAR(S) is true iff the rule AR can be applied to the state S,
i.e. ApplicableAR(S) 6= ∅.

For simplicity, we consider here only a decision version of the model-
checking algorithm. This means the algorithm just determines whether there
exists an attack or not; while the attack itself is not returned. We initialize
S as the knowledge available initially to the intruder and the honest protocol
agents, that is, given a protocol P = (I, R, AR) state S equals I.

Definition 2.3 Decision version of the model-checking algorithm for a finite
number of protocol sessions:

ModelCheck(P)

Input: Protocol P = (S,R,AR)
Output: 1 if the protocol is secure, 0 otherwise

1. If (isAttackAR(S)) then Return 0;

2. Compute the set Applicablelhs(S) for each r ∈ R with r = lhs ⇒
rhs;

3. Compute SuccR(S);

4. For each S ′ ∈ SuccR(S);

5. B=ModelCheck(S ′, R, AR);

6. If(B==0) then Return 0;

7. Return 1.

Before proceeding with the complexity analysis, we introduce some nota-
tion and make some observations. First, we define inductively the depth of a

9

Adão, Mateus, Reis, Viganò

message m ∈ L(Msg) as follows:

• depth(m)=1 if m is atomic;

• depth(c(m))=1+depth(m) if c is a unary constructor;

• depth(c(m1,m2))=1+depth(m1)+depth(m2) if c is a binary constructor.

Note that in Step 2 of the algorithm above, a set of substitution needs to
be computed accordingly with Applicablelhs(S). These substitutions allow the
intruder to replace a message with one he knows. Moreover, by looking at
Definition 2.2, it is easy to realize that the set of messages that the intruder
knows is infinite thanks to the generation rules. However, by fixing the number
of sessions to s and assuming that each session consists of at most j steps, it
is easy to see that only a finite number of messages can lead to an attack.

The intuitive argument behind this fact is that the interaction with the
agents can only increase/decrease the depth of the messages involved in the
computation by a finite amount. Since the overall number of steps for the
session is finite, there is a limit k such that if there is an attack then there is
an attack with messages exchanged with depth at most k. This value depends
on all the parameters of the protocol: initial state, rules and attacks rules;
as well as on the number s of sessions of the protocol executed in parallel.
Moreover, without loss of generality, we assume that k is greater than the
depth of all message terms occurring in the protocol. Still in the context of
messages terms, the following result gives an upper-bound to the number of
terms up to some depth that are freely generated from an algebra signature.

Lemma 2.4 The number of terms with depth less than or equal to k for a
free algebra with b binary constructors, u unary constructors, and a atomic
symbols is O((a + b + u)2k

).

We now address the question of the number of parallel sessions of a pro-
tocol. Assume that there are s sessions of a protocol with j steps running
in parallel. Since we model each step of (a session of) the protocol with a
rule r ∈ R, we have j rules for each session. Moreover, nothing prevents the
protocol from being completely parallel, that is, nothing prevents all the rules
in R from being applicable to all reachable states but the final ones. So, we
know that for s sessions of the protocol with j steps we may have at most
j × s = n rules that can be applicable at each state.

We are now able to start the complexity analysis. From Lemma 2.4, we
conclude that the number of message terms with depth less than or equal to
k generated from a atomic symbols is O((a + 4)2k

). Since we assume that k
upper-bounds the depth of the message terms of the protocol, the intruder
can only learn at most k atomic symbols per message exchange. If we assume
that the intruder initially knows i atomic messages, we conclude that the
total amount of relevant terms the intruder may learn is O((nk + i + 4)2k

) =
num iknow. By assuming that the lhs and rhs of the rules in R have at
most v variables, the number of substitutions to check if they are applicable

10

Adão, Mateus, Reis, Viganò

is O(num iknowv) = O((nk + i + 4)v2k
) = num sub. Since for each rule we

have at most num sub new successor states, and given that there are at most
n rules, the number of successors for a given state is O(n × num sub) =
O(n(nk + i + 4)v2k

) = num suc.

Observe that the depth of the recursion tree of the model-checking algo-
rithm is j×s = n, and so the recursion tree will generate at most O(num sucn)
= O(nn(nk + i+4)nv2k

) = num tot st total states. In the worst case, the isAt-
tack predicate has to be checked over all these states, and so the overall time
complexity for Step 1 is obtained by multiplying num tot st with the time
complexity of checking the isAttack predicate.

Recall that the isAttack(S) predicate reduces to checking whether

ApplicableAR(S) 6= ∅ .

Hence, the time complexity is upper-bounded by the time complexity of com-
puting ApplicableAR. For any lhs, to compute Applicablelhs we need to range
over all num sub ground substitutions of v variables by num iknow terms
known by the intruder and, moreover, verify for each of these substitutions
if certain conditions hold. The latter verification takes polynomial time on
the size of the lhs, which for simplicity we consider to be at most g time for
all rules r ∈ R. So, assuming that all message terms the intruder knows are
stored in memory, with access O(1), in order to generate all num sub possible
substitutions it takes O(num sub× v × log(num iknow)) (this corresponds to
generating num sub increments on a number with v digits written in basis
num iknow). Thus, the time complexity of computing Applicablelhs(S) is

O(g × num sub× v × log(num iknow)) = O(gvn(nk + i + 4)v2k
log((nk + i + 4)v2k

))

= O(gv22kn(nk + i + 4)v2k
log(nk + i + 4))

= time app.

Hence, we have that the time complexity of checking the isAttack predicate
over all states is

O(time app× num tot st) = O(gv22knn+1(nk + i + 4)(n+1)v2k

log(nk + i + 4)) ,

which takes care of Step 1 of the algorithm.

To compute the complexity of Step 2, we just have to multiply the total
number of states num tot st by the time complexity of computing Applicablelhs(S)
time app and the total number or rules n, obtaining thus

O(gv22knn+ 2(nk + i + 4)(n+1)v2k

log(nk + i + 4)) .

The time complexity of Step 3 consists of generating the successor states,
which is bounded by the total number of states. Since we assume that the
intruder knowledge in each state is stored in memory we need to update it. In

11

Adão, Mateus, Reis, Viganò

the worst case, the number of message terms known by the intruder in each
state is O(num iknow). The time required to update the message terms up to
a depth of k is bounded by O(num iknow2) multiplied by the number of binary
rules existing in the DY model plus O(num iknow) multiplied by the number
of unary rules. The idea is to consider all pairs of known messages and apply
all possible binary rules, and similarly for unitary rules. In detail, for each
binary rule, we have to consider each pair of messages the intruder knows,
apply the rule (if possible) and verify if we obtain an unknown message. If
this is the case, we have to add this message to the knowledge of the intruder
and henceforward consider pairs with this new message. A similar approach
to update the knowledge of the intruder is done for unary rules. Since there
are seven binary rules and one proper unary rule (Gaxiom does not need to be
considered) and by assuming that all DY intruder rules take at most d time to
be applied, we conclude that the total time to update the intruder knowledge
is

O(d(7num iknow2 + num iknow)) = O(d(nk + i + 4)2k+1

) = upd know .

Finally, since we need to update the intruder knowledge for every non
initial state, the overall complexity of Step 3 is given by

O(upd know× num tot st) = O(dnn(nk + i + 4)(2+nv)2k

) .

The remaining steps of the algorithm correspond to traversing the recursion
tree, so we conclude that:

Proposition 2.5 The overall complexity of the model-checking algorithm Mo-

delCheck(P) for a finite number of protocol sessions under the classical Dolev-
Yao intruder is

O(gv22knn+ 2(nk + i + 4)(n+1)v2k

log(nk + i + 4) + dnn(nk + i + 4)(2+nv)2k

) .

The above analysis gives an upper-bound on the complexity of the model-
checking algorithm and suggests that the naive model checker is exponential
in the number of protocol steps, protocol sessions and exchanged messages per
step, double exponential in the maximum depth of the messages the intruder
needs to know, and polynomial in the remaining factors. Nevertheless, it hints
that the presented algorithm is rather time expensive. Indeed, this is mostly
due to the excessive number of successor states of the transition system caused
by the huge amount of messages the intruder gets to derive at each protocol
step (this leads to the double exponential factor in the complexity analysis
over the maximum depth of messages the intruder needs to know). A way
to avoid this problem is to consider a symbolic “lazy” intruder (see [7] and
the various references there), an intruder for which the substitutions at Step
2 are postponed and substantially restricted. A much better performance is
achieved for the lazy intruder, however the complexity analysis is out of the

12

Adão, Mateus, Reis, Viganò

scope of this paper, and is far from being straightforward. The purpose of the
above computation is to set a basis for comparing the complexity of model-
checking under the classical Dolev-Yao intruder with the complexity under the
probabilistic extension of the intruder that we introduce in the next section.

3 Extending the Intruder Model

The classical Dolev-Yao intruder model assumes that cryptography is perfect
and that the intruder can only decrypt an encrypted message if he knows
the corresponding decryption key. Since one of the ultimate goals of our
work is to augment the intruder model in such a way to allow the intruder
to perform attacks on cryptography (e.g. representing that he can break an
encryption with a certain probability), we can no longer ignore the underlying
cryptographic schemes used in the protocol specification.

Our approach allows the intruder to “retrieve” certain data from the mes-
sages he knows, but only with some probability of success. The intruder can,
for example, guess keys to decrypt encrypted messages or arguments of hash
functions from their hashed values. This new ability may possibly result in
a significant increase of the intruder knowledge and thus open new ways for
attacks. It is therefore important to accurately measure the probability of cor-
rectly retrieving data, either by simple guessing or resorting to cryptanalysis
techniques.

In general, with this new intruder model we expect to detect flaws in pro-
tocols caused by badly chosen cryptographic systems in important positions
of the protocol flow, such as a repetitive use of the same encryption key that
allows the intruder to gather enough information to be able to compute the
key with a high probability of success, or use of cryptographic functions with
a low security parameter.

To quantify the efforts of the intruder, we follow an approach based on the
dimensions of the key space of a given cryptographic system and co-domain of
cryptographic functions, taking into account the fact that additional knowl-
edge may reduce the key space significantly. 9 For formalizing protocol de-
scriptions, we consider the context-free grammar given in Definition 2.1 and
extend it to express the probability of a transition when guessing is used by the
intruder. To keep track of the transition probabilities, we extend the language
with a new positive fact plabel(R), and we also introduce the function

p : L(Msg)× P(L(PosFact)) → R
9 Note that other approaches could be used, like the amount of computational power needed
for a brute force attack, or the likelihood of a successful attack given a time bound for
cryptanalysis. Of course, these approaches are highly dependent on the assumptions on
the computational power of the intruder, nonetheless they can be tuned to mirror the
capabilities of a relatively powerful intruder. Note also that the approach we propose here
is different from, and is in fact complementary to, the symbolic, deductive approach to
off-line guessing proposed in [17].

13

Adão, Mateus, Reis, Viganò

m ∈ M
m ∈ pDY(M)

Gaxiom

m1 ∈ pDY(M) m2 ∈ pDY(M)

〈m1,m2〉 ∈ pDY(M)
Gpair

m1 ∈ pDY(M) m2 ∈ pDY(M)

{m2}m1 ∈ pDY(M)
Gcrypt

m1 ∈ pDY(M) m2 ∈ pDY(M)

{|m2|}m1 ∈ pDY(M)
Gscrypt

m1 ∈ pDY(M) m2 ∈ pDY(M)

m1(m2) ∈ pDY(M)
Gapply

〈m1,m2〉 ∈ pDY(M)

mi ∈ pDY(M)
Apair

{m2}m1 ∈ pDY(M) m−1
1 ∈ pDY(M)

m2 ∈ pDY(M)
Acrypt

{m2}m−1
1
∈ pDY(M) m1 ∈ pDY(M)

m2 ∈ pDY(M)
A−1

crypt

{|m2|}m1 ∈ pDY(M) m1 ∈ pDY(M)

m2 ∈ pDY(M)
Ascrypt

{|m2|}m1 ∈ pDY(M) m1 6∈ pDY(M)

m1 ∈ pDY(M)
guessSK

{m2}m1 ∈ pDY(M) m−1
1 6∈ pDY(M)

m−1
1 ∈ pDY(M)

guessPK

H(m1, . . . , mi, . . . , mk) ∈ pDY(M) mi 6∈ pDY(M)

mi ∈ pDY(M)
guessHash

Fig. 2. The deduction rules of the pDY intruder.

such that p(m, IK) returns the probability of the intruder knowing m ∈
L(Msg) when his knowledge is IK, a set of positive facts of the form i knows(Msg).
We will explain later how this probability is computed.

Definition 3.1 For a set M of messages, we define pDY(M) as the smallest
set closed under the rules given in Fig. 2: generation rules (G), analysis rules
(A), two rules guessSK and guessPK for the intruder guessing symmetric
and inverse (private) keys, and a rule guessHash that states that whenever
the intruder possesses the hash value of a message he can retrieve that mes-
sage or part of it (note that we assume that hash functions are known to all
participants and thus to the intruder).

Note that, in the presence of other cryptographic operators, we could of
course add other, similar, guessing rules. The ones we consider here help us
illustrate the principles of our approach.

To incorporate the changes in the intruder model, every state transition
must reflect the fact that the intruder may have used a guessing rule. Thus,
we need to distinguish the deterministic transitions from the probabilistic
ones. To carry out this distinction, we label each transition with the value
we obtain from the function p, where p returns 1 if no guessing was needed.
When a state S is found that triggers the attack-rule AR, we determine the
attack probability by traversing backwards the attack trace (from S to I)
and multiplying all the probability labels. Note that by doing so, we only
“introduce” new attacks with respect to the analysis in the classicalDY model;

14

Adão, Mateus, Reis, Viganò

the attacks that were already detectable in the DY model will also be detected
in the pDY model and will be labeled with probability 1.

We define the extended applicability of a rule r by the extended function
pApplicable that maps a state S and the left-hand side lhs of r to the pair
〈σ, ξ〉, where σ is a ground substitution and ξ ∈ R, under which the rule can
be applied to the state:

pApplicablelhs(S) = {〈σ, ξ〉 |
ground(σ) ∧ dom(σ) = vars(m1) ∪ vars(m2) ∪ vars(P1)

∧ {m1σ} ∪ {mσ | i knows(m) ∈ P1} ⊆ pDY({m | i knows(m) ∈ S})
∧ ξ = Πt∈co-dom(σ)p(t, {m | i knows(m) ∈ S})
∧ state(m2σ) ∈ S ∧ P1σ ⊆ S

∧ (∀f. not(f) ∈ N1 =⇒ fσ 6∈ S) ∧ σ ` Cond}.

To compute p(t, {m | i knows(m) ∈ S}), we first assume an algorithm prule to
compute the probability prule(ρ) for each instance ρ of a guess rule of the pDY
intruder model. This algorithm depends on the cryptographic assumptions,
and it is assumed to be given for the model-checking algorithm. Given a
derivation δ of m using the pDY rules, the probability pδ(m) of knowing m
through δ is given by multiplying all the probabilities prule(ρ) associated to
the instances of the rules ρ occurring in δ. We then have that

p(t, IK) = max{pδ(m) | δ is a derivation of m using knowledge IK} .

We will discuss in the extended model-checking algorithm a (naive) way to
compute p(t, IK).

We define the successor function

pSuccR(S) =
⋃
r∈R

pStepr(S)

that, given a set R of rules of the form (1) and a state S, yields the corre-
sponding set of successor states by means of the step function

pSteplhs⇒rhs(S) = {S ′ | ∃σ.∃ξ.
〈σ, ξ〉 ∈ pApplicablelhs(S)

∧ S ′ = (S \ (state(m2σ) ∪ P1σ)) ∪ i knows(m4σ) ∪ P2σ ∪ plabel(ξ)}.

In this new setting, the set of reachable states of a protocol (I, R, AR) is
the set

pReach(I, R) =
⋃

n∈N
pSuccn

R(I) .

Given an attack-rule AR and a state S, the attack predicate ispAttackAR(S)
is true if and only if the rule AR can be applied to the state S, that is

15

Adão, Mateus, Reis, Viganò

pApplicableAR(S) 6= ∅. Moreover, given an attack-rule AR, if ispAttackAR(S)
is true, then the probability pAttackAR(S) of such an attack is given by

pAttackAR(S) =
∏

x∈{t|plabel(t)∈S}
x .

We are now able to state the probabilistic version of the intruder deduction
problem for a finite number of sessions in the extended Dolev-Yao model and
discuss the quantitative model-checking algorithm.

Definition 3.2 Given a protocol (I, R, AR) in the pDY model, the probabilis-
tic intruder deduction problem consists in determining whether the intruder
can learn a certain message, with probability greater than or equal to p, as
defined by AR, when s sessions of the protocol are run.

It is easy to see that this problem is NP-complete. First notice that the
non-quantitative version of intruder deduction problem can be reduced to this
one by taking p = 1, and so the problem is NP-hard. Moreover, given a trace
of the attack (which includes derivations of the intruder knowledge) we can
check, in polynomial-time, whether this attack is carried out with probability
greater than p. So, there is a polynomial witness verification algorithm for the
case of a possible attack. Moreover, if there is no attack, any witness (trace)
provided will not result in verifying an attack. So the problem is in NP, and
therefore NP-complete.

Theorem 3.3 The probabilistic intruder deduction problem for a finite num-
ber of sessions in the pDY intruder model is NP-complete.

Concerning the model-checking algorithm, the extension we propose does
not change much the pseudo-code given in Definition 2.3.

Definition 3.4 Decision version of the quantitative model-checking algorithm:

qModelCheck(P)

Input: Protocol P = (S, R, AR) and probability p
Output: 1 if the protocol is secure, 0 otherwise

1. If (ispAttackAR(S) ∧ pAttackAR(S) ≥ p) then Return 0;

2. Compute the set pApplicablelhs(S) for each r ∈ R with r = lhs ⇒
rhs;

3. Compute pSuccR(S);

4. For each S ′ ∈ pSuccR(S);

5. B=ModelCheck(S ′, R, AR);

6. If(B==0) then Return 0;

7. Return 1.

We proceed by analyzing the complexity of the quantitative model-checking

16

Adão, Mateus, Reis, Viganò

algorithm. Note that the number of relevant terms needed to be known by
both the classical and the probabilistic intruder is the same, that is, terms
with depth at most k. Hence, in the worst case, the total number of states
of the recursion tree is the same (asymptotically) for both the classical and
quantitative model checker, that is,

O(nn(nk + i + 4)nv2k

) = num tot st ,

where n = j × s is the product of the number of steps j of the protocol and
the number of sessions s, i is the number of initial atomic messages known by
the intruder, and v is the maximum number of variables existing in a lhs of
the rules in R and AR.

There are clearly some differences between the quantitative and the clas-
sical model-checking algorithms. Namely, we have to change the way the
function pApplicablelhs(S) is computed and the way the successor states are
generated (including how the knowledge of the intruder increases). Moreover,
we have to compute pAttackAR(S).

We start by noticing that in the extended model, pApplicablelhs(S) returns
pairs 〈σ, ξ〉 and that ξ is uniquely determined from σ and the intruder knowl-
edge. Like for the classical DY model and for the sake of simplicity, we assume
that we have in memory all terms known by the intruder with their proba-
bilities, and that we can access these values in O(1) time. So, the time to
compute pApplicablelhs(S) in the pDY model is the same as in the DY model
multiplied by the time to compute ξ. Since ξ is a product of v elements that
can be obtained in O(1), this multiplication can be achieved in v time (each
multiplication takes O(1) since it is a floating point multiplication). Hence,
pApplicablelhs(S) is computed in

O(v × time app) = O(gv32kn(nk + i + 4)v2k

log(nk + i + 4)) .

Now we show how pAttackAR(S) can be computed in O(1). Indeed, we will not
check for the plabel facts in state S, but rather have a register that stores the
probability of reaching S. This register is initialized to 1, and when a successor
of S is computed via a pair 〈σ, ξ〉, this register is multiplied by ξ (which takes
O(1) time). Thus, this register gives the probability of reaching a state S and
when this state has an attack, the register takes the value pAttackAR(S).

Hence, the time complexity of checking the ispAttack predicate and com-
puting pAttackAR(S) over all states is

O(v×time app×num tot st) = O(gv32knn+1(nk+i+4)(n+1)v2k

log(nk+i+4)) ,

which takes care of Step 1.

To compute the complexity of Step 2 we just have to multiply the total
number of states num tot st by the time complexity of computing the function

17

Adão, Mateus, Reis, Viganò

pApplicablelhs(S) and the total number or rules n, obtaining thus

O(gv32knn+ 2(nk + i + 4)(n+1)v2k

log(nk + i + 4)).

In Step 3 we update the intruder knowledge for all the successor states. As
stated above, we assume that the intruder knowledge is stored in memory with
access time O(1). In the worst case, the intruder knowledge has O(num iknow)
messages, thus the time required for updating is bounded by O(num iknow2)
multiplied by the number of binary rules existing in the pDY model plus
O(num iknow) multiplied by the number of unary rules. We consider the
guessing rules to be unary rules and we ignore the non-belonging proviso.
When a guessing rule ρ is applied to m to derive m′, in order to calculate the
probability of getting m′, we take from memory the probability p of knowing
m, and three situations may happen:

• if m′ was not known before, then we introduce this term with probability
p× prule(ρ);

• if m′ was known before and its probability was smaller than p × prule(ρ),
then we update this probability;

• if m′ was known before and its probability was greater than or equal to
p× prule(ρ), then nothing is done.

Observe that if a probability of a term is updated, we need to iterate the
updating process until no probability is increased. So, if ε is the smallest
increase possible in a probability term (note that ε is the desired precision we
want for the probabilities to be computed), in the worst case each rule only
increases the probability of each term by ε, and so we have to apply each rule
1/ε times. Hence, the total amount of time to update the intruder knowledge
at one state for the pDY model is

O(1/ε× d× num iknow2) = O(1/ε× d(nk + i + 4)2k+1

) = O(1/ε× upd know) ,

where d is an upper bound for the time it takes to apply a rule. Finally,
since we need to update the intruder knowledge for every non-initial state,
the overall complexity of Step 3 is given by

O(1/ε× upd know× num tot st) = O(1/ε× dnn(nk + i + 4)(2+nv)2k

) .

The remaining steps of the algorithm correspond to traversing the recursion
tree, so we conclude that:

Proposition 3.5 The overall complexity of the model-checking algorithm qMo-

delCheck(P) for a finite number of protocol sessions under the pDY intruder
is

O(gv32knn+ 2(nk+ i+4)(n+1)v2k

log(nk+ i+4)+1/ε×dnn(nk+ i+4)(2+nv)2k

) .

18

Adão, Mateus, Reis, Viganò

1. A → S : A

2. S → A : NS

3. A → S : H(pw, NA, NS, A), NA

4. S → A : H(pw, NA)

Fig. 3. The MS–CHAPv2 Protocol.

Hence, the time for quantitative model checking takes essentially 1/ε more
time than classical model checking. In other words, the time increase from
the DY and the pDY model is inversely proportional to the precision ε of
representing probabilities.

4 Example

To illustrate how the intruder behaves under our extension of the Dolev-Yao
model, we consider the MS-CHAPv2 authentication protocol, the Microsoft
Challenge/ Response Authentication Protocol, version 2 [32], presented in
Fig. 4. MS-CHAPv2 is the authentication mechanism for the Point-to-Point
Tunneling Protocol (PPTP [18]), which itself is used to secure PPP connec-
tions over TCP/IP.

The objective of the MS-CHAPv2 Protocol is to achieve mutual authenti-
cation between a client A and a server S. This authentication is carried out
under the assumption that there is an initial password pw between A and S.
The protocol goes as follows. In Step 1, the client A sends a message to the
server S saying that he wants to start a new session. In Step 2, S replies to
A’s request by sending him a fresh session-id NS. A replies to this in Step 3 by
hashing the tuple (pw,NA, NS, A) where pw is the shared password and NA

is a nonce freshly generated by A, which A also sends in cleartext appended
to the hash. When receiving this message, S is sure that he is talking to A
as only A knows the value pw. Mutual authentication is achieved if S replies
back with the hash of (pw, NA) as only S knows pw and NA.

It is already known that this protocol is vulnerable to off-line guessing
attacks (see [27] and also [17]). Our extended intruder model allows us to
quantify this vulnerability. In this protocol, both agents share a password pw
and authentication depends on the agreement of the hash values exchanged
in the last two steps of the protocol.

If the intruder is able to guess the password from the hash value he receives
in Step 3, then he can impersonate the server. Below is a trace of an attack
where the intruder I assumes the role of S and agent A is led into believing
he is talking to the server and authenticates himself successfully.

19

Adão, Mateus, Reis, Viganò

1. A → I(S) : A IK1 = {H, A, S}
2. I(S) → A : NS IK2 = {H, A, S, NS}
3. A → I(S) : H(pw, NA, NS, A), NA IK3 = {H, A, S, NS, NA,

H(pw, NA, NS, A)}
4. I(S) → A : H(pw, NA) IK4 = {H, A, S, NS, NA,

H(pw, NA, NS, A), H(pw, NA)}

In the fourth step of the trace, the intruder is able to construct and send the
message H(pw, NA), since H(pw,NA) ∈ pDY(IK3) as shown by the following
derivation:

H
Gaxiom

NA
Gaxiom

H(pw, NA, NS, A)
Gaxiom

pw guessHash, p(pw, IK3)

〈pw,NA〉
Gpair

H(pw,NA)
Gapply

This constitutes an attack on the protocol. However, this is only pos-
sible if rule guessHash is applied. In the above derivation, the application
of guessHash is tagged with a value that represents the probability that the
intruder can guess pw having knowledge IK3. The probability of obtaining
H(pw, NA) is then computed from its derivation from pDY(IK3), and the
probability of success of the attack is obtained by examining all the probabil-
ities involved in the derivation tree of the attack. In our case, as steps 1, 2
and 3 of the trace have no probabilities involved, the success of this attack is
given simply by p(pw, IK3), which is the only probability in the derivation.

This is a simple example but illustrates how one can use our approach.
By introducing the new rules that consider probabilistic behaviors, one can
explore other types of attacks that cannot be formalized with the standard
Dolev-Yao intruder model. If one can parameterize the model-checking algo-
rithm in such a way that the rules reflect the real probability of breaking the
cryptographic primitives, then one may perform a quantitative analysis of the
insecurity of a protocol.

5 Related Work and Future Work

In the last few years, much attention has been devoted to the analysis of
security protocols, for which several automated tools have been proposed,
e.g. [1,8,10,15,22,24,26,28,30]. The major drawback of these tools is that they
perform abstractions of cryptographic primitives as functions over an alge-
bra of terms, in the spirit of [16]. Such abstractions may not reflect the
cryptographic reality and hence one may be ignoring attacks while doing this

20

Adão, Mateus, Reis, Viganò

(consider as an example the attack given in [31] on a protocol proved to be
correct using automated tools [21]).

Recent work has tried to bridge the gap between these abstractions and
computational complexity, e.g. [2,3,4,5,6,9,11,12,14,19,20,23,29]. These results
show that it is possible to faithfully abstract encryption schemes and signa-
ture schemes as functions over a term algebra. More specifically, it is shown
that an intruder that interacts with the “real system” does not obtain more
information than when interacting with an “ideal system”, where decryption
is only possible when in possession of the decryption key. This is formalized
as saying that two messages that are symbolically indistinguishable, are also
computationally indistinguishable.

Let us focus on two of the most recent works. Sprenger et al. [29] proposed
recently an implementation for the model given in [6] using the theorem prover
Isabelle/HOL. By encoding the symbolic model of [6] in Isabelle/HOL, they
thus provided the first cryptographically-sound theorem prover for security
protocols. While this is a very promising approach, there is still room for fur-
ther improvements. For instance, it can only reason about protocol function-
alities that can be expressed in the reactive simulatability framework, leaving
aside important cryptographic tasks such as zero-knowledge, bit-commitment
and oblivious transfer.

Blanchet [9] concurrently proposed another mechanized prover for secrecy
properties of security protocols. This prover, contrarily to the previous ones,
does not rely on the symbolic Dolev-Yao intruder model, but on the compu-
tational cryptographic model. The proofs are done by performing a sequence
of cryptographic games and transformations, which correspond to the crypto-
graphic reductions that are usually done by hand.

In our work, we propose a third approach, which builds on [7] and com-
bines some of the characteristics of these two other approaches. We continue
to use a Dolev-Yao-style model checker but also address the possibility that
some cryptographic primitives can be attacked with a certain probability. We
formalize such an intruder model by extending the DY model with additional
structure and intruder capabilities, in order to be able to consider more kinds
of attacks. The extended pDY model contains intruder deduction rules that
depend on the cryptographic primitives being used. These rules are tagged
with a probability of success that, if an attack is found, will give us the prob-
ability of success of the attack (just compute the probability of applying all
the guessing rules in that branch of the derivation). As concrete examples,
we considered here rules related to encryption and hashing, where an intruder
may obtain the decryption key out of an encrypted message or could retrieve
part of the body of a hashed message. Rules for other cryptographic operators
could be introduced similarly.

We also showed that by performing these extensions we do not increase
the complexity of searching for an attack when compared to the standard DY
model; the problem remains NP -complete. Hence, searching for an attack

21

Adão, Mateus, Reis, Viganò

with this extended model is as “bad” as with the classical intruder model.

The extension we propose requires a clear commitment to the crypto-
graphic primitives being used in the specified protocol, for instance, for en-
cryption schemes, the size of the keys and the key space. This information is
important because it is required in the calculation of the transition probabil-
ities and the attack probability. As future work, we aim to enhance OFMC
by extending the underlying model-checking algorithm with a calculation of
probabilities. This will allow us to employ the tool to find out if the attack
probability is below a given threshold ε, and reduce the search space by aban-
doning the state exploration when the product of the probability labels of a
certain state is less than the given ε.

In order to reduce the complexity of our algorithms, we also intend to apply
to our extended model the lazy intruder technique and other search-space-
reduction techniques implemented in OFMC. This will allow us to exploit our
quantitative approach for the analysis of industrial-scale protocols. The use
of abstractions and over-approximations for unbounded, quantitative protocol
verification will also be an interesting avenue of future research.

References

[1] The AVISPA Project — Automated Validation of Internet Security Protocols
and Applications.
URL http://www.avispa-project.org

[2] Abadi, M. and P. Rogaway, Reconciling two views of cryptography (the
computational soundness of formal encryption), Journal of Cryptology 15
(2002), pp. 103–127.

[3] Adão, P., G. Bana and A. Scedrov, Computational and information-theoretic
soundness and completeness of formal encryption, in: Proceedings of the 18th
IEEE Computer Security Foundations Workshop (CSFW) (2005), pp. 170–184.

[4] Backes, M. and B. Pfitzmann, A cryptographically sound security proof of the
Needham-Schröeder-Lowe public-key protocol, IEEE Journal on Selected Areas
in Communications 22 (2004), pp. 2075–2086, preliminary version presented at
FSTTCS’03.

[5] Backes, M. and B. Pfitzmann, Relating symbolic and cryptographic secrecy,
IEEE Transactions on Dependable and Secure Computing 2 (2005), pp. 109–
123, preliminary version presented at S&P’05.

[6] Backes, M., B. Pfitzmann and M. Waidner, A composable cryptographic library
with nested operations, in: S. Jajodia, V. Atluri and T. Jaeger, editors,
Proceedings of the 10th ACM Conference on Computer and Communications
Security (CCS) (2003), pp. 220–230, full version available at IACR ePrint
Archive, Report 2003/015, January 2003.

22

Adão, Mateus, Reis, Viganò

[7] Basin, D., S. Mödersheim and L. Viganò, OFMC: A symbolic model checker
for security protocols, International Journal of Information Security 4 (2005),
pp. 181–208.

[8] Blanchet, B., An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules, in: Proceedings of the 14th IEEE Computer Security Foundations
Workshop (CSFW) (2001), pp. 82–96.

[9] Blanchet, B., A computationally sound mechanized prover for security protocols,
in: Proceedings of the 2006 IEEE Symposium on Security and Privacy (S&P)
(2006), to Appear. Full version available at IACR ePrint Archive, Report
2005/401, November 2005.

[10] Bodei, C., M. Buchholtz, P. Degano, F. Nielson and H. Riis Nielson, Static
validation of security protocols, Journal of Computer Security 13 (2005),
pp. 347–390.

[11] Canetti, R., Universally composable security: A new paradigm for cryptographic
protocols, in: 42nd IEEE Symposium on Foundations of Computer Science
(FOCS) (2001), pp. 136–145, full version available at IACR ePrint Archive,
Report 2000/067.

[12] Canetti, R. and J. Herzog, Universally composable symbolic analysis of mutual
authentication and key-exchange protocols, in: Proceedings of the 3nd Theory of
Cryptography Conference (TCC), Lecture Notes in Computer Science (2006),
pp. 380–403, full version available at IACR ePrint Archive, Report 2004/334.

[13] Clark, J. and J. Jacob, A survey of authentication protocol literature: Version
1.0, 17. nov. 1997.
URL www.cs.york.ac.uk/∼jac/papers/drareview.ps.gz

[14] Cortier, V. and B. Warinschi, Computationally sound, automated proofs for
security protocols, in: M. Sagiv, editor, Proceedings of the 14th European
Symposium on Programming (ESOP), Lecture Notes in Computer Science 3444
(2005), pp. 157–171.

[15] Cremers, C., Scyther: Automatic verification of security protocols.
URL http://www.win.tue.nl/∼ccremers/scyther/

[16] Dolev, D. and A. C. Yao, On the security of public-key protocols, IEEE
Transactions on Information Theory 29 (1983), pp. 198–208, preliminary
version presented at FOCS’81.

[17] Drielsma, P. H., S. Mödersheim and L. Viganò, A Formalization of Off-Line
Guessing for Security Protocol Analysis, in: Proceedings of LPAR’04, LNAI
3452 (2005), pp. 363–379.

[18] Hamzeh, K., G. Pall, W. Verthein, J. Taarud, W. Little and G. Zorn, RFC 2637:
Point-to-point tunneling protocol (1999), status: Informational.

[19] Herzog, J., “Computational Soundness for Standard Assumptions of Formal
Cryptography,” Ph.D. thesis, Massachussets Institute of Technology (2004),

23

Adão, Mateus, Reis, Viganò

available at
http://theory.lcs.mit.edu/∼jherzog/papers/herzog-phd.pdf.

[20] Laud, P., Symmetric encryption in automatic analyses for confidentiality
against active adversaries, in: Proceedings of the 2004 IEEE Symposium on
Security and Privacy (S&P) (2004), pp. 71–85.

[21] Lowe, G., Breaking and fixing the Needham-Shroeder public-key protocol
using FDR, in: T. Margaria and B. Steffen, editors, Proceedings of the 2nd
International Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), Lecture Notes in Computer Science 1055 (1996),
pp. 147–166.

[22] Meadows, C., The NRL protocol analyzer: An overview, Journal of Logic
Programming 26 (1996), pp. 113–131.

[23] Micciancio, D. and B. Warinschi, Soundness of formal encryption in the
presence of active adversaries, in: M. Naor, editor, Proceedings of the 1st Theory
of Cryptography Conference (TCC), Lecture Notes in Computer Science 2951
(2004), pp. 133–151.

[24] Paulson, L. C., The inductive approach to verifying cryptographic protocols,
Journal of Computer Security 6 (1998), pp. 85–128.

[25] Rusinowitch, M. and M. Turuani, Protocol insecurity with finite number
of sessions is np-complete, in: Proceedings of the 14th IEEE Workshop on
Computer Security Foundations (CSFW) (2001), p. 174.

[26] Ryan, P., S. Schneider, M. Goldsmith, G. Lowe and B. Roscoe, Modelling and
analysis of security protocols (2000).

[27] Schneier, B., Mudge and D. Wagner, Cryptanalysis of Microsoft’s PPTP
authentication extensions (MS-CHAPv2), in: R. Baumgart, editor, CQRE,
Lecture Notes in Computer Science 1740 (1999), pp. 192–203.

[28] Song, D., S. Berezin and A. Perrig, Athena: a novel approach to efficient
automatic security protocol analysis, Journal of Computer Security 9 (2001),
pp. 47–74.

[29] Sprenger, C., M. Backes, D. Basin, B. Pfitzmann and M. Waidner,
Cryptographically Sound Theorem Proving, in: Proceedings of 19th Computer
Science Foundation Workshop (CSFW), 2006, to appear.

[30] Viganò, L., Automated security protocol analysis with the avispa tool, Electronic
Notes in Theoretical Computer Science (Proceedings of the 21st Annual
Conference on Mathematical Foundations of Programming Semantics, MFPS
XXI) 155 (2006), pp. 61–86.

[31] Warinschi, B., A Computational Analysis of the Needham-Schroeder(-Lowe)
Protocol, in: Proceedings of 16th Computer Science Foundation Workshop
(CSFW) (2003), pp. 248–262.

[32] Zorn, G., RFC 2759: Microsoft PPP CHAP extensions, version 2 (2000), status:
Informational.

24

