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dos resultados gerais sobre transferência de metapropriedades. Capitalizando nestes
resultados, analisa-se o caso particular da probabilização exógena, onde completude e
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Probabilization of Logic Systems

Abstract: Probabilization is an operation that takes a logic system (the base sys-
tem) and returns an enrichment with probability features (the probabilized system).
The operation is called exogenous if both the syntax and semantics of the base logic
are preserved, and is called endogenous otherwise. In this dissertation we inves-
tigate this operation in a general setting by introducing the notion of exogenous
combination of logics. General results on the transference of metaproperties are
obtained. Capitalizing on the previous results, we study the particular case of ex-
ogenous probabilization, where completeness and decidability are addressed. We
consider the system obtained from probabilization and globalization, and the same
problems are solved. Furthermore, we show the applicability of our technique also in
the study of quantization of logic systems. Finally, we apply the general techniques
developed above to useful examples. In particular, we analyze a probabilization of
linear temporal logic and the temporalization of a probabilistic logic viewed as an
exogenous combination.

Keywords: Exogenous Combination of Logics, Probabilistic Logics,
Stochastic Systems, Quantum Systems, Model Checking, Probabilization.
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Chapter 1

Introduction

There are numerous applications in science and engineering where reasoning
about probabilistic behavior is necessary. In computing, applications include proba-
bilistic algorithms [LR81], modeling and verification of computer and security proto-
cols. The properties of probabilistic programs in particular have been studied using
many different approaches [SPH84, BK98, LMOW08, CCFMS07], and it is widely
accepted that the development of formal logics for reasoning about such programs is
highly beneficial [HSP83, HKNP06, Zap08], allowing designers and users of systems
to formulate properties which the programs may or may not satisfy.

The relationship between probability and logic is primordial, and dates from
the fundamental works of Carnap [Car51] and Boole [Boo54]. In the latter, the
development of the algebraic structure (Boolean algebra) of propositions is the base
for the first abstract probabilistic reasoning. Kolmogorov had defined an axiomatic
theory of probability [Kol33], over set functions, where probabilities are extended to
countable unions (and countable intersections). In this setting, the class of events
(former propositions) is defined by the closure properties of σ-fields. However, this
inductive definition of all possible events fails to provide a constructive method to
represent them, and to compute their probabilities. The work of Vardi in [Var85],
on model-checking of probabilistic programs, recovers the original ideas of Boole. In
Vardi’s work, linear temporal properties, described by formulas, are used to define
path-events of Markov chains, and its probabilities are computed using automata-
theoretical techniques. In this case, the fixpoint semantics of the linear temporal
operator “until” is crucial to be able to express some events that are countable
unions.
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6 Chapter 1. Introduction

The introduction of these ideas to the realm of logic systems, where formulas
represent probability events, bring us to the notion of probabilization of logics. In
this dissertation we will study such operation in an exogenous perspective. This
approach is characterized by keeping unchanged both syntax and semantics, of the
base logic, and “wrap” them with new structures. Furthermore, we will focus on the
transference of metaproperties such as decidability and completeness, from the base
logic to the probabilistic enrichment.

1.1 Background

The main building blocks of this thesis are a form of combining satisfaction sys-
tems, based on subsystems induced by morphisms, and the exogenous probabilistic
enrichment of satisfaction systems.

1.1.1 Combining logics

Computer science, as many other areas, has been a great source of logics, that
emerge from the necessity of reasoning about so different entities such as time, space,
knowledge, belief, actions, events, probabilities, verbal tense, among others. Such
logics come often as combination of existent and simpler logics, and as a reflection
of the combinatorial nature of its objects. Therefore, the subject of combination
of logics is thus a general framework to study such variety of systems, their com-
binatorial operations, and the transference of metaproperties such as decidability,
completeness, interpolation, etc.

In general, the usual process for combining logics takes two proof systems or two
satisfaction systems, and combines them using some technique, that is dependent
on the manner the logics are presented. In order to combine different kinds of logics,
it is usually required to present or translate the logics into a common framework.
The combination technique yields a new logic in which the language is a “mixed”
of both languages, and in this sense “extends” both logics. And such extension is
commonly required to preserve validity.

The first work on combination of logics appears in the context of modal logics,
[Seg73, She78, Tho84, Gab96], where several semantical techniques were introduced.
Although, such combinatorial mechanisms were too specific and limited to combine
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Kripke structures. A more general framework, called (algebraic) fibring, was devel-
oped in [SSC99] to handle the combination of a wider class of logics presented by
semantical means. This work relies heavily in the language and tools of category
theory and its universal constructions, to provide a generic framework in combining
different logics. Some other forms of combination such as temporization [FG92], and
parametrization [SSC97], were identified and studied as particular cases of fibring
[SSRC09, RSS10, SSR10b, SSR10a]. Thereafter, and following the same lines, many
advances were made, that tackled, for example, the combination of different kinds of
proof systems [RSSV02, CFSS08], and non-truth-functional logics [CCC+03], pro-
ducing a broad and abstract understanding of combination techniques [CCG+08].

The use of category theory for combining logic systems [SSC99] comes from the
area of algebraic specification of software [Ehr82], where the application of logic
reasoning offered rigorous and powerful techniques to specify and analyze computer
software [FS88, Spi88, BH08]. The growing use of generic programming and modu-
larization leaded to the necessary development of mathematical instruments to han-
dle and combine their algebraic specifications [GB84]. For example, the parametriza-
tion of abstract data types leads to the parametrization of their logics theories, and
such operation is essentially an exogenous operation, where one theory is put on top
of the other.

The exogenous approach to enriching logics has proved to be a powerful tool
to endow a logic with new reasoning primitives [Nil86, FHM90, MSS05, MS06]. A
key feature of this approach is that it allows to enrich a logic without changing its
models. Hence, as proposed in [MS06], a model of the enriched logic is defined as a
set of models of the original logic with eventually some additional structure. This
was inspired by the possible worlds semantics of modal logic [Kri63] and has also
been used, for instance, in [Nil86, FHM90] for probabilistic logic.

1.1.2 Probabilistic logics

In the broad sense, probabilistic logic refers to any logic that incorporates in some
manner features from probability theory. The combination of logic and probability
can be motivated from both parties. From on side, probability theory capitalizes the
potential of automatic reasoning, provided by proof systems, to perform probabilis-
tic inference [NS92, HRWW11]. From the logic perspective, it adds the ability to
specify properties of systems endowed with probabilistic behavior [ASB95, BdA95].
Naturally, these two views are related since the former is usually also included in
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the latter.

Combining logic and probability has been a recurrent topic and subject to dif-
ferent ad hoc approaches [Car51, CHR+09, RL99, Hal03, HRWW11]. Three main
problems arise. First, at the syntactic level, which terms should be introduced
that allow relevant probabilistic reasoning. Second, how to modify the semantics to
produced probabilistic models. Finally, how to accommodate reasoning about real
numbers in the proof system.

From the syntactic point of view, there are two main approaches, and in both
of them formulas are understood as probabilistic events, which have probabilities
assigned. Moreover, in most cases a new symbol is introduced to denote probability.
The first, the exogenous approach, considers that a new language layer, built on
top of the base formulas, is necessary to handle probability assertions and reason-
ing. Such layer may consist of simple inequations [Seg71, FHM90], or of a more
rich language with terms, operations, variables and quantification [FHM90, Hal89].
This approach is coined exogenous since the new language is built on top, without
modifying the base formulas. On the other hand, if the base language is modified,
by adding more connectives or enriching the existent ones with probabilistic fea-
tures, it is called endogenous. Such approach is used to change probabilistically
the meaning of connectives, and in order keep a close parallelism with the original
non-probabilistic version of the logic [HJ94, BK98, CIN05, Zho09].

At the semantical level, the same two approaches occur. The exogenous keeps
the base models unchanged and possibly adds some relevant probabilistic structure
outside. One of such cases is that of probability distributions over a set of base mod-
els [Nil86, FHM90]. On the other hand, the case of internal probabilistic enrichment
of a model is considered endogenous. This is the technique used in temporal logic,
when the nature of transitions is changed from non-deterministic to probabilistic
[Koz85, HJ94, BK98, CIN05].

In the case of proof systems, the technique is dictated by the kind of syntactic
enrichment used. The exogenous approach adds a new layer to the language, which
by itself may be a known logic. So, in this case, the language transformation can
be seen as a kind of parametrization. And if both logics have proof systems, the
technique is to combine such systems. For example, in [FHM90] the Hilbert calculus
of classical propositional logic is combined with the theory of linear inequations, and
in [Hal89] the same is done with first-order logic. The endogenous case follows a
different direction. Since the language is internally enriched, the algebraic reasoning
is limited, and it is necessary to include non-finitary rules, based on the Archimedean
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propriety, to overcome such limitation [Ogn06, Zho09].

Lately, the interest in probabilistic logics has been growing due to the impor-
tance of probability in security [GO94], and quantum logic [Fou99, GNP08, Pap09].
In [MS06] a new logic was proposed for reasoning about quantum states. The logic
was designed around the exogenous key idea of adopting superpositions of classical
models as models of the quantum logic. This new approach to quantum logic se-
mantics is different from the mainstream approach [Fou99, CGG04], as originally
proposed by Birkhoff and von Neuman [BvN36], that focus on the lattice of closed
subspaces of a Hilbert space.

1.2 Aims

The main aims of this thesis are:

• define and study the probabilization as an exogenous combination technique;

• study the transference of metaproperties such as soundness, completeness, and
decidability over the exogenous probabilization of logic systems;

• show how to extend such results to the quantization operation;

• apply these results to meaningful examples, and analyze the complexity of the
SAT and model-checking procedures for these examples.

1.3 Outline

This dissertation is organized in 3 more chapters, the conclusion and two appen-
dices. We now present a brief outline of each of them.

In Chapter 2, we introduced a framework to study exogenous combinations of
satisfaction systems. In this technique, the exogenous combination is defined via
morphisms. And such morphisms induce a subsystem that retains the characteristics
of the combined logic. The results obtained on transference of (weakly) complete
axiomatization and decidability are proved by providing sufficient conditions, on the
morphisms and on the systems, to ensure the transference of such metaproperties.
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In Chapter 3, we address the problem of studying the transference of metaproper-
ties over the exogenous probabilization of logic systems. First we setup the necessary
framework to handle the probabilization of a satisfaction system. Then, we capital-
ize on the results of the previous chapter, concerning exogenous combinations, and
we prove that they can be applied to this situation. Next, we extend the analysis to
probabilization and globalization. Finally, we show and motivate the applicability
of our technique also in the case of exogenous quantization.

In Chapter 4, we present some important examples to illustrate the relevance of
our results. The first example is a probabilization of classical propositional logic,
where we interpret formulas as Bernoulli random variables. By applying the generic
results obtained before, we provide a sound and (weakly) complete axiomatization,
and a SAT algorithm as well. Next, we define an endogenous probabilistic temporal
logic, built over linear temporal logic, to reasoning about probabilities of path-events
in Markov chains. Such logic extends the expressiveness of common stopping-times
events, and is widely used in verification of probabilistic systems. By establishing an
(weak) equivalence with the exogenous probabilization (plus globalization) of linear
temporal logic, we are able to present a sound and (weakly) complete axiomatization
for the endogenous counterpart. In this way we provided a proof system for one of
the most important logics in probabilistic model-checking. Finally, we construct
the temporization of the first example, the probabilization of classical propositional
logic, by applying the new technique for exogenous combinations. This example
shows how to parametrized logic systems in an exogenous manner, and yields a
sound and weakly complete axiomatization for the temporization.

In the Conclusion we make some final remarks and revise the contributions of
this dissertation. We also point out related future directions of research.

Finally, the appendices contain basic notation, definitions and results over which
we construct our work.

1.4 Claim of contributions

The contributions obtained in the scope of this thesis that we would like to stress
are:

• the establishment of a generic framework to study and handle exogenous com-
bination of logic systems, using a particular kind of morphism over satisfaction
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systems; and the settlement of sufficient condition to transference of meta–
properties;

• the analysis of the exogenous probabilization and globalization of logic sys-
tems;

• the application of these techniques to the exogenous operation of quantization;

• the study of relevant logics in probabilistic model-checking, with the introduc-
tion of weakly complete Hilbert calculus, SAT and model-checking algorithms.

The work done in this thesis appears partially in the following references: [BRS06,
BCMS07, BMNP07, BCM08, BM09, BMN10, HBBM10]. The thesis presents a more
abstract perspective by using techniques of combination of logic systems.
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Chapter 2

Exogenous combination of logics

The work on combination of logics has provided generic techniques and suf-
ficient conditions for studying the preservation of metaproperties related to the
axiomatization and the semantics of logics systems [SSC99], for an overview see
[CCG+08]. The probabilistic and quantic enrichments of logic systems can be in-
vestigated among the same lines. In this case, the combination is asymmetric since
for instance in probabilization we do not want to apply the constructors of the base
logic to probabilistic formulas. In this way, both cases are related to parameteriza-
tion. This form of combining two logics systems was introduced in [CSS99, RSS10],
and generalizes the technique of temporal enrichment presented in [FG92]. The
main idea is to replace the atomic formulas of a logic (parametrized) by the formu-
las of another (parameter) logic. Many enrichments of logics are obtained in this
fashion [MS06, BCMS07, BCM08, MRSS10]. The combination of logic systems by
parametrization is a particular case of synchronization [SSC97] and also of fibring
[SSC99]. The process of combination presented in this section is similar to synchro-
nization, although it relies strongly on the notion of morphism of satisfaction system
to constrain the combination, whereas synchronization is defined by explicitly stat-
ing constrains over the models and formulas of the systems. Our construction is
related to the parametrization of (software) specifications [Ehr82, Gog96, Fia04].

Herein we will define a general technique to handle exogenous combinations. We
define subsystems induced by morphisms, that retain the connection established by
the satisfaction condition of the morphisms, between the semantics of both systems.
The results obtained on transference of (weakly) complete axiomatization and decid-
ability are proved by providing sufficient conditions, on the morphisms and on the

13



14 Chapter 2. Exogenous combination of logics

systems, to ensure the transference of such metaproperties. We remark that these
results are strongly motivated and shaped by the applications to probabilization and
temporization of the following chapters.

2.1 Power morphism

The usual notion of equivalence between satisfaction systems (see Definition
B.3.13) fails for example to established the equivalence between a satisfaction system
〈L,M,〉 and the system 〈L, 2M,〉. To overcome this problem we need the notion
of power morphism [CMSS06].

Definition 2.1.1. A power morphism h : S → S ′ is a pair 〈h, h〉, with h : L → L′

and h :M′ → 2M, such that

h(m)  ϕ iff m 
′ h(ϕ) (2.1)

for all ϕ ∈ L, and m ∈M′ such that h(m) not empty.

The following result is a direct consequence of the definition of power morphism.

Proposition 2.1.2. The map h : S → S ′ is a power morphism iff it is a morphism

h : 〈L, 2M,〉 → S ′, for Mh = {m ∈M′ : h(m) 6= ∅}.

Given the above result, we say that a power morphism is ∆-exhaustive (resp.
∆-conservative) if the associated morphism is ∆-exhaustive (resp. ∆-conservative),
for some ∆ ⊆ L′. Moreover, a power morphism is called total if the associated
morphism is total.

We now rephrase the definition of equivalence for satisfaction systems.

Definition 2.1.3. The satisfaction systems S and S ′ are said equivalent, denoted

by S ≅S S ′, if there are two total power morphisms h : S → S ′ and h′ : S ′ → S

such that
ϕ ��

′ h
′
(h(ϕ)) and ψ �� h(h

′
(ψ)); (2.2)

for all ϕ ∈ L, ψ ∈ L′.



2.1. Power morphism 15

The composition of power morphisms is defined as the composition of the un-
derline maps. Given power morphisms h : S → S ′ and h′ : S ′ → S ′′, let

Mh′◦h = {m′′ ∈M′′ : h(h′(m′′)) 6= ∅}.

For m′′ ∈Mh′◦h and ϕ ∈ L, we have that

h(h′(m′′))  ϕ iff h′(m′′) ′ h(ϕ) iff m′′


′′ h(h
′
(ϕ)).

Hence, the composition is well behaved and yields a power morphism.

Proposition 2.1.4. Let h : S → S ′ and h′ : S ′ → S be two total power mor-

phisms that make S and S ′ equivalent. Then,

h(h′(m)) ≃ m and h′(h(m′)) ≃ m′

for all m ∈M and m′ ∈M′.

Proof. Let m ∈M and ϕ ∈ L. Then,

h(h′(m))  ϕ iff h′(m) ′ h(ϕ) iff m  h
′
(h(ϕ)) �� ϕ.

Hence, h(h′(m)) ≃ m. In a similar manner, we can prove that h′(h(m′)) ≃ m′.

Given a satisfaction system S = 〈L,M,〉, let us prove that it is equivalent to
〈L, 2M,〉, in the sense of Definition 2.1.3. The identity map of 〈L, 2M,〉 is clearly
a total power morphism id1 : S → 〈L, 2M,〉. And, the identity map of S is, also,
a total power morphism id2 : 〈L, 2M,〉 → S . The satisfaction of Condition 2.2 is
trivial, and therefore, 〈L,M,〉 ≅S 〈L, 2M,〉.

This notion of equivalence of satisfaction systems identifies systems that have
“equivalent” entailment relations. This can be easily seen in the case of an equiva-
lence

〈L,M,〉 ≅S 〈L,M′,′〉,
where the systems share the same set of formulas, and the maps on formulas of
power morphisms that give the equivalence are the identity. In this case, we have
that Γ � ϕ iff Γ �

′ ϕ. This is for example the situation of intuitionistic logic with
semantics given by Kripke structures and Heyting algebras [Ryb97].

Weak forms of equivalence are possible. For example, we can ask just for preser-
vation of validity. The following notions are motivated by the finite-model property.
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Definition 2.1.5. A weak-power morphism h : S → S ′ is a pair 〈h, h〉, with

h : L → L′ and h : L ×M′ → 2M, such that

h(ϕ,m)  ϕ iff m 
′ h(ϕ) (2.3)

for all ϕ ∈ L and m ∈M′, with h(ϕ,m) 6= ∅ for all ϕ ∈ L.

Remark that every power morphism is in particular a weak-power morphism,
with h(ϕ,m) = h(φ,m) for all ϕ, φ ∈ L. As in the case of power morphisms, we
have the class Mh = {m ∈M : ∀ϕ ∈ L, h(ϕ,m) 6= ∅}.

Proposition 2.1.6. Let h : S → S ′ be a weak-power morphism. If � ϕ, then

∆ �
′ h(ϕ), for all ∆ ⊆ L′, such that Mod(∆) ⊆Mh.

Proof. Let ϕ ∈ L be a valid formula, and m 
′ ∆, for m ∈M′. Then, m ∈Mh and

m 
′ h(ϕ) iff h(ϕ,m)  ϕ. Hence, ∆ �

′ h(ϕ).

The notions of exhaustive and conservative can be extended to weak-power mor-
phisms.

Definition 2.1.7. Let h : S → S ′ be a weak-power morphism. We say that h is

1. ∆-exhaustive ifMh =Mod(∆), for some ∆ ⊆ L′;

2. ∆-conservative if it is ∆-exhaustive and � ϕ iff ∆ �
′ h(ϕ), for all ϕ ∈ L.

A simple adaptation of the proof done for Proposition B.3.10 can show that if
a ∆-exhaustive power morphism fulfills the surjective Condition B.3.9, then such
power morphism is ∆-conservative.

We can, now, define a “weak” version of equivalence of systems.

Definition 2.1.8. The satisfaction systems S and S ′ are said weakly equivalent,

denoted by S ≅w
S S ′, if there are two total weak-power morphisms h : S → S ′

and h′ : S
′ → S such that

ϕ ��
′ h

′
(h(ϕ)) and ψ �� h(h

′
(ψ)); (2.4)

for all ϕ ∈ L, ψ ∈ L′.
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Let SPML(Λ) = 〈LPML(Λ),MPML,PML〉 be a PML satisfaction system over the set
of propositional symbols Λ. Now, consider the system

S
f
PML

(Λ) = 〈LPML(Λ),Mf
PML
,PML〉,

where Mf
PML is the class of all finite Kripke structures. Let h : SPML(Λ)→ S

f
PML(Λ)

be the map such that h = idLPML(Λ), and h(m) = {m}. The map h is clearly a total

morphism. Consider, also, the map h′ : S
f
PML(Λ) → SPML(Λ), such that h

′
= h,

and h(ϕ,m) = mϕ, where mϕ is the finite Kripke structure obtained from ϕ and
m = 〈S,R, V 〉 ∈ M (finite model construction for PML); i.e. mϕ = 〈S ′, R′, V ′〉
where

• S ′ ⊆ S is a finite subset of representatives of S/ ∼ϕ;

(s ∼ϕ s′ if α ∈ V (s) iff α ∈ V (s′), for all α ∈ Λ occurring in ϕ)

• R′ ⊆ S ′ × S ′, such that (s, s′) ∈ R′ iff there are s′′, s′′′ ∈ S, with s′′ ∈ [s]ϕ,
s′′′ ∈ [s′]ϕ and (s′′, s′′′) ∈ R;

• V ′(s) = V (s), for all s ∈ S ′.

It can be proved that mϕ PML ϕ iff m PML ϕ [BdRV01]. Therefore, h′ is a total
weak-power morphism. And the weak-equivalence yields �PML ϕ iff �

f
PML ϕ.

2.2 Globalization operator

We start by investigating the globalization operator, introduced in [MSS05,
MS06], that acts by providing an exogenous enrichment of a given logic with a
layer of global reasoning. And this new system is intended for a non-deterministic
semantics of the base logic.

Definition 2.2.1. Given a satisfaction system S = 〈L,M,〉, the global satisfac-

tion system S g = 〈Lg,Mg,g〉 is defined as follows:

• Lg is defined by

ϕ ::= [β] 8 (∼ϕ) 8 (ϕ = ϕ) β ∈ L; (2.5)
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• Mg is the class of all tuples m = 〈S, V 〉, where S is a non-empty set and
V : S →M;

• the satisfaction relation 
g is defined by

– m 
g [β] iff V (S)  β;

– m 
g (∼ϕ) iff m 6g ϕ;

– m 
g (ϕ1 = ϕ2) iff m 6g ϕ1 or m 

g ϕ2.

The other classical connectives, at the global level, ⊤⊤ (global verum), ⊥⊥ (global
falsum), ⊓ (global conjunction), ⊔ (global disjunction) and ≡ (global equivalence)
are defined by the usual abbreviations.

Proposition 2.2.2. The global satisfaction system S g is a conservative extension

of S , S �S S g.

Proof. Consider the map h : S → S
g, such that h(β) = [β] for all β ∈ L, and

h(m) = V (S) for all m ∈ Mg. We have that h is a power morphism of satisfaction
system because

h(m)  β iff V (S)  β iff m 
g [β] iff m 

g h(β).

Furthermore, given m ∈ M we can define h∗(m) = 〈{s}, V 〉, with V (s) = m.
Therefore, h fulfills the surjective Condition B.3.9, and it is a conservative morphism
of satisfaction systems.

We now present a method to obtain an axiomatization for the globalization from
an axiomatization for the base system. Let AXS be an axiomatization for S , and
consider the axiomatization

AX
g
S

def
= AXCPL +G1+G2,

where

G1 [β], if β is an axiom of AXS ;

G2 ([β1] = ([β2] = · · · ([βn] = [βn+1]))), if 〈{β1, . . . , βn}, βn+1〉 is an inference rule
of AXS .
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Through axiom G2, all inference rules of the base logic are included as axioms
at the global level. This process will allow to derive any valid formula of the base
system, at the global level.

Proposition 2.2.3. If ⊢ β in AXS , then ⊢g [β] in AX
g
S

.

When AXS is a complete axiomatization, the above globalization of AXS turns
out to be also complete.

Theorem 2.2.4. [Gon08] If AXS is a complete and sound axiomatization for S ,

then AX
g
S

is a complete and sound axiomatization for S g.

Using this theorem one can extend the results present in [MSS05] from weakly
completeness to completeness.

Since AXCPL possesses just one inference rule, namely Modus Ponens, from G2
we get only the schema axiom:

G2 ([β1⇒ β2]) = ([β1] = [β2]).

Given a set of propositional symbols Λ, some important derivable formulas (see
[MSS05]) in LgCPL(Λ) from AXg

CPL
are given in Table 2.1.

(1) ([β1] ⊓ [β2])≡ ([β1 ∧ β2])

(2) ([β1] ⊔ [β2]) = ([β1 ∨ β2])

(3) ([¬β] = (∼[β]))

(4) [⊤]≡⊤⊤

(5) [⊥]≡⊥⊥

Table 2.1: Valid formulas

And, clearly, these formulas are also valid in S
g, for any morphic image S of a

CPL satisfaction system.
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2.3 Subsystems induced by morphisms

Let h : S → S ′ be a power morphism of satisfaction systems. So, the function
on formulas h : L → L′ associates a formula in L′ to every formula in L. And the
satisfaction Condition 2.1 imposes that m 

′ h(ϕ) iff h(m)  ϕ, for every m ∈ Mh

and ϕ ∈ L. Hence, the semantics of the formulas h(ϕ), over m ∈ Mh, is given by
the semantics of ϕ over h(m). Therefore, a power morphism defines a general form
of parametrization.

In the sequel, we consider thatMh is always not empty.

Definition 2.3.1. Let h : S → S ′ be a weak-power morphism of satisfaction

systems. The subsystem of S
′ induced by the morphism h is the satisfaction system

Sh = 〈L′,Mh,
′〉.

Let us see how the parametrization of [CSS99] can be defined by a morphism.
Let S = 〈L,M,〉 be a satisfaction system and SCPL(Λ) a CPL satisfaction system
over Λ. We intend to parametrize the system SCPL(Λ) with the system S , i.e replace
the propositional symbols of Λ with the formulas of L. And for the semantics, we
want to use the class of models M, interpreted as valuations over the new set of
formulas. So, the parametrized system is 〈LCPL(L),M,〉.

Now, consider a bijective function h : L → Λ, and

h(v) = {m ∈M : ∀ϕ ∈ L, m  ϕ iff v(h(ϕ)) = 1},

for all v ∈ 2Λ. By structural induction on formulas of LCPL(Λ) we can prove that
h : S → SCPL(Λ) is a power morphism. It will be partial if for some valuation
v ∈ 2Λ, h(v) is empty. What is the most likely, because if ϕ ∈ L is a valid formula
in S , then for all the valuations v ∈ 2Λ, such that v(h(ϕ)) = 0, h(v) will be the
empty set.

The subsystem of SCPL(Λ) induced by h is the system Sh = 〈LCPL(Λ), (2
Λ)h,CPL〉.

Let us prove, now, that Sh is equivalent to 〈LCPL(L),M,〉. So, we need two power
morphisms that fulfill Condition 2.2. Consider the map

h1 : 〈LCPL(Λ), (2
Λ)h,CPL〉 → 〈LCPL(L),M,〉,

where h1 is the extension of h
−1

to LCPL(L) that preserves the classic connectives,
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and h1(m) = vm ∈ 2Λ, such that, for all α = h(ϕ) ∈ Λ,

vm(h(ϕ)) =

{

1 if m  ϕ

0 otherwise.

The map h1 is well defined. We have h(vm) 6= ∅ because m ∈ h(v). For m ∈M and
h(ϕ) ∈ Λ, we have

m  h1(h(ϕ)) = ϕ iff h1(m) = vm CPL h(ϕ).

Being this the base case for induction, and since the cases for negation and impli-
cation are straightforward, by induction we get that h1 is a total morphism. In the
other direction, consider the map

h2 : 〈LCPL(L),M,〉 → 〈LCPL(Λ), (2
Λ)h,CPL〉,

such that h2 is the extension of h to LCPL(L), and h2(v) = h(v), for all v ∈ (2Λ)h.
The map h2 is clearly a total morphism. Therefore, since h1 ◦ h2 = idLCPL(L) and
h2 ◦ h1 = idLCPL(Λ), we conclude that Sh ≅S 〈LCPL(L),M,〉 as intended.

Now, we address the problem of from a complete and sound axiomatization for
S ′, how to obtain a complete and sound axiomatization for Sh.

Theorem 2.3.2. Let h : S → S ′ be power morphism, and AXS ′ a complete and

sound axiomatization for S ′. If h is ∆-exhaustive, for some subset ∆ ⊆ L′, then
AXS ′ +∆ is a complete and sound axiomatization for Sh.

We denote by ⊢h the consequence relation induced by AXS ′ + ∆. The proof
follows from the two following lemmas.

Lemma 2.3.3. Γ �h ϕ iff Γ,∆ �
′ ϕ.

Lemma 2.3.4. Γ,∆ ⊢′ ϕ iff Γ ⊢h ϕ.

Proof. (of Theorem 2.3.2) Using Lemma 2.3.3 and Lemma 2.3.4, in addition to the
soundness and completeness of AXS ′ , we have that

Γ �h ϕ iff Γ,∆ �
′ ϕ iff Γ,∆ ⊢′ ϕ iff Γ ⊢h ϕ.
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Let us consider the case when the system S has a weakly complete and sound
axiomatization AXS . By h(AXS ) we denote the subset of all h(ϕ), such that ⊢S ϕ
from AXS . Since AXS is weakly complete and sound, we have that h(AXS ) =
h(Th(M)).

Definition 2.3.5. We say that the weak-power morphism h : S → S ′ is complete

if Mh =Mod(h(Th(M))).

Then, in this case, we have the following result.

Corollary 2.3.6. Let h : S → S
′ be power morphism, AXS ′ a complete and sound

axiomatization for S
′, and AXS a weakly complete and sound axiomatization for

S . If h : S → S ′ is complete, then AXS ′ + h(AXS ) is a complete and sound
axiomatization for Sh.

For obtaining similar results when we just have a weakly complete axiomatization
for S ′, we need to impose more conditions. To start, we require S ′ to be a morphic
image of a CPL system. Therefore, in what follows S ′ will be a satisfaction system
with all classical propositional connectives. Moreover, if such a satisfaction system
has a weakly complete and sound axiomatization AXS ′ , then this axiomatization
must produce all tautologies.

Definition 2.3.7. A ∆-exhaustive weak-power morphism h : S → S ′ is called

finitary if for every ϕ ∈ L′, there is finite subset ∆ϕ ⊆ ∆, such that

∆ �
′ ϕ iff ∆ϕ �

′ ϕ, (2.6)

and ∆ϕ = ∆(¬ϕ).

In order to simplify the notation, for every finite subset ∆ϕ ⊆ ∆, we will use
also ∆ϕ to represent the conjunction (∧ψ∈∆ϕ

ψ).

Lemma 2.3.8. If h : S → S ′ is ∆-exhaustive and finitary, then

ϕ has a model in Mh iff (ϕ ∧∆ϕ) has a model in M′. (2.7)

Proof. (→) Assume that ϕ has a model in Mh. So, there is m ∈ Mh = Mod(∆),
such that m 

′ ϕ. Hence, m 
′ (ϕ ∧∆ϕ).

(←) Assume that ϕ does not have a model in Mh. So, �h (¬ϕ). From the
finitaryness of h we conclude that ∆(¬ϕ) = ∆ϕ �

′ (¬ϕ). Therefore, (ϕ ∧ ∆ϕ) does
not have a model inM′.
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Theorem 2.3.9. Let h : S → S ′ be weak-power morphism, and AXS ′ a weakly

complete and sound axiomatization for S ′. If h is ∆-exhaustive and finitary, for
some subset ∆ ⊆ L′, then AXS ′ +∆ is a weakly complete and sound axiomatization
for Sh.

Proof. The soundness comes from the fact that Mh = Mod(∆) and the fact that
AXS ′ is sound in M′. To prove weakly completeness we show that Sh is weakly
Henkin–complete. Assume that ϕ does not have a model inMh. From Lemma 2.3.8,
the formula (ϕ ∧ ∆ϕ) does not have a model in M′. Hence, ⊢′ (¬(ϕ ∧ ∆ϕ)) and
⊢h (¬(ϕ ∧∆ϕ)). Now, by propositional reasoning we have that ⊢h (¬ϕ). Therefore,
every consistent formulas has a model. From Theorem B.5.4 we conclude that
AXS ′ +∆ is weakly complete for Sh.

We can, also, prove the analogous to Corollary 2.3.6.

Corollary 2.3.10. Let h : S → S ′ be weak-power morphism, and AXS ′ a weakly

complete and sound axiomatization for S ′. If AXS is a weakly complete and sound
axiomatization for S , and h : S → S

′ is finitary and complete, then AXS ′ +
h(AXS ) is a weakly complete and sound axiomatization for Sh.

Example 2.3.11. Let Λ be a set of propositional symbols, and

S
F

PML
(Λ) = 〈LPML(Λ),MF

PML
,F

PML
〉

the PML satisfaction system over Λ, whereMF
PML

is the class of all frames. Consider
the schema axiom:

T : (2ϕ⇒ ϕ).

The classMR
PML

of all frames that satisfy T is exactly the class of all reflexive frames,
MR

PML
= Mod(T), i.e frames 〈S,R〉, such that R is a reflexive relation. Consider

the map
h : S

R
PML

(Λ) = 〈LPML(Λ),MR
PML
,F

PML
〉 → S

F
PML

(Λ),

where h(ϕ) = ϕ and h(m) = m, for all ϕ ∈ LPML(Λ) and m ∈ MR
PML

. Hence, h is
a ∆-exhaustive morphism, where ∆ = {T}. And the subsystem of S F

PML
(Λ) induced

by h is S
R
PML

(Λ). Therefore, from Theorem 2.3.2 we conclude that AXPML + {T} is
a sound and complete axiomatization for S R

PML
(Λ).

The foregoing notion of subsystem is not suitable for all cases, as the following
example shows.
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Example 2.3.12. Let Λ be a set of propositional symbols, and SPML(Λ) the PML

satisfaction system over Λ. And consider the RCF satisfaction system SRCF(X), over
a set of variables X. We want to build the satisfaction system SPML(SRCF(X)), where
the propositional symbols Λ are replaced by LRCF(X), and in the Kripke structures
m = 〈S,R, V 〉, V maps S to models of SRCF(X). Using the method described before
for parametrization, consider the map h : SRCF(X) → SPML(Λ), where: h is a
bijection between the sets LRCF(X) and Λ, and

h(m) = {γ ∈ RX : ∀ϕ ∈ LRCF(X), γ RCF ϕ iff m PML h(ϕ)},

for all m ∈MPML. We can easily verify that the above map is a power morphism of
satisfaction systems. Let AXRCF be the weakly complete axiomatization for SRCF(X).
We have that Mh ( Mod(h(AXRCF)). To have a witness of the proper inclusion,
first consider the set of formulas of LRCF(X):

{ϕ0(x)
def
= (x < 0)} and {ϕn(x) def= (x < 1/n) : n > 0}.

Clearly, {ϕn(x) : n > 0} �RCF ϕ0(x). Now, consider a valuation v : Λ → 2 that
satisfies all propositional symbols in

h(AXRCF) = {h(ϕ) ∈ Λ : ϕ ∈ LRCF(X) and ⊢RCF ϕ},

and such that v(h(ϕ0)) = 0, and v(h(ϕn)) = 1, for all n > 0. Clearly, this valuation
can not be induced by an assignment γ ∈ RX . Hence, the valuation v consider
as a trivial Kripke structure with one state is in Mod(h(AXRCF)), but not in Mh.
Therefore, the morphism is not complete and the Corollary 2.3.10 can not be applied.

The previous example motivates the next results, and we will came back to it af-
terwards. Before extending the current notion of subsystem, we prove a transference
of (weakly) completeness for conservative morphisms.

Let h : S → S ′ be a power morphism of satisfaction systems. The surjective
Condition B.3.9 requires that to every model m ∈ M, there is a model m′ ∈ M′,
such that m ≃ h(m′). Hence, if we restrict the class of model of S to h(M′) we get
a conservative morphism. This fact motivates the following construction.

Definition 2.3.13. Let h : S → S ′ be a power morphism of satisfaction systems.

The subsystem of S induced by h is the satisfaction system Sh = 〈L, h(M′),〉.
Proposition 2.3.14. If h : S → S ′ is a ∆-exhaustive power morphism, then

h : Sh → S ′ is ∆-conservative.
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Proof. It follows from the fact that h : Sh → S ′ clearly fulfills the surjective
Condition B.3.9.

In the presence of a ∆-conservative (weak) power morphism h : S → S ′, for
∆ ⊆ L′, an axiomatization for S ′ can be transformed in an axiomatization for S .
Given an axiomatization AXS ′ for S ′, with consequence relation ⊢′, we denote by
h−1(AXS ′ +∆) the axiomatization for S , with consequence relation ⊢h, defined by

Γ ⊢h ϕ if h(Γ) ⊢h h(ϕ),
where, as before, ⊢h is the consequence relation defined by AXS ′ +∆.

Proposition 2.3.15. Let h : S → S ′ be a (resp. finitary) ∆-conservative (resp.

weak-power) power morphism. If AXS ′ is a (resp. weakly) complete and sound
axiomatization for S

′, then h−1(AXS ′ +∆) is a (resp. weakly) complete and sound
axiomatization for S .

Proof. From Theorem 2.3.2 we have that AXS ′ +∆ is a complete and sound axiom-
atization for Sh. Let Γ � ϕ, for Γ, {ϕ} ⊆ L. Using the conservativeness, we have
that

Γ � ϕ iff h(Γ),∆ �
′ h(ϕ) iff h(Γ),∆ ⊢′ h(ϕ) iff h(Γ) ⊢h h(ϕ) iff Γ ⊢h ϕ.

When AXS ′ is just weakly complete we need the finitaryness of the weak mor-
phism to get from Theorem 2.3.9 the weakly complete axiomatization AXS ′ +∆ for
Sh. Using the above argument with Γ = ∅ we prove that � ϕ iff ⊢h ϕ.

Now, motivated by the limitation exposed on Example 2.3.12, we intend to an-
alyze more complex forms of induced subsystems. Consider two power morphisms
h1 : S → S1 and h2 : S → S2.

S1

S

h1

OO

h2
// S2

We know that for all ϕ ∈ L and every m1 ∈ M1, such that h1(m1) ≃ h2(m2) for
some m2 ∈M2, we have that

m1 1 h1(ϕ) iff h1(m1)  ϕ iff h2(m2)  ϕ iff m2  h2(ϕ).
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Hence, in this situation the semantics of h1(ϕ) over m1 is given by the semantics
of h2(ϕ) over m2. And the system S behaves like an interface (formal parameter
[Ehr82, GB84]) between S1 and S2. This motivates the following definition.

Definition 2.3.16. Let h1 : S → S1 and h2 : S → S2 be power morphisms. The

subsystem of S1 induced by 〈h1, h2〉 is the system S(h1⇒h2) = 〈L1,M(h1⇒h2),1〉,
where M(h1⇒h2) = {m ∈Mh1 : h1(m) ⊆ h2(M2)}.

Remark that the previous induced subsystems, Definition 2.3.1 (in the case of
power morphisms) and Definition 2.3.13, are particular cases of Definition 2.3.16.

Once more, we will consider, in what follows, that M(h1⇒h2) is not empty. We
have the following picture:

S1 S(h1⇒h2)

S

h1

OO

h2
// S2 Sh2

h′1

OO

h2
// Sh2

with h
′

1 = h1, and where h′1 is h1 restricted toM(h1⇒h2).

Let us redo Example 2.3.12.

Example 2.3.17. Let Λ be a set of propositional symbols in one-to-one (bijec-

tion) correspondence with the atomic formulas of LRCF(X). So, there is an injec-
tion h : LCPL(Λ) → LRCF(X) that preserves all classical propositional connectives.
Such injection defines a bijection between LCPL(Λ) and the subset of quantifier-free
formulas of LRCF(X), i.e. to each formula ϕ ∈ LCPL(Λ) we associate one and only
one quantifier-free formula h(ϕ) of LRCF(X), and vice versa. Since each formula in
LRCF(X) is equivalent to a quantifier-free formula, we do not need h to be surjective.
The map on models is defined by

h(γ) = vγ, where vγ(α) =

{

1 if γ RCF h(α)

0 otherwise,

for all γ ∈ RX . We can easily prove that h : SCPL(Λ) → SRCF(X), defined by the
pair 〈h, h〉, is a total morphism.

Now, we consider the conservative and total power morphism

h′ : SCPL(Λ)→ SPML(Λ),
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such that h
′
(ϕ) = ϕ, and h′(m) = V (S), for m = 〈S,R, V 〉 ∈ MPML.

SPML(Λ)

SCPL(Λ)

h′

OO

h
// SRCF(X)

The system S(h′⇒h) = 〈LPML(Λ),M(h′⇒h),PML〉 is exactly the satisfaction system
where the set of symbols Λ is interpreted as quantifier-free formulas of LRCF(X), and
the Kripke structures m = 〈S,R, V 〉 ∈ M(h′⇒h) have valuation V (S) ⊆ h(RX)
induced by assignments.

For a power morphism h : S → S ′ and axiomatization AXS for S , we represent
by h(AXS ) the axiomatization for S ′, with consequence relation ⊢h defined by

h(Γ) ⊢h h(ϕ) if Γ ⊢ ϕ,

for Γ, {ϕ} ⊆ L, where ⊢ is the consequence relation induced by AXS .

We now extend the notion of finitaryness to pairs of morphisms.

Definition 2.3.18. We say that the pair of morphisms 〈h1, h2〉, with h1 : S → S1

and h2 : S → S2, is finitary if for every ϕ ∈ L1 there is a finite set ∆ϕ ⊆ L, such
that �2 h2(∆ϕ),

�(h1⇒h2) ϕ iff h1(∆ϕ) �1 ϕ,

and ∆ϕ = ∆(¬ϕ).

In the case of finitary morphisms, the satisfaction problem for S(h1⇒h2) can be
reduced to the same problem for S1.

Lemma 2.3.19. Let h1 : S → S1 and h2 : S → S2 be power morphisms. If h2 is

total and the pair 〈h1, h2〉 is finitary, then

ϕ has a model in M(h1⇒h2) iff (ϕ ∧ h1(∆ϕ)) has a model in M1,

for all ϕ ∈ L1.
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Proof. (→) Let m ∈ M(h1⇒h2), such that m 1 ϕ. We have that h1(m) ⊆ h2(M2).
So, there is M ′ ⊆M2, such that h1(m) = h2(M

′). Hence,

M ′
2 h2(∆ϕ) iff h2(M

′) = h1(m)  ∆ϕ iff m  h1(∆ϕ).

Therefore, m is a model of (ϕ ∧ h1(∆ϕ)).

(←) Assume that ϕ does not have a model in M(h1⇒h2). Hence, �(h1⇒h2) (¬ϕ).
From the finitaryness of 〈h1, h2〉, we have that h1(∆(¬ϕ)) = h1(∆ϕ) �1 (¬ϕ). There-
fore, (ϕ ∧ h1(∆ϕ)) does not have a model inM1.

We are, now, ready to prove one of the fundamental results of this chapter.

Theorem 2.3.20. Let h1 : S → S1 and h2 : S → S2 be a finitary pair of power

morphisms, with h2 total. If AXS1
and AXS2

are weakly complete axiomatizations
for S1 and S2, respectively, then

AX(h1⇒h2)
def
= AXS1

+ h1(h
−1
2 (AXS2

))

is a weakly complete axiomatization for S(h1⇒h2).

Proof. The soundness comes from the fact that AXS1
is sound forM1, and the fact

that h1(h
−1
2 (AXS2

)) is sound in the class h−1
1 (h2(M2)) =M(h1⇒h2).

The weakly completeness is proved by showing that the axiomatization satis-
fies weakly Henkin-completeness. Let ϕ be a formula from L1, with no model
in M(h1⇒h2). From the finitaryness of 〈h1, h2〉, and Lemma 2.3.19, the formula
(ϕ ∧ h1(∆ϕ)) does not have a model in M1. So, from the weak completeness of
AXS1

we have that ⊢1 (¬(ϕ ∧ h1(∆ϕ))). And we have ⊢(h1⇒h2) (¬(ϕ ∧ h1(∆ϕ)))

as well. Now, from the definition of h1(h
−1
2 (AXS2

)), we have that ⊢(h1⇒h2) h1(∆ϕ)

because h2(∆ϕ) is valid in S2. Hence, by propositional reasoning we conclude that
⊢(h1⇒h2) (¬ϕ).

Example 2.3.21. Consider again Example 2.3.17, where we defined power mor-

phisms:
SPML(Λ)

SCPL(Λ)

h′

OO

h
// SRCF(X)
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Now, we want to prove that 〈h′, h〉 is finitary. Let ϕ ∈ LPML(Λ), and Λϕ be the
finite subset of propositional symbols present in ϕ. For each subset A ⊆ Λϕ, let

ψA
def
= (∧α∈Aα) ∧ (∧α6∈A(¬α)).

And consider the formula ψϕ = ∨ψA, where A runs through all subsets of Λϕ, such
that ψA has a model in h′(M(h′⇒h)) = h(RX). Clearly, we have �RCF h(ψϕ). More-
over, for m = 〈S,R, V 〉 ∈ M(h′⇒h) we have that V (S) ⊆ h(RX). Hence, for every
s ∈ S,

V (s) CPL ψA, for A = {α ∈ Λϕ : α ∈ V (s)}.
So, m PML ψϕ, and we conclude that �(h′⇒h) ψϕ. From the construction of ψϕ, we
also have that ψϕ = ψ¬ϕ.

Now, in order to have finitaryness we need to prove the following result.

Lemma 2.3.22. �(h′⇒h) ϕ iff ψϕ �PML ϕ.

Proof. (→) Assume that �(h′⇒h) ϕ. Let m ∈ MPML, such that m PML ψϕ. So,
for every s ∈ S, there is As ⊆ Λϕ, such that V (s) CPL ψAs

. Each ψAs
has a

model in h′(M(h′⇒h)) = h(RX), that we denote by V ′(s). The Kripke structure
m′ = 〈S,R, V ′〉, where V ′(s) is the model of ψAs

, satisfies ϕ iff m satisfies ϕ because
m and m′ are equivalent over Λϕ. Hence, from m′ ∈ M(h′⇒h) and m′

PML ϕ we
conclude that m PML ϕ.

(←) Assume that 6�(h′⇒h) ϕ. So, there is m ∈ M(h′⇒h), such that m 6PML ϕ.
From the fact that �(h′⇒h) ψϕ we conclude that ψϕ 6�PML ϕ.

Now, we are prepared to apply Theorem 2.3.20. Let AXPML be the weakly com-
plete axiomatization for SPML(Λ), and AXRCF the weakly complete axiomatization
for SRCF(X). From Theorem 2.3.20 we conclude that AXPML + h′(h−1(AXRCF)) is a
weakly complete and sound axiomatization for S(h′⇒h).

2.4 Remarks

We conclude with a brief summary of the achievements of this chapter. In this
chapter we study a new form of combining satisfaction systems, Definition 2.3.16.
Such construction relies on the satisfaction condition of morphisms, that establishes
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a kind of connection between the semantics of both systems. From this connection
we define a subsystem that reflects such constrains and mimics parametrization
[Ehr82, CSS99].

We stress that this type of combination is essentially exogenous, since we do not
modify internally neither the formulas nor the models of both systems. Instead,
the new system is obtained by the connection established by the morphisms, and by
restricting the class of models. The results obtained on transference of (weakly) com-
plete axiomatization, Theorem 2.3.20, and decidability, Lemma 2.3.19, are proved
by providing sufficient conditions on the morphisms and on the systems, to ensure
the transference of such metaproperties. These results were closely motivated by
their applications on the sequel.



Chapter 3

Exogenous probabilization of logic

systems

The probabilization of a logic system consists in enriching the language (the
formulas) and the semantics (the models) with probabilities features. Such operation
is said exogenous if the enrichment is done on top, without internal changes on the
structure, and is called endogenous otherwise. And these two different enrichments
can be applied simultaneously to the language and semantics of a same logic system.
For example, in [Koz85, VW86], probabilizations of logic systems were presented
(propositional dynamic logic and linear temporal logic, respectively). In these works
the languages were enriched exogenously and the models were enriched endogenously.

In the context of temporal logics, the probabilization is usually driven by shifting
the nature of transitions, from non-deterministic to probabilistic. In terms of seman-
tics, this conceptions leads to an endogenous enrichment of the models, and to the
domain of stochastic processes [Koz85, VW86]. With regard to language, the passage
from non-determinism to probability motivates the replacement of quantification
(“for all” and “exists”) by probabilistic assertions (“at least 90%”) [HJ94, CFRSS08].
Such operation can be endogenous or exogenous if nesting is allowed or not, respec-
tively.

The technique of exogenous probabilization was started in [Nil86, FHM90], con-
cerning CPL systems. Later on, the exogenous approach was explored in the context
of quantum systems [MS04b], quantum probability (pure states) [MS06] and quan-
tum computation [BMNP07]. In all these cases weakly complete axiomatization and

31
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decidability was addressed. Another import source of motivation is Vardi’s work on
verification of probabilistic computations (probabilistic programs) [VW86, VW94].
In this work, linear temporal formulas (of LTL) are used to define path-events (events
over computations), which have certain probabilities of occur given by the proba-
bilistic model (Markov chains) of the program. Moreover, an automatic technique
to compute such probabilities was presented. At the semantic level, this probabi-
lization of LTL is not exogenous, since the transformation of LTL models (Kripke
structures) to Markov chains is done by internally enriching (probabilistically) the
Kripke structure. Although, we will show that the exogenous approach can also be
applied to study this endogenous probabilization in Example 4.2.

The notion of exogenous probabilization of a generic logic system was firstly ad-
dressed in [MSS05], and later on extended into the context of institutions [CMSS06].
These works shed light in the different layers of reasoning and in the logics evolved
in such operation. In this approach the global layer added by the globalization op-
erator works as an intermediate step towards probabilization, by introducing non-
determinism reasoning. However, it was an open problem how to prove transference
of metaproperties, such as axiomatization and decidability, in the generic context of
satisfaction systems [CCG+08].

In this chapter we address the problem of studying the transference of metaprop-
erties in the exogenous probabilization of logic systems. First, we setup the necessary
framework to handle the probabilization of a satisfaction system. Then, we use the
results of the previous chapter, on exogenous combinations, and apply them to this
case. Next, we extend the analysis to the system obtained by probabilization and
globalization. Finally, we show and motivate the applicability of our technique also
in the case of exogenous quantum enrichment [MS06].

3.1 Probabilization operator

The intuitive interpretation given to exogenous probabilization is that, in the
new system, formulas of the base system must define events (or sets of base models)
of a probability space, and its probabilities are given by a probability distribution
over base models, which are the the new models. Consequently, since probability
events are closed under boolean operations (ex. union and complementation) it is
reasonable to impose, to the base system, the existence of the correspondent propo-
sitional connectives. Therefore, in the sequel, we will always consider satisfaction
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systems that are morphic images of CPL systems, i.e. satisfaction systems such that
the set of formulas is closed under classical propositional operations (negation and
implication).

We start immediately by defining the main notion of this section [FHM90,
MSS05].

Definition 3.1.1. Given a satisfaction system S = 〈L,M,〉, the probabilization

operator transforms S in the system S p = 〈Lp,Mp,p〉, defined as follows:

• Lg is defined by

t ::= r 8
∫

β 8 (t + t) 8 (t.t)

ϕ ::= (t < t) 8 (∼ϕ) 8 (ϕ = ϕ);

with β ∈ L and r ∈ Alg(R);

• Mp is the class of all tuples m = 〈S,F ,P, V 〉, where 〈S,F ,P〉 is a probability
space, and V : S → M is a measurable valuation, in the sense that for all

β ∈ L the set V −1[β]
def
= {s ∈ S : V (s)  β} ∈ F ;

• the satisfaction relation 
p is given by

– [[r]]m = r;

– [[
∫

β]]m = P(V −1[β]);

– [[t1 + t2]]m = [[t1]]m + [[t2]]m;

– [[t1.t2]]m = [[t1]]m.[[t2]]m;

– m 
p (t1 < t2) iff [[t1]]m < [[t2]]m;

– m 
p (∼ϕ) iff m 6p ϕ;

– m 
p (ϕ1 = ϕ2) iff m 6p ϕ1 or m 

p ϕ2,

for m ∈Mp and ϕ ∈ Lp.

The other classical connectives, at the global level, ⊤⊤ (global verum), ⊥⊥ (global
falsum), ⊓ (global conjunction), ⊔ (global disjunction) and ≡ (global equivalence)
are defined by the usual abbreviations. And we also assume the common abbrevia-
tions for (t = t), (t > t), (t ≤ t) and (t ≥ t).

The usefulness of power morphisms is attested by the following result.
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Proposition 3.1.2. The probabilistic satisfaction system S p is a conservative ex-

tension of S , S �S S p.

Proof. Consider the map h : S → S p such that h(β) = (
∫

β = 1), and

h(m) =
⋂

{V (S ′) : S ′ ∈ F ,P(S ′) = 1},
for all β ∈ L and m ∈Mp.

So, we have that

m 
p h(β) iff [[

∫

β]]m = 1 iff P(V −1[β]) = 1 iff V −1(h(m)) ⊆ V −1[β] iff h(m)  β,

for all β ∈ L and m ∈Mp.

Hence, h is a power morphism of satisfaction systems. Clearly, h fulfills the
condition of conservativeness B.3.9. Given m ∈M, we have that m = h(m′), where
m′ is the single point mass probability distribution defined by m.

In the next results we show that the classic connectives, present in S , behave
like the set-theoretical operations of σ-fields.

Lemma 3.1.3. For m ∈Mp and β, β1, β2 ∈ L the following holds:

1. if β is valid, then [[
∫

β]]m = 1;

2. [[
∫

¬β]]m = 1− [[
∫

β]]m;

3. [[
∫

β
1
∨ β2]]m = [[

∫

β
1
]]m + [[

∫

β
2
]]m − [[

∫

β
1
∧ β2]]m;

4. if (β1⇒ β2) is valid, then [[β1]]m ≤ [[β2]]m.

Proof. Let m = 〈S,F ,P, V 〉 ∈ Mp and β, β1, β2 ∈ L. 1) It is true, since V −1[β] = S.
2) It comes from the fact that V −1[¬β] = S − V −1[β]. 3) It is obtained from the
equalities V −1[β1 ∨ β2] = V −1[β1] ∪ V −1[β2] and V −1[β1 ∧ β2] = V −1[β1] ∩ V −1[β2].
4) It yields from 1) and 3).

We remark that property (4) of the previous lemma, although trivial to prove, is
of great importance for a correct probabilistic interpretation; and it will be central
in the process of presenting an axiomatization for S p.

The next result shows that the language has expressivity to separate different
probability spaces.
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Lemma 3.1.4. Let m1, m2 ∈Mp. Then,

m1 ≃ m2 iff [[
∫

β]]m1
= [[

∫

β]]m2

for all β ∈ L.

Proof. Assume there is a formula β ∈ L, such that [[
∫

β]]m1
< [[

∫

β]]m2
. Because the

order relation on algebraic real numbers is a dense order in R, there is an algebraic
number r > 0, such that [[

∫

β]]m1
< r < [[

∫

β]]m2
. Therefore, m1 

p (
∫

β < r) and
m2 6p (

∫

β < r).

Assume, now, that [[
∫

β]]m1
= [[

∫

β]]m2
for all β ∈ L. Clearly, m1 and m2 agree on

the denotational of all algebraic terms. And, therefore, they satisfy the same atomic
formulas (inequalities). By structural induction we prove that they satisfy exactly
the same formulas, m1 ≃ m2.

We now proceed by given several definitions of subsets of formulas and terms
related to a formula ϕ ∈ Lp. We define the following sets:

• sf(ϕ) is the ordered set of all subformulas of ϕ;

• iq(ϕ) is the set of all inequalities (atomic subformulas) of ϕ;

• tr(ϕ) is the set of all algebraic terms of ϕ;

• str(ϕ) is the ordered set of all algebraic subterms in tr(ϕ);

• alg(ϕ) is the ordered set of all algebraic numbers of ϕ;

• bf(ϕ) is the set of all base formulas of ϕ;

• sbf(ϕ) is the ordered set of all subformulas of bf(ϕ).

The process to study the probabilization of CPL used in [MS06, BM09] relies on
the fact that the CPL language is built from propositional symbols. In our more
general setting, we can define for each formula a finite set of base formulas that take
the role of “atomic” base formulas.

Let ϕ ∈ Lp and bf(ϕ) = {β1, . . . , βn} the set of all base formulas β of ϕ, i.e the
set of all base formulas that appear in measure terms

∫

β of ϕ. For each A ∈ 2n, let

βA = (∧j∈Aβj) ∧ (∧j 6∈A¬βj) (3.1)
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be the formula in L formed by the conjunction of the base formulas, or their nega-

tions, of ϕ. Furthermore, let atb(ϕ)
def
= {βA : A ∈ 2n} be the finite set of all induced

atomic base formulas of ϕ. And by ∨atb(ϕ) we denote the disjunction of all for-
mula in atb(ϕ). Since S is a morphic image of a CPL system, the existence in L of
formulas βA is guaranteed.

Lemma 3.1.5. Mod(∨atb(ϕ)) =M.

Proof. Let m ∈ M and bf(ϕ) = {β1, . . . , βn}. Consider the set A = {0 < i ≤ n :
m  βi}. Hence, m  βA and, therefore, m  ∨atb(ϕ).

We have that ∨atb(ϕ) is valid, although some atomic base formulas may be
unsatisfiable.

For every β ∈ bf(ϕ), let atb(β : ϕ) ⊆ atb(ϕ) be the subset of all formulas β ′, such
that (β ′⇒ β) is valid. Clearly, if β ′ ∈ atb(β : ϕ), then β can not appear negated in
β ′. And, therefore, atb(β : ϕ) is exactly the subset of formulas of atb(ϕ) in which β
occurs positively, i.e not negated. We write ∨βϕ = ∨β′∈atb(β:ϕ)β

′.

We can rewrite each formula β ∈ bf(ϕ) as a disjunction of atomic formulas from
atb(ϕ).

Lemma 3.1.6. The following assertions hold.

1. For every β ∈ bf(ϕ), the formula (β⇔∨βϕ) is valid.

2. For every distinct β ′, β ′′ ∈ atb(ϕ), Mod(β ′) ∩Mod(β ′′) = ∅.

3. For β ∈ bf(ϕ), Mod(β) is the disjoint union of the classes Mod(β ′), with
β ′ ∈ atb(β : ϕ).

Proof. 1) Let β ∈ bf(ϕ). By the definition of atb(β : ϕ), we have that

(∨β′∈atb(β:ϕ)β
′⇒ β)

is valid. If m ∈M satisfies β, then it must satisfy one of the formulas in atb(β : ϕ).
Hence, (β⇔∨β′∈atb(β:ϕ)β

′).

2) Let A,A′ ∈ 2n. If A 6= A′, then there is a formula β ∈ bf(ϕ) that occurs
negatively in one and not negated in the other. Therefore, a model can not satisfy
both βA and βA′.
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3) It yields from 1) and 2).

Lemma 3.1.7. For every m ∈Mp and β ∈ bf(ϕ), we have

[[
∫

β]]m = [[
∫

∨βϕ]]m =
∑

β′∈atb(β:ϕ)

[[
∫

β
′
]]m. (3.2)

Proof. Let m ∈ Mp and β ∈ bf(ϕ). We have that V −1[β] = {s ∈ S : V (s)  β} =
{s ∈ S : V (s) ∈ Mod(β)}. From Lemma 3.1.6, Mod(β) = ∪β′∈atb(β:ϕ)Mod(β ′). So,
V −1[β] = ∪β′∈atb(β:ϕ)V

−1[β ′], where the sets {V −1[β ′]}β′∈atb(β:ϕ) are pairwise disjoint.
So,

[[
∫

β]]m = P(V −1[β]) = P(∪β′∈atb(β:ϕ)V
−1[β ′]) =

∑

β′∈atb(β:ϕ)

P(V −1[β ′]) =
∑

β′∈atb(β:ϕ)

[[
∫

β
′
]]m.

Given a model m = 〈S,F ,P, V 〉 ∈ Mp and a formula ϕ ∈ Lp, consider the
relation ∼ϕ⊆ S × S defined by

s ∼ϕ s′ if V (s)  β iff V (s′)  β (3.3)

for all β ∈ atb(ϕ).

Lemma 3.1.8. The relation ∼ϕ is a finite index equivalence relation on S.

Proof. The set atb(ϕ) is finite and, thus, it allows only a finite number of different
∼δ-classes.

For a model m ∈ Mp and ϕ ∈ Lp, we denote by [s]ϕ the ∼ϕ-class of s ∈ S. For
bf(ϕ) = {β1, . . . , βk}, let atbs(ϕ) = {β ∈ atb(ϕ) : V (s)  β} and As = {1 ≤ i ≤ k :
βi ∈ atbs(ϕ)}.

Lemma 3.1.9. Let s ∈ S. We have that

[s]ϕ = V −1[βAs
] =





⋂

β∈atbs(ϕ)

V −1[β]





⋂





⋂

β /∈atbs(ϕ))

V −1[¬β]



 . (3.4)

Moreover, [s]ϕ ∈ F .
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Proof. For the first claim, observe that if s ∼δ s′, then atbs(ϕ) = atbs′(ϕ). Since
the right-hand side of 3.4 is just a rephrasing of Condition 3.3, the equality yields
directly from the definition of ∼ϕ.

We prove the second claim using the fact that V −1[β] is measurable, for every
β ∈ atb(ϕ).

Now, we prove that satisfaction is preserved by the quotient construction. Con-
sequently, any satisfiable formula has a finite discrete model.

Theorem 3.1.10 (Finite-model theorem). If a formula ϕ ∈ Lp has a model, then

it has a model over a finite probability space.

Proof. Let m = 〈S,F ,P, V 〉 ∈ Mp be a model of ϕ ∈ Lp. Consider the tuple
〈Sϕ, 2Sϕ,Pϕ〉, such that Sϕ ⊆ S is a fixed set of class representatives of S/ ∼ϕ,
and Pϕ(A) = P(∪A), for all A ∈ 2Sϕ , where ∪A ∈ F means the finite union of
the ∼ϕ-classes represented in A. Hence, the map Pϕ is a probability measure and
〈Sϕ, 2Sϕ,Pϕ〉 a finite probability space. Let Vϕ : Sϕ → M be the restriction of
V to Sϕ. Hence, the tuple mϕ = 〈Sϕ, 2Sϕ,Pϕ, Vϕ〉 is a model of Mp. Let β ∈
atb(ϕ). Clearly, V −1

ϕ [β] ⊆ V −1[β]. If s ∈ ∪V −1[β], then s ∈ [s′]ϕ with s′ ∈ Sϕ and
s′ ∈ V −1

ϕ [β] ⊆ V −1[β]. Hence, ∪V −1
ϕ [β] ⊆ V −1[β]. Moreover, if s ∈ V −1[β], then

s′ ∈ V −1
ϕ [β], where s′ is the representative of [s]ϕ. So, s ∈ ∪V −1

ϕ [β] and we conclude
that ∪V −1

ϕ [β] = V −1[β]. Given this equality, we have that for β ∈ atb(ϕ),

[[β]]mϕ
= Pϕ(V

−1
ϕ [β]) = P(∪V −1

ϕ [β]) = P(V −1[β]) = [[β]]m.

Therefore, the models m and mϕ coincide in the denotation of terms
∫

β, for β ∈
atb(ϕ). So, they satisfy the same inequations of iq(ϕ). Hence, by straightforward
induction on the structure of subformula ψ of ϕ, we prove that mϕ 

p ψ iff m 
p ψ,

for all ψ ∈ sf(ϕ). In particular, mϕ is also a model of ϕ, mϕ 
p ϕ.

Remark 3.1.11. A careful look into the quotient construction shows that to each

class corresponds an atomic base formula in atb(ϕ). Therefore, we can conclude that
for every satisfiable formula ϕ there is a probability distribution 〈M,P :M → [0, 1]〉,
that can be transformed into a model (and also viewed as model), and where every
m ∈M satisfies one and only one β ∈ atb(ϕ).

Observe that at first sight, from the previous result, it seems that to construct
a model for a formula ϕ, we need O(2size(ϕ)) algebraic real numbers to describe the
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probability distribution over the different ∼ϕ-classes. However, adapting a technique
for eliminating spurious variables in linear optimization problems, [FHM90], we are
able to set this bound to be just linear. Therefore, we establish a small-model
theorem for S p.

Theorem 3.1.12 (Small-model theorem). If ϕ is a satisfiable formula, then it has

a finite model using at most O(size(ϕ)) algebraic real numbers.

Proof. Let ϕ be a satisfiable formula. From Theorem 3.1.10, there is a finite model
mϕ = 〈M,P〉, where |M | ≤ 2size(ϕ), such that mϕ 

p ϕ. Moreover, if bf(ϕ) =
{β1, . . . , βk}, then |M | ≤ 2k.

Consider the system of k + 1 equations involving |M | variables {xm}m∈M :


















∑

m∈M(β1)
xm = [[

∫

β
1
]]mϕ

...
∑

m∈M(βk)
xm = [[

∫

β
k
]]mϕ

∑

m∈M xm = 1,

where M(βi) =Mod(βi) ∩M , for all i = 1, . . . , k.

The set of equations above has the non-negative solution {xm = P(m)}m∈M .
In linear optimization, it is well known that if a system of k + 1 linear equations
has a non-negative solution, then there is a solution η = {ηm}m∈M for the system
with at most k + 1 variables taking positive values (see, for instance, Theorem 9.3
in [Chv83]). Let M ′ = {m ∈ M : ηm > 0}. Therefore, the probability distribution
〈M ′, {ηm}m∈M ′〉 is a model of ϕ.

There are two important hidden complexities in this last result. First, the small-
model theorem does not say anything about the sizes of the models in M . Although,
if the system S possesses the small-model property, the size of M can be made
“small”. However, if that is not the case, then for a model 〈M,P〉, and for every
m ∈M we can store just a reference of the formula βm ∈ atb(ϕ), such that m  βm,
and its probability P(m). Remark that this probability distribution {P(βm)}m∈M

is not a proper model for S p, since one can not evaluate other formulas besides
ϕ. Hence, in the worst case, and in order to keep it small, we do not get a model
but a “specific model” for ϕ. Second, the small-model theorem does not impose a
bound on the size of the representation of the algebraic real numbers. Indeed, if an
algebraic real number r ∈ R is represented by a RCF formula ϕr(x), this formula
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can increase without any bound. Since the complexity of finding a witness for the
satisfaction problem for the real closed fields, SRCF, is EXPSPACE it means that
one might have a linear number of algebraic numbers, each with exponential size.

Corollary 3.1.13. If ϕ ∈ Lp is satisfiable, then it has a model 〈M,P〉 such that

|M | ≤ size(ϕ), and M is constitute by models of formulas in atb(ϕ).

Proof. It yields from the (small-model) Theorem 3.1.12 and the quotient construc-
tion used in Theorem 3.1.10.

3.2 Completeness

We now address the problem of obtaining a (weakly) complete and sound ax-
iomatization for S p, from a (weakly) complete axiomatization for S .

Let S = 〈L,M,〉 be a satisfaction system. Consider the family of subsets
AS = {Mod(β) : β ∈ L} ofM.

Lemma 3.2.1. The family AS is a field of sets.

Proof. Clearly, we have ∅ = Mod(⊥) ∈ AS andM = Mod(⊤) ∈ AS . For β1, β2 ∈
L, Mod(β1) ∪Mod(β2) = Mod(β1 ∨ β2) ∈ AS and M \Mod(β1) = Mod(¬β1) ∈
AS .

We say that a satisfaction system is compact if for every Γ ∪ {ϕ} ⊆ L, with
Γ � ϕ, there is a finite set Γ′ ⊆ Γ, such that Γ′

� ϕ.

Proposition 3.2.2. Let µ : AS → [0, 1] be a non-negative and additive set function.

If S is a compact satisfaction system, then µ is countably additive.

Proof. Let Γ = {βi : i ∈ N} ⊆ L be a sequence of formulas, such that Mod(βi+1) ⊂
Mod(βi), for all i ∈ N and Mod(Γ) = ∅. Hence, Γ � ϕ for every formula ϕ and so,
in particular, Γ � ⊥. From the compactness of S , there is a finite subset Γ′ ⊂ Γ,
such that Γ′

� ⊥. So, Mod(Γ′) = ∅. Let βN ∈ Γ′ such that N = max{i : βi ∈ Γ′}.
Clearly, Mod(βN ) =Mod(Γ′) = ∅. Therefore, for all i > N , we have µ(Mod(βi)) ≤
µ(Mod(βN)) = 0. Thus, limi→+∞ µ(Mod(βi)) = 0. Now, from Proposition A.0.5 we
obtain the countably additivity of µ.
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Consider the sets of variables

XL = {xβ : β ∈ L} and Xalg = {xr : r ∈ Alg(R)},

and Xp = XL ∪ Xalg ∪ XA, where XA is a denumerable set of auxiliary variables.
Let

SRCF(Xp) = 〈LRCF(Xp),R
Xp,RCF〉

be the RCF satisfaction system, over the set of variables Xp.

Let ∆p
S
⊆ LRCF(Xp) be the set containing the formulas:

eqR ϕr(xr), for every r ∈ Alg(R) ( ϕr(xr) defines the algebraic real number r);

eqV (xβ = 1), if β is valid in S ;

eqP (0 ≤ xβ);

eqN (x(¬β) = 1− xβ);

eqA (x(β1∨β2) = xβ1 + xβ2 − x(β1∧β2));

for all β, β1, β2 ∈ L.

We define the map hp : S p → SRCF(Xp) such that:

• hp : Lp → LRCF(Xp) is defined by

– hp(r) = xr;

– hp(
∫

β) = xβ ;

– hp(t1 + t2) = hp(t1) + hp(t2);

– hp(t1.t2) = hp(t1).hp(t2);

– hp(t1 < t2) = (hp(t1) < hp(t2));

– hp(∼ϕ) = (¬hp(ϕ));
– hp(ϕ1 = ϕ2) = (hp(ϕ1)⇒ hp(ϕ2));

hp :Mod(∆p
S
)→Mp is defined for γ ∈Mod(∆p

S
) by

hp(γ)
def
= mγ = 〈M,FS ,Pγ, idM〉,

where FS = σ〈AS 〉, and Pγ(Mod(β)) = γ(xβ), for all β ∈ L.
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The set ∆p
S

is called the RCF theory of S p.

Lemma 3.2.3. Let AXRCF be the axiomatization for SRCF(Xp). The following for-

mulas are derivable from ∆p
S

.

1. ∆p
S
⊢RCF (xβ = 0), if β is unsatisfiable.

2. ∆p
S
⊢RCF (xβ1 = xβ2), if (β1⇔ β2) is valid.

3. ∆p
S
⊢RCF (xβ1∨β2 = xβ1 + xβ2), if (β1 ∧ β2) is unsatisfiable.

4. ∆p
S
⊢RCF (x(β0∨...∨βk) = xβ0 + · · · + xβk), for β0, . . . , βk ∈ L, with k > 0 and

(βi ∧ βj) unsatisfiable for all 0 ≤ i 6= j ≤ k.

Proof. (1) If β ∈ L is unsatisfiable, then (¬β) is valid. Therefore,

(x(¬β) = 1), (x(¬β) = 1− xβ) ∈ ∆p
S
.

Hence, we have that ∆p
S
⊢RCF (xβ = 0).

(2) If β1⇔ β2 is valid, then ¬β1 ∨ β2 and ¬β2 ∨ β1 are also valid. Hence,

(xβ1 ≥ 0), (xβ2 ≥ 0), (x¬β1∧β2 ≥ 0) ∈ ∆p
S

and

(x¬β1∨β2 = 1), (x¬β1 = 1− xβ), (x¬β1∨β2 = x¬β1 + xβ2 − x¬β1∧β2) ∈ ∆p
S
.

From these formulas we have

∆p
S
⊢RCF (xβ2 = xβ1 + x¬β1∧β2), and ∆p

S
⊢RCF (xβ1 ≤ xβ2).

In the same manner, from ¬β2 ∨ β1 we conclude ∆p
S
⊢RCF (xβ2 ≤ xβ1). Therefore,

∆p
S
⊢RCF (xβ1 = xβ2).

(3) Let β1, β2 ∈ L, such that (β1 ∧ β2) is unsatisfiable. From (1) we have that
∆p

S
⊢RCF (x(β1∧β2) = 0). Since (xβ1∨β2 = xβ1 + xβ2 − xβ1∧β2) ∈ ∆p

S
, we conclude that

∆p
S
⊢RCF (xβ1∨β2 = xβ1 + xβ2).

(4) The proof follows by induction on k. The base case k = 1 is (3). Assume
it is valid for k = N , i.e ∆p

S
⊢RCF (x(β0∨...∨βN ) = xβ0 + · · · + xβN ). The formula

(β0∨ . . .∨βN)∧βN+1 is unsatisfiable, and from (2), ∆p
S
⊢RCF (x(β0∨...∨βN )∧βN+1

= 0).
Since

(x(β0∨...∨βN∨βN+1) = x(β0∨...∨βN ) + xβN+1
− x(β0∨...∨βN )∧βN+1

) ∈ ∆p
S
,
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and applying the induction hypothesis we conclude that

∆p
S
⊢RCF (x(β0∨...∨βN+1) = xβ0 + · · ·+ xβN+1

).

Clearly, by the soundness of AXRCF all the formulas in Lemma 3.2.3 are entailed
by ∆p

S
.

Lemma 3.2.4. We have the following properties.

1. ∆p
S

�RCF (xβ = 0), if β is unsatisfiable.

2. ∆p
S

�RCF (xβ1 = xβ2), if β1⇔ β2 is valid.

3. ∆p
S

�RCF (xβ1∨β2 = xβ1 + xβ2), if (β1 ∧ β2) is unsatisfiable.

4. ∆p
S

�RCF (x(β0∨...∨βk) = xβ0 + · · · + xβk), for β0, . . . , βk ∈ L, with (βi ∧ βj)
unsatisfiable for all 0 ≤ i 6= j ≤ k.

Proof. The assertions follow by invoking the soundness of AXRCF.

We say that a satisfaction systems S = 〈L,M,〉 is small ifM is a set.

Proposition 3.2.5. Let S be a small and compact satisfaction system. The map

hp : S
p → SRCF(Xp)

is well defined.

Proof. We start by verifying that hp : Lp → LRCF(Xp) is well defined. For every term
t of Lp, hp(t) is a term of LRCF(Xp). Now, since this is clearly true for the base cases
and also for the induction steps we conclude that hp is well defined. To prove that
hp : Mod(∆p

S
) → Mp is well defined we need to prove that, in fact, hp(γ) ∈ Mp,

for all γ ∈Mod(∆p
S
). In other words, 〈M,FS ,Pγ〉 is a probability space, and that

id−1
M [β] = Mod(β) ∈ FS , for all β ∈ L. The second condition is straightforward

and follows from the definition of FS . Therefore, it remains to prove that Pγ is a
probability measure on FS . In fact, what we will prove is that Pγ, which is defined
onAS , can be uniquely extended to a probability measure on σ〈AS 〉, i.e. the σ-field
generated by AS . Furthermore, given the unicity of the extension, we can identify
such extension with Pγ it self and consider the tuple 〈M,FS ,Pγ〉 as a probability
space. First,M is a set and FS a collection of sets. The next properties are true.
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1. If Mod(β1) =Mod(β2), then β1⇔ β2 is valid and so, by Lemma 3.2.4,

Pγ(Mod(β1)) = xβ1 = xβ2 = Pγ(Mod(β2)),

for β1, β2 ∈ L.

2. Pγ(Mod(β)) = γ(xβ) ≥ 0, because γ RCF (0 ≤ xβ).

3. Let β1, β2 ∈ L, such that Mod(β1) ∩Mod(β2) =Mod(β1 ∧ β2) = ∅. Hence,

Pγ(Mod(β1 ∧ β2)) = γ(xβ1∧β2) = 0

and

Pγ(Mod(β1) ∪Mod(β2)) = P(Mod(β1 ∨ β2)) =

= γ(xβ1∨β2) = γ(xβ1) + γ(xβ2)− γ(xβ1∧β2) = Pγ(Mod(β1)) +Pγ(Mod(β2)).

From (1) we have that Pγ is a well defined set function on AS , from (2) that Pγ

is non-negative, and from (3) that is additive. Hence, by Proposition 3.2.2, Pγ is
countably additive. Now, Pγ is clearly σ-finite and applying the Caratheodory’s
extension (see Theorem A.0.6) we conclude that Pγ has a unique extension to FS .

Lemma 3.2.6. Let γ ∈Mod(∆p
S
). Then [[t]]hp(γ) = γ(hp(t)), for all algebraic terms

t of Lp.

Proof. Let us prove the claim by induction on the structure of t. The base cases:

• [[r]]mγ
= r = γ(xr) = γ(hp(r)), because γ RCF ϕr(xr), for all r ∈ Alg(R);

• [[
∫

β]]mγ
= γ(xβ) = γ(h

p
(
∫

β)), for all β ∈ L.

The step cases are straightforward and follow from the definition of hp on alge-
braic terms.

Proposition 3.2.7. The map hp : S p → SRCF(Xp) is a ∆p
S

-exhaustive morphism.
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Proof. We need to prove that

hp(γ) 
p ϕ iff γ RCF hp(ϕ),

for all γ ∈ RXp and ϕ ∈ Lp.
Let us proceed by using induction on the structure ϕ ∈ Lp. For the base case

(t1 < t2), and applying Lemma 3.2.6, we have

hp(γ) = mγ 
p (t1 < t2) iff [[t1]]mγ

< [[t2]]mγ
iff

iff γ(hp(t1)) < γ(hp(t2)) iff γ RCF hp(t1 < t2).

The step cases, negation ∼ and implication =, are clearly true by propositional
reasoning.

Consider the map h∗ :Mp → RXp , such that h∗(m) = γm where

γm(x) =











r if x = xr ∈ Xalg;

[[
∫

β]]m if x = xβ ∈ XL;

0 otherwise.

Lemma 3.2.8. h∗(m) = γm ∈Mod(∆p
S
), for all m ∈Mp.

Proof. We need to verify that γm satisfies all the formulas of ∆p
S

.

(eqR) For ϕr(xr), with r ∈ Alg(R), we have

γm RCF ϕr(xr) iff γm(xr) = r = [[r]]m.

(eqP) For (0 ≤ xβ), with β ∈ L,

γm RCF (0 ≤ xβ) iff (0 ≤ γm(xβ)) iff (0 ≤ [[
∫

β]]m) iff (0 ≤ P(V −1[β])).

(eqN) For (x¬β = 1− xβ), with β ∈ L,

γm RCF (x¬β = 1− xβ) iff γm(x¬β) = 1− γm(xβ) iff [[
∫

¬β]]m = 1− [[
∫

β]]m iff

iff P(V −1[¬β]) = 1−P(V −1[β]) iff P(S V −1[β]) = 1−P(V −1[β]).
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(eqA) For (xβ1∨β2 = xβ1 + xβ2 − xβ1∧β2), with β1, β2 ∈ L, we have

γm RCF (xβ1∨β2 = xβ1+xβ2−xβ1∧β2) iff γm(xβ1∨β2) = γm(xβ1)+γm(xβ2)−γm(xβ1∧β2).

Now, γm(xβ1∨β2) = [[
∫

β
1
∨ β2]]m = P(V −1[β1 ∨ β2]) = P(V −1[β1] ∪ V −1[β2]) =

P(V −1[β1]) + P(V −1[β2]) − P(V −1[β1 ∧ β2]) = [[
∫

β
1
]]m + [[

∫

β
2
]]m − [[

∫

β
1
∧ β2]]m =

γm(xβ1)+ γm(xβ2)−γm(xβ1∧β2). Therefore, γm satisfies all the formulas ∆p
S

, and so,
γm ∈Mod(∆p

S
).

Proposition 3.2.9. The morphism hp : S
p → SRCF(Xp) is ∆p

S
-conservative.

Proof. Consider the map h∗ : Mp → RXp defined above. We need to verify that
m ≃ hp(h

∗(m)) = hp(γm) = mγm , for all m ∈Mp. By the definitions of hp and h∗,

[[
∫

β]]mγm
= γm(xβ) = [[

∫

β]]m,

for all β ∈ L. Hence, from Lemma 3.1.4 we conclude that m ≃ hp(h
∗(m)).

Given ϕ ∈ LRCF(Xp), let V arL(ϕ) = V ar(ϕ)∩XL and V aralg(ϕ) = V ar(ϕ)∩Xalg.
We will write bfV (ϕ) = {β ∈ L : xβ ∈ V arL(ϕ)} for the set of all base formulas β,
such that xβ appears in ϕ. And, as before, atbV (ϕ) is the set of all induced atomic
base formulas from bfV (ϕ), and atbV (β : ϕ) the subset of formulas in atbV (ϕ), where
β occurs positively, for β ∈ bfV (ϕ).

Proposition 3.2.10. The morphism hp : S p → SRCF(Xp) is finitary.

Proof. Given a formula ϕ ∈ LRCF(Xp), let V arL(ϕ) = {xβ1, . . . , xβk} and bfV (ϕ) =
{β1, . . . , βk}. Consider the subset ∆Σ

ϕ ⊂ LRCF(Xp) containing the formulas:

• (xβ = 1), if β is valid;

• (xβ = 0), if β is unsatisfiable;

• (xβ ≥ 0), if β is satisfiable (we do not need to repeat the valid formulas here),

for all β ∈ atbV (ϕ); and

• (xβi =
∑

β∈atbV (βi:ϕ)
xβ), for all 1 ≤ i ≤ k;
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• (
∑

β∈atbV (ϕ) xβ = 1).

From Lemma 3.2.3, needed for deriving, we have that ∆p
S
⊢RCF ∆

Σ
ϕ . Consider the set

∆ϕ ⊂ ∆p
S

of all formulas of ∆p
S

necessary to derive the formulas of ∆Σ
ϕ , in addition

to all formulas ϕr(xr), for xr ∈ V aralg(ϕ). The set ∆ϕ is clearly finite since ∆Σ
ϕ and

V aralg(ϕ) are finite. Now, we need to prove that ∆p
S

�RCF ϕ iff ∆ϕ �RCF ϕ.

(←) Assume ∆ϕ �RCF ϕ. Let γ ∈ RXp be an assignment, such that γ ∈Mod(∆p
S
).

Hence, γ RCF ∆ϕ. And, therefore, γ RCF ϕ.

(→) Now, assume ∆p
S

�RCF ϕ. Let γ be an assignment such that γ RCF ∆ϕ.
By Lemma 3.2.4, γ RCF ∆Σ

ϕ since ∆ϕ �RCF ∆Σ
ϕ . Let Mϕ ⊂ M be a finite subset

containing one and only one model for each satisfiable formula β ∈ atbV (ϕ). And
consider the probability distribution mϕ,γ = 〈Mϕ,Pγ〉 (see Remark 3.1.11), where
if mβ ∈Mϕ is the model of β, then Pγ(mβ) = γ(xβ). Now, consider the assignment
h∗(mϕ,γ) = γmϕ,γ

induced by mϕ,γ. Clearly, γmϕ,γ
(x) = γ(x), for all x ∈ V arL(ϕ) ∪

V aralg(ϕ). Although, we need to have agreement in all variables of ϕ. For that
purpose, we define the assignment γ′, such that

γ′(x) =

{

γmϕ
(x) if x ∈ XL ∪Xalg;

γ(x) otherwise .

Now, we have that γ RCF ϕ iff γ′ RCF ϕ since h∗(mϕ,γ) = γmϕ,γ
RCF ∆p

S
, and γ′

and γmϕ,γ
are identical over XL ∪ Xalg, which are all the free variables present in

∆p
S

, we conclude that γ′ RCF ∆
p
S

. And by the initial assumption we have γ′ RCF ϕ.
Therefore, γ RCF ϕ, and we conclude that ∆ϕ �RCF ϕ. Moreover, since ∆Σ

ϕ = ∆Σ
(¬ϕ),

we have that ∆ϕ = ∆(¬ϕ) as well.

From the above result we can extract the following important corollaries.

Corollary 3.2.11. For all ϕ ∈ LRCF(Xp), ∆
p
S

�RCF ϕ iff ∆Σ
ϕ �RCF ϕ, and ∆Σ

¬ϕ = ∆Σ
ϕ .

Corollary 3.2.12. For every ϕ ∈ LRCF(Xp), ϕ has a model in Mod(∆p
S
) iff (ϕ∧∆Σ

ϕ)

has a model in RXp .

We are now able to establish the first main result of this section.

Theorem 3.2.13. Let S be a compact and small satisfaction system. The axiom-

atization
AX

p
S

def
= h−1

p (AXRCF +∆p
S
)

is a sound and weakly complete axiomatization for S p.
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Proof. From Theorem 2.3.9, we conclude that AXRCF + ∆p
S

is a weakly complete
axiomatization for the induced subsystem (SRCF(Xp))hp. Now, we can apply The-
orem 2.3.15 because hp is finitary and ∆p

S
-conservative. Therefore, we have that

h−1
p (AXRCF +∆p

S
) is a weakly complete and sound axiomatization for S p.

The limitations imposed to S , being small and compact, can be lifted if we
transform hp into a weak morphism.

Consider the map hwp : S p → SRCF(Xp), such that h
w

p = hp, and hwp (ϕ, γ) =
mhp(ϕ),γ

as defined in Proposition 3.2.10, for all ϕ ∈ Lp and γ ∈ RXp.

Proposition 3.2.14. The map hwp : Sp → SRCF(Xp) is a finitary and ∆p
S

-conservative

weak morphism of satisfaction systems.

Proof. Let γ ∈ Mod(∆p
S
) and ϕ ∈ Lp. From the above definitions we have

[[
∫

β]]hwp (ϕ,γ) = γ(xβ), for all β ∈ atb(ϕ). Hence, by applying induction on subfor-

mulas of ϕ, we have that hwp (ϕ, γ) 
p ϕ iff γ RCF h

w

p (ϕ), and, therefore, hwp is a
∆p

S
-exhaustive weak morphism. Let h∗ :Mp → Mod(∆p

S
) be the map introduced

in Proposition 3.2.9. So, for every model m ∈Mp and formula ϕ ∈ Lp,

[[
∫

β]]hwp (ϕ,h∗(m)) = γm(xβ) = [[β]]m,

for all β ∈ atb(ϕ). Thus, m 
p ϕ iff hwp (ϕ, h

∗(m)) p ϕ. Now, hwp (ϕ, h
∗(m)) p ϕ iff

h∗(m) RCF h
w

p (ϕ). Hence, if ∆p
S

�RCF h
w

p (ϕ), then ϕ is valid, and we conclude that
the morphism is ∆p

S
-conservative. Finally, the proof of Proposition 3.2.10 can be

adapted to prove that the morphism is finitary in a straightforward manner.

Since we are just looking for a weakly complete axiomatization for S p, the weak
morphism hwp is able to establish it more generally.

Theorem 3.2.15. Let S be a satisfaction system. The axiomatization

AX
p
S

def
= h−1

p (AXRCF +∆p
S
)

is a weakly complete and sound axiomatization for S
p.

Proof. It is a direct consequence of Theorem 2.3.15.
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Although this last result makes the previous Theorem 3.2.13 unnecessary, to-
gether they show that the lack of (strong) completeness for S p might come from
two sources. The first source, with S small and compact, comes from the inexis-
tence of a (strong) complete Hilbert calculus for SRCF(Xp). The second, comes from
the limitation created by the weak morphism. We also remark that the impossibility
for RCF formulas in S p(Xp) to express σ-additivity is a crucial limitation.

3.3 Satisfiability

Clearly, the satisfaction problem for S p can now be solve by the following result.

Theorem 3.3.1. The formula ϕ ∈ Lp has a model iff (hp(ϕ) ∧∆Σ
ϕ) has a model.

Proof. It is a direct consequence of Corollary 3.2.12.

We say that a satisfaction system S is decidable if its subset of valid formulas
(of L) is decidable.

Corollary 3.3.2. If S is decidable, then S p is decidable.

Here, we notice that, relatively to the size of ϕ, the size of hp(ϕ) is linear, but
the size of ∆Σ

ϕ is exponential. Furthermore, we remark that all formulas involved in
the previous theorem, the set {hp(ϕ)} ∪ ∆Σ

ϕ , belong to the existential fragment of
LRCF(Xp). And this fact will be fundamental to establish the complexity in the next
theorem.

Let ϕ be a formula of Lp. Given a set Γ ⊆ atb(ϕ), we denote by ∆Σ
ϕ(Γ) ⊂

LRCF(Xp) the set of formulas obtained from ∆Σ
ϕ by

• removing all formulas where the only variable is xβ, and

• setting xβ to zero in all the other formulas,

where xβ run over all β ∈ atb(ϕ), such that β 6∈ Γ. 1 The next lemma shows that
this construction is correct, in the sense that it reflects satisfiability.

1To comply with the notation we should have written ∆Σ
h(ϕ)

instead of ∆Σ
ϕ , but no confusion

arises from this simplification.
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Lemma 3.3.3. Let Γ ⊆ atb(ϕ) be a set containing a satisfiable formula. Then, ∆Σ
ϕ

has a model whenever ∆Σ
ϕ(Γ) has a model.

Proof. Let Γ ⊆ atb(ϕ) contain a satisfiable formula. We have two cases to consider.
First, if Γ contains a valid formula, say β, then this is the only satisfiable formula
in atb(ϕ). Therefore, (xβ = 1) and (xβ′ = 0) belong to ∆Σ

ϕ(Γ), for all β ′ ∈ Γ such
that β ′ 6= β. And a model of ∆Σ

ϕ(Γ), say γ : Xp → R, must assign xβ to 1 and zero
to all the other variables (from formulas of Γ). Therefore, γ can be transformed in
a model of ∆Σ

ϕ by setting all the variables (of formulas in atb(ϕ) \ Γ) to zero. The
second case, is when Γ does not contain a valid formula. Hence, ∆Σ

ϕ(Γ) does not
have any formula of the form (xβ = 1) and neither does ∆Σ

ϕ , for β ∈ atb(ϕ). Since Γ
contains a satisfiable formula, say β ∈ Γ, then (xβ = 0) does not appear in ∆Σ

ϕ(Γ).
Let γ : Xp → R be a model of ∆Σ

ϕ(Γ). Again, we can transform γ into a model of
∆Σ
ϕ by setting to zero all the variables of formulas in atb(ϕ) \ Γ.

We are now prepared to present a SAT algorithm for S p, that makes use of the
SAT procedure for S . Given a formula ϕ ∈ Lp, the steps of Algorithm 1 are the
following.

(line 1) – We try to find a model for each molecule ψ of ϕ.

(line 2) – By the small–model Theorem 3.1.12 for S p, it is enough to browse
for models of size k + 1, where k = |bf(ϕ)|.

(line 4–6) – We apply SatS over all formulas of Γ ⊆ atb(ϕ) to get a state space
M for the model.

(line 8–12) – If M is not empty, then we try to get a suitable probability
distribution over M (a model for ϕ).

(line 9) – We translate ϕ to the corespondent hp(ϕ) in LRCF(Xp).

(line 10) – We built ∆Σ
ϕ(Γ) directly just by using the results of line 5,

without explicitly having ∆Σ
ϕ . And this is crucial to keep the space used

polynomially bounded.

(line 11) – We throw (hp(ϕ)∧∆Σ
ϕ(Γ)) (an existential formula) to the solver

SatRCF.

(line 12) – If SatRCF returns assignment η, then the Algorithm returns
〈M,Pη〉, where Pη(m) = η(xβm), for all m ∈M .
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(line 16) – At this step the algorithm stops and returns ∅ (no model).

Algorithm 1: Satp
S
(ϕ)

Input: formula ϕ ∈ Lp
Output: m = 〈M,P〉 (m 

p ϕ) or ∅ (No Model)
1 foreach ψ molecule of ϕ do
2 foreach Γ ⊆ atb(ϕ) of size ≤ Size(ψ) do
3 M = ∅;
4 foreach β ∈ Γ do
5 mβ ←− SatS (β);
6 M =M ∪ {mβ};
7 end
8 if M 6= ∅ then

9 φ←− hp(ψ);
10 ψ ←− φ ∧∆Σ

φ (Γ);
11 η ←− SatRCF(ψ);
12 if η 6= ∅ then return m = 〈M,Pη〉;
13 end

14 end

15 end
16 return ∅ (No Model);

Theorem 3.3.4. Algorithm 1 for the satisfaction problem for S p in at least PSPACE,

and a witness (model) is obtained in at least EXPSPACE.

Proof. First, we need to prove that the algorithm is sound, i.e. if Satp
S
(ϕ) returns

a pair 〈M,Pη〉, then 〈M,Pη〉 p ϕ. This is clearly true from Theorem 3.3.1 and
Lemma 3.3.3. Second, the algorithm is also complete, i.e if Satp

S
(ϕ) returns ∅ (no

model), then ϕ is unsatisfiable. Suppose ϕ has a model, then by the small–model
theorem (Theorem 3.1.12) and its Corollary 3.1.13, it has a model 〈M,P〉 such that
M is constituted by models of formulas of atb(ϕ). Therefore, a set Γ ⊆ atb(ϕ) must
exist, of size at least size(ϕ), such that M must be obtained eventually in lines 4–6,
using such Γ. Now, for β ∈ atb(ϕ) \ Γ and m ∈ M we have that m 6 β (since m
must be the model of another formula in Γ ⊂ atb(ϕ) and such formulas do not share
models). Hence, [[

∫

β]]〈M,P〉 = 0, for all β ∈ atb(ϕ) \ Γ. And the assignment γ〈M,P〉

(see Lemma 3.2.8) must be a model of ∆Σ
ϕ(Γ). Therefore, the algorithm will return

the model 〈M,Pγ〈M,P〉
〉 if another is not returned before. With the exception of lines
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5 and 11 all others are PSPACE. We remark that the formula (hp(ϕ) ∧ ∆Σ
ϕ(Γ)) is

an existential formula. Thus, the complexity of step 11 is PSPACE (in the size of
the ϕ) if the goal is to determined whether ϕ is or not satisfiable. On the other
hand, the complexity of step 11 is EXPSPACE if the goal is to obtain a model that
satisfies formula ϕ.

The complexity of line 5 depends on the time/space complexity of SatS and the
worst possible size for mβ, with β ∈ atb(ϕ). When S has a small–model property,
we might be able to work within SatS to yield “small” models. Moreover, if we want
from Satp

S
just a “yes-no” output, and SatS can also return “yes-no” answers, then

we do not need to store (being satisfiable) the models mβ, but just its associated
formula β. And the algorithm can proceed since the models are not ever needed.

3.4 Model-checking algorithm

The solution to the model-checking problem for S p must be based on the model-
checking procedure for S . In Algorithm 2, we present a generic procedure to model
check in S p.

Algorithm 2: ModelCheck(m,ϕ)

Input: model m = 〈M,P〉 ∈ Mp and formula ϕ ∈ Lp
Output: boolean value m 

p ϕ

1 forall the β ∈ bf(ϕ) do
2 [[

∫

β]]m =
∑

m∈M :mβ P(m)

3 end
4 forall the subformulas ψ ∈ sf(ϕ) do
5 switch ψ do
6 case (t1 < t2) : m 

p (t1 < t2) if [[t1]]m < [[t2]]m;
7 case (∼ψ1) : m 

p (∼ψ1) if m 6p ψ1;
8 case (ψ1 = ψ2) : m 

p (ψ1 = ψ2) if m 6p ψ1 or m 
p ψ2;

9 endsw

10 end

This algorithm calls a polynomial number of times (in the sizes of formula ϕ and
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set M) the model checker for the base system S , at line 2. And these calls can be
made in a way that we do not need to repeat them for each formula β ∈ bf(ϕ).

Theorem 3.4.1. The model-checking problem for S p can be solved by Algorithm 2

with O(size(ϕ)× size(M)) calls of the model-checking procedure for S .

3.5 Adding globalization

In [MSS05] the enrichment includes a non-probabilistic global fragment. Let S

be a satisfaction system. The models m ∈Mp have all the necessary ingredients to
define the semantics of the formulas Lg. Therefore, we can “merge” the two systems,
S

g and S
p, and obtain the satisfaction system:

S
(p+g) = 〈L(p+g),Mp,(p+g)〉

such that

• L(p+g) is given by

t ::= r 8
∫

β 8 (t+ t) 8 (t.t)

ϕ ::= [β] 8 (t < t) 8 (∼ϕ) 8 (ϕ = ϕ)

with β ∈ L and r ∈ Alg(R);

• Mp as in S p;

• 
(p+g) is defined by

– m 
(p+g) [β] iff V (S)  β;

– m 
(p+g) (t1 < t2) iff [[t1]]m < [[t2]]m;

– m 
(p+g) (∼ϕ) iff m 6(p+g) ϕ;

– m 
(p+g) (ϕ1 = ϕ2) iff m 6(p+g) ϕ1 or m 

(p+g) ϕ2,

for m ∈Mp and ϕ ∈ L(p+g).
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Let ϕ ∈ L(p+g). Consider the set bf(ϕ) of all base formulas β, in which [β] or
∫

β appear in ϕ, and the set ΓSAT ⊆ atb(ϕ) of all satisfiable formulas. Moreover,
consider the set

M(ΓSAT )
def
= {mβ ∈M : β ∈ ΓSAT , mβ  β},

containing one and only one model for every formula β ∈ ΓSAT . Clearly, for every
β ∈ ΓSAT , we have that mβ 6 β ′, for all β ′ 6= β, with β ′ ∈ ΓSAT .

Given a global model 〈S, V 〉, we can consider it just as a set of models 〈V (S)〉,
and vice versa.

Proposition 3.5.1. (Finite-model property) If ϕ ∈ Lg has a model in Mg, then it

has a model 〈S, V 〉 such that V (S) ⊆M(ΓSAT ).

Proof. Let ϕ be a satisfiable formula of Lg, and 〈S, V : S →M〉 a global model,
such that 〈S, V 〉 g ϕ. And let bf(ϕ) = {β1, . . . , βk}. Then, for every m ∈ V (S),
let Am = {1 ≤ i ≤ k : m  βi}, and

ψAm
= (∧β∈Am

β) ∧ (∧β 6∈Am
β) ∈ atb(ϕ).

Hence, m  ψAm
. Now, for each m ∈ V (S) there is m′ ∈ M(ΓSAT ), such that

Am = Am′ . Let M be that set containing all such elements. Consider the global
model 〈M, idM〉. Therefore, it is clear that 〈M, idM〉 g ϕ since V (S) and M are
equivalent over bf(ϕ).

Corollary 3.5.2. If S is decidable, then S g is decidable.

Proof. Let ϕ ∈ Lg. After applying a finite number of times the SAT algorithm of
S , we obtain the set M(ΓSAT ). Then, we can run through all the global models
M ⊆M(ΓSAT ) and test the satisfiability of ϕ. As a result, if no model is found, by
Proposition 3.5.1 there is no model, and the formula is unsatisfiable.

Now, from Proposition 3.5.1 and Corollary 3.1.13, if ϕg ∈ Lg has a model, then it
has a model 〈M〉, such that M ⊆M(ΓSAT ); and, similarly, if ϕp ∈ Lp is satisfiable,
then it has a model 〈M ′,P〉, such that M ′ ⊆M(ΓSAT ).

Let ϕg ∈ Lg, ϕp ∈ Lp, and let ΓN be the subset of ΓSAT of formulas β, such that
�
g (ϕg = [¬β]). Hence,

�
g (ϕg = (⊓β∈ΓN

[¬β])). (3.5)
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To simplify, we will write ψg = (⊓β∈ΓN
[¬β]) and ψp = (⊓β∈ΓN

(
∫

β = 0)). We
have the following result.

Lemma 3.5.3. If ϕg ∈ Lg is satisfiable, then 〈M(ΓSAT ) \M(ΓN )〉 is a model of ϕg.

Proof. If ϕg is satisfiable, then it has a model 〈M〉, such that M ⊆ M(ΓSAT ). By
propositional reasoning, there is a molecule ϕ′ of ϕg, which 〈M〉 g ϕ′. Therefore,
for each β ∈ bf(ϕg), in which [β] occurs positively in ϕ′, m  β, for all m ∈ M .
And if β ∈ bf(ϕg), and [β] occurs negatively in ϕ′, then there is m ∈ M , such that
m  ¬β. Let mβ ∈ M , for some β ∈ ΓSAT . So, (ϕg = [¬β]) is not valid, and
mβ 6∈M(ΓN ). Hence, M ⊆M(ΓSAT ) \M(ΓN ).

Now, let mβ ∈M(ΓSAT ) \M(ΓN ), for some β ∈ ΓSAT . Suppose 〈M ∪ {mβ}〉 6g

ϕ′. So, it must be because mβ does not satisfy one of the formulas β ′ ∈ bf(ϕg),
that occurs positively in ϕ′. So, β ′ must appear negated in β, and we have that
([β ′] = [¬β]) is valid. However, this is a contradiction of the fact that mβ 6∈M(ΓN ),
and we conclude that 〈M ∪ {mβ}〉 is a model of ϕ′. Therefore, 〈M(ΓSAT ) \M(ΓN )〉
is a model of ϕ′ and, consequently, also of ϕ.

A preservation of strong completeness was proved in [Gon08] (see Theorem 2.2.4).
Herein we prove a preservation result for weak completeness, through the construc-
tion AX

g
S

presented in Section 2.2. As expected, we denote by ⊢ and ⊢g the conse-
quence relations defined by AXS and AX

g
S

, respectively.

Theorem 3.5.4. If AXS is a weakly complete axiomatization for S , then AX
g
S

is

a weakly complete axiomatization for S g.

Proof. The soundness of AX
g
S

comes from the proof of soundness of Proposition
2.2.4. To prove completeness we will verify that S g is weakly Henkin–complete.
Let ϕ ∈ Lg be a formula without a model in Mg. Then, none of its molecules has
a model. Hence, from propositional reasoning it is enough to prove that ⊢g (∼ψ),
for each molecule ψ of ϕ. Let ψ be a molecule of ϕ, and A ⊆ bf(ϕ) the set of all
formulas β, such that [β] occurs positively in ψ (and by Ac we denote the set of
formulas that occur negated).

ψ = (⊓β∈A[β]) ⊓ (⊓β∈Ac∼[β])

We consider two cases.
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(a) Ac is the empty set. Then, ψ has a model iff (∧β∈Aβ) has model. Hence, from
the weakly completeness of AXS , we have ⊢ (¬(∧β∈Aβ)) since ψ does not have
a model. And we have the following derivation:

1. ⊢g [¬(∧β∈Aβ)] by Proposition 2.2.3

2. ⊢g [¬(∧β∈Aβ)] = (∼[∧β∈Aβ]) from (3) of Table 2.1;

3. ⊢g [∧β∈Aβ]≡ (⊓β∈A[β]) from (1) of Table 2.1;

4. ⊢g (∼ψ) by propositional reasoning.

(b) Ac is not empty, say Ac = {β1, . . . , βk}, with k ≥ 1. Then, ψ has model if and
only if all the following formulas are satisfiable:

– (∧β∈Aβ) ∧ (¬β1);
– (∧β∈Aβ) ∧ (¬β2);

–
...

– (∧β∈Aβ) ∧ (¬βk);

Since ψ does not have a model, one of the above formulas is unsatisfiable, say
(∧β∈Aβ) ∧ (¬β1). Therefore, we can derive, in AX

g
S

, the formulas:

1. ⊢g [¬((∧β∈Aβ) ∧ (¬β1))] by Proposition 2.2.3

2. ⊢g [¬((∧β∈Aβ) ∧ (¬β1))] = (∼[∧β∈Aβ] ⊔ [β1]) from (3) of Table 2.1;

3. ⊢g (∼[∧β∈Aβ]⊔ [β1]) = (∼[∧β∈Aβ]⊔ [β1]⊔ . . .⊔ [βk]) by propositional
reasoning;

4. ⊢g (∼[∧β∈Aβ] ⊔ [β1] ⊔ . . . ⊔ [βk]) = (∼ψ) by propositional reasoning;

5. ⊢g (∼ψ) by propositional reasoning.

As a result, we conclude that AXg
S

is weakly complete for S g.

This last result gives the weakly completeness transformation, but also a bound
in size of global models.

Corollary 3.5.5. (Small-model theorem) If ϕ ∈ Lg is satisfiable, then it has a model

〈M〉 with |M | ≤ size(ϕ).
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Proof. In the proof of Theorem 3.5.4, it is clear that a satisfiable molecule ψ of a
formula ϕ ∈ Lg has at least one model of size not bigger than |bf(ϕ)|.

We proceed by proving two lemmas necessary to address the transference of
satisfiability. These lemmas are fundamental to establish the bridge between the
global and the probabilistic validity.

Lemma 3.5.6. The following formulas are valid in S (p+g):

1. ([β] = (
∫

β = 1));

2. ([¬β] = (
∫

β = 0));

3. ((
∫

β > 0) = ∼[¬β]).

Proof. 1. Let m ∈ Mp, such that m 
(p+g) [β]. Hence, V (S)  β and V −1[β] = S.

2. It yields from (1) using equation eqN. 3. It is the contrapositive of (2).

Lemma 3.5.7. The formula (ψg = ψp) is valid in S (p+g).

Proof. It follows from Lemma 3.5.6 and propositional reasoning.

At this point, we can state and prove the result than enables the satisfaction
problem for S (p+g) to be solved by solving satisfaction problems in S g and S p.

Proposition 3.5.8. The formula (ϕg⊓ϕp) ∈ L(p+g), such that ϕg ∈ Lg and ϕp ∈ Lp,
is satisfiable iff ϕg is satisfiable and (ϕp ⊓ ψp) is satisfiable.

Proof. (→) Let m ∈ Mp be a model of (ϕg ⊓ ϕp), with m = 〈S,F ,P, V 〉. Hence,
m 

(p+g) ϕg and m 
(p+g) ϕp. Clearly, we have that

m 
(p+g) ϕg iff mg

def
= 〈S, V 〉 g ϕg.

Since (ϕg = ψg) and (ψg = ψp) are valid, we have also that m 
(p+g) ψp.

(←) Assume that the formulas ϕg and (ϕp⊓ψp) are satisfiable. Hence, by Lemma
3.5.3, 〈M(ΓSAT ) \M(ΓN )〉 is also a model of ϕg. Now, (ϕp⊓ψp) must have a model
m = 〈M,P〉, such that M ⊆M(ΓSAT ). Hence, from the fact that m satisfies ψp, we
have that [[

∫

β]]m = 0, for all β ∈ ΓN . So, P(mβ) = 0, for all β ∈ ΓN . This means
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that we can remove all the models M(ΓN ) from M and preserve the satisfiability,
i.e m′ = 〈M \M(ΓN ),P

′〉 p (ϕp ⊓ ψp), where P′ is the restriction of P. Now, we
can extended m′ to a model m′′ = 〈M(ΓSAT ) \M(ΓN),P

′′〉 by assigning probability
zero to all new added models, i.e.

P′′(m) =

{

P′(m) if m ∈M ,

0 otherwise

for all m ∈M(ΓSAT ) \M(ΓN ). Therefore, m′′


(p+g) (ϕg ⊓ ϕp).

This results give us a way to solve the satisfaction problem for S
(p+g).

Corollary 3.5.9. If S is decidable, then S (p+g) is decidable.

Proof. Let ϕ be a formula of L(p+g), and consider a molecule ϕ′ of its disjunctive
normal form. Clearly, ϕ′ can be written as (ϕg ⊓ ϕp), for ϕg ∈ Lg and ϕp ∈ Lp.
From the decidability of S we have the decidability of S

g and S
p (Corollary

3.3.2 and Corollary 3.5.2). Now, by Proposition 3.5.8 we conclude that S (p+g) is
decidable.

Another important consequence of the proof of the last Proposition 3.5.8 is that
it gives a bound to the size of the model.

Corollary 3.5.10. (Small-model property) If ϕ ∈ L(p+g) is satisfiable, then it has a

model with 2× Size(ϕ).

Proof. In the second part of the proof of Proposition 3.5.8, it is showed that we
can “merge” the global model (for the global fragment ϕg) and the probabilistic
model (for the probabilistic fragment ϕp). Since both are bounded by Size(ϕ), the
resulting model is bounded by 2× Size(ϕ).

The transference of weakly completeness arises naturally from the above SAT
procedure.

Theorem 3.5.11. Consider the schema axiom

IN ([β] = (
∫

β = 1)).
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If S has a weakly complete axiomatization AXS , then

AX
(p+g)
S

def
= AX

p
S
+ AX

g
S
+ IN

is a weakly complete axiomatization for S (p+g).

Proof. Let AXS be a weakly complete axiomatization for S . From Theorems 3.5.4
and 3.2.15, we have weakly complete axiomatizations AX

g
S

and AX
p
S

, for S
g and

S p, respectively. Since AX
g
S

and AX
p
S

are contained in AX
(p+g)
S

, everything deriv-
able in one of them is also derivable in AX

(p+g)
S

. The soundness of AX(p+g)
S

yields
from the soundness of AXp

S
, AXg

S
, and from the validity of the schema axiom IN,

proved in Lemma 3.5.6. Regarding weakly completeness, we will prove that S (p+g)

is weakly–Henkin complete, i.e every consistent formulas is satisfiable. Let ϕ be
formula and ⊔ki=1ϕi be its disjunctive normal form. If ϕ does not have a model, then
every ϕi = (ϕi,g ⊓ ϕi,p) is also unsatisfiable. From Proposition 3.5.8, ϕi,g must not
have a model or (ϕi,p ⊓ ψi,p) does not have a model. Now, if ϕi,g is unsatisfiable,
then ⊢g (∼ϕi,g), and therefore ⊢(p+g) (∼(ϕi,g ⊓ ϕi,p)) = ∼ϕi. On one hand, it could
be the case that ϕi,p is unsatisfiable, and then ⊢p (∼(ϕi,g ⊓ ϕi,p)) = ∼ϕi. On the
other hand, if ϕi,p is satisfiable and (ϕi,p ⊓ ψi,p) is unsatisfiable, then 6⊢p (∼ϕi,p)
and ⊢p ∼(ϕi,p ⊓ ψi,p). Now, by propositional reasoning and using Axiom IN, we
have that ⊢(p+g) (∼ψi,p) = (∼ψi,g). By weakly completeness of AX

g
S

, we also
have ⊢(p+g) (∼ψi,g = ∼ϕi,g). Again by propositional reasoning we conclude that
⊢(p+g) (∼ϕi,p ⊔∼ϕi,g) = ∼ϕi. Thus, we have ⊢(p+g) ∼ϕi if ϕ does not have a model,
for all i = 1, . . . , k. Therefore, ⊢(p+g) (∼ϕ).

Algorithm 3 below aims at solving the satisfaction problem for S (p+g). The
correctness of the algorithm follows from Proposition 3.5.8.

Given a formula ϕ ∈ L(p+g), Algorithm 3 executes the following sequence of
actions.

(line 1) – We try to satisfy one of the molecules ϕi of ϕ.

(line 2) – By the small–model property (Corollary 3.5.10), it is enough to
search for models of 2× Size(ϕ).

(line 4–6) – We apply SatS to all formulas of Γ to obtain a state space M .
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(line 8–11) – If M is not empty and M is a model of ϕi,g, then we verify if
(ϕi,p⊓ψi,p) has a model in S p, by the same steps as in Satp

S
, and return that

model if found.

(line 17) – The algorithm returns ∅ (no model) and stops.

Algorithm 3: Sat
(p+g)
S

(ϕ)

Input: formula ϕ ∈ L(p+g)

Output: m = 〈M,P〉 (m 
(p+g) ϕ) or ∅ (No Model)

1 foreach ϕi = (ϕi,g ⊓ ϕi,p) molecule of ϕ do
2 foreach Γ ⊆ atb(ϕ) of size ≤ 2× Size(ϕi) do
3 M = ∅;
4 foreach β ∈ Γ do
5 mβ ←− SatS (β);
6 M =M ∪ {mβ};
7 end
8 if M 6= ∅ and M 

g ϕi,g then

9 φ←− hp(ϕi,p ⊓ ψi,p);
10 δ ←− φ ∧∆Σ

φ (Γ);
11 η ←− SatRCF(δ);
12 if η 6= ∅ then return m = 〈M,Pη〉;
13 end

14 end

15 end
16 return ∅ (No Model);

The next result states the correctness of Algorithm 3.

Theorem 3.5.12. The Algorithm 3 solves the satisfaction problem for S (p+g), at

least in PSPACE, and provides a witness (model) at least in EXPSPACE.

Proof. Clearly, the soundness and completeness of the algorithm is ensured by
Proposition 3.5.8 and Corollary 3.5.10. Once more, the bound at line 2 on the
size of Γ keeps all other lines polynomial, maybe with exception of line 5 and 9.
Hence, the complexity of SatRCF establishes the lower bound for the complexity of
the algorithm. Since (φ ∧ ∆Σ

φ (Γ)) is an existential formula, the complexity of step
11 is PSPACE (in the size of the ϕ) if the goal is to determined whether ϕ is or not
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satisfiable. On the other hand, the complexity of step 11 is EXPSPACE if the goal
is to obtain a model that satisfies formula ϕ.

3.6 Towards quantization

In [MS04a, MS04b, MS06, CMSS06] the process of probabilization of a logic sys-
tem is viewed as an intermediate step towards quantization, where the base system is
enriched with quantum features. This process is similar to the one used in Definition
3.1.1, but the language is extended to include reasoning over complex amplitudes
of (pure) quantum states. In this section, we study the probabilistic fragment of
quantization [CMSS06].

Given a satisfaction system S = 〈L,M,〉 we define the quantization operator
(plus globalization) of S as the system

S
(q+g) = 〈L(q+g),Mq,(p+g)〉

where:

• L(q+g) is given by

t ::= r 8
∫

β 8 (t+ t) 8 (t.t)

ϕ ::= [β] 8 (t < t) 8 (∼ϕ) 8 (ϕ = ϕ)

with β ∈ L and r ∈ Alg(R);

• Mq is the class of tuples m = 〈S, ρ, V 〉, such that

– S is a finite set (of base states);

– ρ is a quantum state (density operator) on H(S) = ℓ2(S) (the Hilbert
space isomorphic to C|S|);

– V : S →M assigns a model to each base state of S, and V −1[β]
def
= {s ∈

S : V (s)  β};

• 
(q+g) is defined by

– [[r]]m = r;
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– [[
∫

β]]m = tr(Pβρ), with Pβ =
∑

s∈V −1[β] |s〉〈s| the projection onto V −1[β];

– [[t1 + t2]]m = [[t1]]m + [[t2]]m;

– [[t1.t2]]m = [[t1]]m.[[t2]]m;

– m 
(q+g) [β] iff V (S)  β;

– m 
(q+g) (t1 < t2) iff [[t1]]m < [[t2]]m;

– m 
(q+g) (∼ϕ) iff m 6(p+g) ϕ;

– m 
(q+g) (ϕ1 = ϕ2) iff m 6(p+g) ϕ1 or m 

(p+g) ϕ2,

for m ∈Mq and ϕ ∈ L(q+g).

Proposition 3.6.1. Let S be a satisfaction system. Then, S (p+g) ≅w
S S (q+g).

Proof. The family of projections {Pβ : β ∈ L} is commutative and generates a
commutative ∗–algebra A of operators on H(S). So, we can identify a tuple m =
〈S, ρ, V 〉 with the quantum probability space Qm = 〈H(S),A ,Qρ〉 (see Section A.2).
Now, by the spectral Theorem A.2.8, to the quantum space Qm we can associate
the probability space Pm = 〈S, 2Ω,Pρ〉, such that, for all A ⊆ S, Pρ(A) = Qρ(A) =
tr(PAρ), where PA is the projection onto A.

Consider the total map h1 : S (p+g) → S (q+g) such that

• h1 : L(p+g) → L(q+g) is the identity map (since L(p+g) = L(q+g));

• h1 : Mq → Mp transforms the tuple m = 〈S, ρ, V 〉 into the tuple h1(m) =
〈S, 2S,Pρ, V 〉, where 〈S, 2S,Pρ〉 is the probability space given by the spectral
Theorem A.2.8.

To prove that h1 is a morphism of satisfaction systems we proceed by induction on
ϕ ∈ L(q+g). First, for global atoms [β] we have that

m 
(q+g) [β] iff V (S)  β iff h1(m) (p+g) [β], (3.6)

for all β ∈ L. Now, for the denotation of terms
∫

β we have that

[[
∫

β]]m = tr(Pβρ) = Qρ(Pβ) = Pρ(V
−1[β]) = [[

∫

β]]h1(m), (3.7)
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for all β ∈ L. Clearly, from Equation 3.7 we infer that m and h1(m) agree on all
terms and, thus, must agree also in the satisfaction of atomic inequations. The
cases for negation (∼) and implication (=) are straightforward, and we conclude the
verification that h1 is a total morphism.

Now, to a finite probability distribution m = 〈S,P〉 we can associate the induced
quantum probability space Qm = 〈H(S),M(|S|,C),QP〉, given by the construction
of Example A.2.7. From [Gle57], it must exist a quantum state (density matrix)
ρm on H(S), such that QP(A) = tr(Aρm), for A ∈ M(|S|,C). Hence, to m we can
associate the quantum state ρm, and

P(A) = QP(PA) = tr(PAρm) for all A ⊆ S. (3.8)

Moreover, for each m ∈ Mp and ϕ ∈ L(p+g) we can use a similar (quotient)
construction to the one used in Proposition 3.1.10 (where bf(ϕ) now includes also the
base formulas from global atoms) to obtained a model mϕ over a finite probability
space. And such that mϕ 

(p+g) ψ iff m 
(p+g) ψ, for all ψ ∈ sf(ϕ), with ψ,

ϕ ∈ L(q+g).

Next, consider the total (weak) map h2 : S (q+g) → S (p+g) such that

• h2 : L(q+g) → L(p+g) is the identity;

• h2 : L(q+g) × Mp → Mq assigns to each ϕ ∈ L(q+g) and m ∈ M the tu-
ple h2(ϕ,m) = 〈S, ρ, V 〉, such that given the finite distribution mϕ = 〈S,P〉
(obtained from the process described above), ρ is the quantum state (density
matrix) induced by mϕ.

We need to prove that h2(ϕ,m) 
(q+g) ϕ iff m 

(p+g) ϕ, for all m ∈ Mp and
ϕ ∈ L(q+g). From Equation 3.8 we conclude that m and h2(ϕ,m) satisfy the same
atomic inequations of iq(ϕ). From the construction of mϕ, we know that

m 
(p+g) [β] iff mϕ 

(p+g) [β] iff V (S)  β iff h2(ϕ,m) (q+g) [β],

(where mϕ = 〈S,P〉) for all [β] ∈ sf(ϕ). Hence, by simple induction on negation
(∼) and implication (=), we have that

mϕ 
(p+g) ψ iff h2(ϕ,m) (q+g) ψ, for all ψ ∈ sf(ϕ). (3.9)

Therefore, in particular, m 
(p+g) ϕ iff mϕ 

(p+g) ϕ iff h2(ϕ,m) 
(q+g) ϕ, and for

this reason h2 is a total weak morphism. Therefore, S (p+g) ≅w
S S (q+g).
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We can now capitalize the axiomatization for AX
(p+g)
S

obtained in Theorem
3.5.11.

Theorem 3.6.2. Let S be a satisfaction system. Then, AX(p+g)
S

is a weakly com-

plete and sound axiomatization for S (q+g).

Proof. It is a straightforward corollary of Proposition 3.6.1 and Theorem 3.5.11.

3.7 Remarks

In Section 3.1 we establish the fundamental framework to study the exogenous
probabilization of a satisfaction system S , and prove several technical results. The
main tool introduced is a generic translation to the theory of real closed fields, RCF,
of the formulas Lp obtained with the probabilization. With this translation, we are
able to prove that the system S

p is essentially (weakly) equivalent to a sub-theory
∆p

S
of RCF. Then, supported in the axiomatization and SAT algorithm for RCF, we

are able to transfer such properties from S to S p.

The combination of probabilization and globalization is addressed in Section 3.5.
This combination provides a logic system with non-deterministic and probabilistic
features. Since the combination process preserves the probabilistic models, there is
interference between the two components. And the central problem is to character-
ized such connection.

Despite the fact that globalization is viewed as an intermediate step of prob-
abilization, their combination yields a system with two very different components
of reasoning. The probabilistic component relies strongly on RCF results, and the
global component does not. Therefore, our option was to study each operation, over
logic systems, separately and then study the combination. Moreover, the translation
of the global part to RCF imposes a technical problem that is not worth solving.

As a final remark about quantization, we point out that in [MS06, CMSS06] the
models are essentially similar to ours (pure quantum states), with the exception that
they include some extra information about how the state may be factorized. As a
consequence, and in order to use this information, the language is more expressive,
and is able to express complex amplitudes of the (pure) quantum state. We strongly
believe that we can extend the results of the previous sections to the quantum case
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[MS06]. In order to do this, we must replace RCF with the decidable FOL theory of
algebraically closed fields, which already appears in [CMS06].
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Chapter 4

Worked examples

We now present some examples to further illustrate the relevance of our re-
sults. The first example is a probabilization of CPL where we interpret the formulas
as random events. This logic extends the probabilizations of [Nil86, FHM90] by
including global reasoning, and is equivalent to the exogenous probabilization of
[MSS05]. Next, we define the probabilistic temporal logic introduced in [VW86], to
reasoning about probabilities of path-events in Markov chains. And we study it by
establishing an (weak) equivalence with the probabilization (plus globalization) of
LTL. Finally, we construct the temporalization of EPPL using the technique and the
results obtained in Chapter 2, on exogenous combination of system by morphisms.

4.1 Exogenous probabilistic propositional logic

In this example we study the logic system introduced in [MSS05]. Such logic
contains a global fragment for non-deterministic reasoning, and the exogenous prob-
abilization of CPL. The logic will be presented as in [BM09], and later showed to be
equivalent to its original version [MSS05].

Let Λ be a countable set of propositional symbols, and consider a stochastic
process X := {Xα : S → 2}α∈Λ over the probability space 〈S,F ,P〉. For each
propositional formula β ∈ LCPL(Λ) we define by induction on its structure the func-
tion Xβ : S → 2, such that

• X(¬β) = 1−Xβ;

67
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• X(β1⇒β2) = max{1 −Xβ1 , Xβ2}.

Given the above, we have the following result.

Lemma 4.1.1. For every β ∈ LCPL(Λ), Xβ : S → 2 is a random variable.

Proof. It is clearly true from the closure properties of σ-fields, and the semantics of
propositional formulas.

The exogenous probabilistic propositional logic (EPPL) over Λ, of [BM09], is the
system SEPPL(Λ) = 〈LEPPL(Λ),MEPPL,EPPL〉 where

• LEPPL(Λ) is defined by

β ::= α 8 (¬β) 8 (β⇒ β)

t ::= r 8
∫

β 8 (t+ t) 8 (t.t)

ϕ ::= [β] 8 (t < t) 8 (∼ϕ) 8 (ϕ = ϕ)

with α ∈ Λ and r ∈ Alg(R);

• MEPPL is the class of tuples m = 〈S,F ,P,X〉 such that X := {Xα : S → 2}α∈Λ
is a stochastic process over 〈S,F ,P〉 indexed by Λ;

• EPPL is defined by:

– [[r]]m = r;

– [[
∫

β]]m = P(Xβ = 1) = E(Xβ), where E means the expected value;

– [[t1 + t2]]m = [[t1]]m + [[t2]]m;

– [[t1.t2]]m = [[t1]]m.[[t2]]m;

– m EPPL [β] iff Xβ(s) = 1 for all s ∈ S;

– m EPPL (t1 < t2) iff [[t1]]m < [[t2]]m;

– m EPPL (∼ϕ) iff m 6EPPL ϕ;

– m EPPL (ϕ1 = ϕ2) iff m 6EPPL ϕ1 or m EPPL ϕ2,

for m ∈MEPPL and ϕ ∈ LEPPL(Λ).
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The set of propositional symbols can denote spatial locations, time moments or
other notions, to be illustrated by the following examples.

Example 4.1.2. A simple model is one describing the toss of two fair coins. Each

coin represents a probabilistic bit, that is, the set of propositional symbols is Λ =
{α1, α2} where random variable Xα1

models the outcome of one coin and Xα2
models

the other. The outcome of tossing the two coins is described by the probability dis-
tribution m = ({00, 01, 10, 11},P) where P(xy) = 1

4
, Xα1

(xy) = x and Xα2
(xy) = y

for all x, y ∈ {0, 1}. It is easy to see that

m EPPL (
∫

α1 = 1/2) and m EPPL (
∫

(α1⇒ α2) = 3/4).

A more complex model than Example 4.1.2 can be obtained from a probabilistic
cellular automaton.

Example 4.1.3. Let (X0, . . . , X9) be the random Boolean vector representing the

state of an one-dimension probabilistic cellular automaton with 10 cells. Assume
that the automaton starts in state 0110000101 and consider the probabilistic local
rules of the automaton as described in the Table 4.1, where

qi = P(X
(n+1)
i+1 = 0|X(n)

i−1 = xi1 , X
(n)
i = xi, X

(n)
i+1 = xi+1)

is the probability of cell Xi be zero, given that, in the previous moment in time,
its neighbors were in configuration xi−1xixi+1 (the indices i are taken mod 10), for
all i = 0, . . . , 9. It is possible to define a probability distribution representing the
probabilistic behavior of the next state of the cells.

xi−1xixi+1 qi xi−1xixi+1 qi
000 1/4 100 1/3
001 1 101 2/3
010 2/3 110 2/7
011 0 111 1/3

The index i in xi is taken module 10.

Table 4.1: Probabilistic local rules

Clearly, we have a propositional symbol describing the state of each position of
the Boolean vector, that is Λ = {α0, . . . , α9}. The sample space S is the set of all
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configurations S = 210. Given a configuration s = x0 . . . x9 ∈ S its probability is
given by P(x0 . . . x9) = q0(x0)×· · ·×q9(x9). Finally, the model representing the state
of the cells after applying the rules to state 0110000101 is given by the probability
distribution m = 〈S,P〉.

It is easy to check that

m EPPL [(α1 ∧ (¬α6))],

which captures a deterministic behavior of the cellular automaton. For a quantitative
example we have

m EPPL (
∫

(α5 ∨ α8) <
∫

(α0⇒ α5))

since [[
∫

(α5 ∨ α8)]]m < [[
∫

(α0⇒ α5)]]m corresponds to 5
6
< 11

12
. And given a configu-

ration 0111010100 we could set a bounded to its probability

(
∫

(¬α0) ∧ α2 ∧ α3 ∧ (¬α4) ∧ α5 ∧ α7 ∧ (¬α8) ∧ (¬α9) <
1

75
).

Let us now see an example given by a Markov chain.

Example 4.1.4. Consider an experiment where a fair coin is tossed until the out-

come is heads (represented by true). Consider an infinite, countable set of propo-
sitional symbols Λ = {α1, . . . , αn, . . .}, where αn represents getting a head at time
n ∈ N. Since we stop after getting the first head, the coin will remain in that
state from that point on. This property can be specified using the EPPL formulas
[(αi⇒ αi+1)], for all i ∈ N.

This process can be described by the EPPL model m = 〈S,P,X〉, over the set of
propositional symbols Λ = {α1, . . . , αn, . . .}, where:

• S = {0k1ω : k ≥ 0} ⊂ {0, 1}ω, where {0, 1}ω is the set of all infinite sequences
over {0, 1};

• Xi : S → 2 is the state of the coin at time i ∈ N, for all αi ∈ Λ; and

• P(0k1ω) = 1
2k+1 , for k ≥ 0.

Note that, in contrast to the usual approach in probability theory, we exclude
from S all impossible events. In this case, we exclude all the sequences where a 1
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is followed by a 0. This is important in order to ensure non-probabilistic semantics
for global formulas such as [(α1⇒ α2)].

We have the following:

• m EPPL [(αn⇒ αn+1)], for all n > 0; that is, when the outcome is heads the
process is stopped, and the coin stays in that state henceforth;

• the configuration 001ω can be represented by the base formula

((¬α1) ∧ (¬α2) ∧ α3);

• the configuration “never heads”, 0ω, cannot be represented by any base for-
mula. The limitation comes from the fact that the EPPL model is an infinite
stochastic process, but we do not allow infinite conjunctions of EPPL proposi-
tional symbols. So, each formula will mention only a finite number of random
variables.

We can group the random variables into a finite set, in order to overcome the
above limitation. Consider the finite stochastic process m′ = 〈S,P,X′〉, over Λ′ =
{α1, . . . , αn−1, α∞}, such that 〈S,P〉 is as above. And X′ = {X1, . . . , Xn−1}∪{X∞},
where each random variable X1, . . . , Xn−1 is as above, and X∞ is 1 if we eventually
get “heads”, at time n or after, and 0 otherwise.

In this case:

• the basic formula β0 := ((¬α1)∧ . . .∧ (¬αn−1)∧ (¬α∞)) represents the config-
uration 0ω and m′

EPPL (
∫

β0 = 0);

• so, m′
EPPL (

∫

(¬β0) = 1), but m′ 6EPPL [(¬β0)].

Obviously, there are many other events that are impossible to represent within this
stochastic process. However, the above example shows us that we can do reasoning
about path-events by encapsulating them in propositional symbols.
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4.1.1 Completeness

In [BM09], and following the ideas of [MSS05], a weakly complete and sound
axiomatization was extracted from the SAT algorithm.

Consider the set of axioms and inference rules AXEPPL:

G1 ⊢EPPL [β] for all valid β ∈ LCPL(Λ);

G2 ⊢EPPL ([β1⇒ β2] = ([β1] = [β2]));

IN ⊢EPPL ([β] = (
∫

β = 1)) ;

EqN ⊢EPPL (
∫

¬β = 1−
∫

β);

EqP ⊢EPPL (
∫

β ≤ 0) ;

EqA ⊢EPPL (
∫

(β1 ∨ β2) =
∫

β
1
+
∫

β
2
−

∫

(β1 ∧ β2));

ROF ⊢EPPL ϕ if hp(ϕ) ∧ (∧r∈alg(ϕ)ϕr(xr)) is a valid formula in RCF;

MP ϕ1, (ϕ1 = ϕ2) ⊢EPPL ϕ2.

Theorem 4.1.5. [BM09, MSS05] The axiomatization AXEPPL is a weakly complete

and sound axiomatization for SEPPL.

Although the models of SEPPL seem sightly different from the ones obtained by
applying the probabilization to SCPL, and get S

p
CPL, they are essentially equivalent.

Given a set of propositional symbols Λ, consider the satisfaction system

S
(p+g)
CPL (Λ) = 〈L(p+g)

CPL (Λ), (2Λ)p,(p+g)〉.

Now, for each β ∈ LCPL(Λ) and model m = 〈S,F ,P, V 〉 ∈ (2Λ)p we can define
the random variable XV,β : S → 2, such that

XV,β(s) =

{

1 if V (s) CPL β

0 otherwise,

for all s ∈ S.
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Lemma 4.1.6. For every model m ∈ (2Λ)p, the following equalities hold:

1. XV,α(s) = (V (s))(α), where V (s) ∈ 2Λ,

2. XV,(¬β)(s) = 1−XV,β(s), and

3. XV,(β1⇒β2)(s) = max{1−XV,β1(s), XV,β2(s)},

for all s ∈ S.

Proof. The equalities follow directly from the semantics of propositional formulas.

From this last lemma, for a model m ∈ (2Λ)p, we conclude that the fam-
ily of random variables XV = {XV,α}α∈Λ completely defines the random variable
XV,β, for β ∈ LCPL(Λ). So, we can associate to m ∈ (2Λ)p the EPPL model
mV = 〈S,F ,P,XV 〉.
Lemma 4.1.7. For every β ∈ LCPL(Λ) and m ∈ (2Λ)p, we have

1. m 
(p+g)
CPL [β] iff mV EPPL [β], and

2. [[
∫

β]]m = [[
∫

β]]mV
.

Proof. (1) Let β ∈ LCPL(Λ) andm ∈ (2Λ)p. Clearly,m 
(p+g)
CPL [β] iff ∀s ∈ S, V (s) CPL

β iff ∀s ∈ S,XV,β(s) = 1 iff mV EPPL [β]. (2) By simple induction on the structure
of β ∈ L, we can prove that V −1[β] = X−1

V,β(1) = {s ∈ S : XV,β(s) = 1}. Hence,
[[
∫

β]]m = P(V −1[β]) = P(XV,β = 1) = [[
∫

β]]mV
.

Conversely, given a family of random variables X = {Xα : S → 2}α∈Λ over
a probability space 〈S,F ,P〉, we define the model mX = 〈S,F ,P, VX〉 such that
VX(s) = {α ∈ Λ : Xα(s) = 1}, for all s ∈ S. Observe that the model mX is well
defined since V −1

X
[β] = X−1

β (1) ∈ F , for all β ∈ LCPL(Λ).

Lemma 4.1.8. For every β ∈ LCPL(Λ) and m ∈MEPPL, we have

m EPPL [β] iff mX 
(p+g)
CPL [β],

and
[[
∫

β]]m = [[
∫

β]]mX
.
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Proof. Let β ∈ LCPL(Λ) and m ∈ MEPPL. Then, m EPPL [β] iff ∀s ∈ S,Xβ(s) =

1 iff ∀s ∈ S, VX(s) CPL β iff mX 
(p+g)
CPL [β]. The second part comes from the equal-

ity V −1
X

[β] = X−1
β (1).

We are ready to state the equivalence.

Proposition 4.1.9. The satisfaction systems SEPPL(Λ) and S
(p+g)

CPL (Λ) are equiva-

lent, SEPPL(Λ) ≅S S
(p+g)
CPL (Λ).

Proof. Consider the maps h1 : S
(p+g)

CPL (Λ)→ SEPPL(Λ) and h2 : SEPPL(Λ)→ S
(p+g)
CPL (Λ),

such that
h1 and h2, are the identity

h1(〈S,F ,P,X〉) = mX and h2(〈S,F ,P, V 〉) = mV .

For m = 〈S,F ,P,X〉 ∈ MEPPL we have that XVX,α(s) = (VX(s))(α) = Xα(s),
for all s ∈ S. Now, using Lemma 4.1.7 and induction on formulas ϕ ∈ L(p+g)

CPL (Λ) we
prove that

h1(m) = mX 
(p+g)
CPL ϕ iff 〈S,F ,P,XVX〉 

(p+g)
CPL ϕ iff m EPPL ϕ.

And, therefore, h1 is a total morphism of satisfaction systems.

For m ∈ (2Λ)p we have that (VXm
(s))(α) = Xα(s) = (V (s))(α), for all α ∈ Λ

and s ∈ S. Hence, VXm
= V . Now, from applying Lemma 4.1.8 and induction on

formulas ϕ ∈ L(p+g)
CPL (Λ) we get that

h2(m) = 〈S,F ,P,Xm〉 EPPL ϕ iff 〈S,F ,P, VXm
〉 (p+g)

CPL ϕ iff m 
(p+g)
CPL ϕ.

From this we conclude that h2 is also a total morphism, and that S
(p+g)

CPL (Λ) ≅S

SEPPL(Λ).

Clearly, the system SCPL(Λ) fulfills the conditions of Theorem 3.2.13, and we can
apply it to obtain an axiomatization for S

p
CPL(Λ). Hence, by Theorem 3.5.11, and

using the equivalence of Proposition 4.1.9, we get an axiomatization for AXEPPL.

Corollary 4.1.10. The axiomatization AX
(p+g)
CPL is weakly complete and sound for

the satisfaction system SEPPL(Λ).
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4.1.2 Satisfiability

The satisfaction problem for the probabilistic fragment of EPPL appears in the
literature as PSAT [GKP88, HJA+00, AP01]. In Section 3.5 we presented a generic
algorithm to perform SAT, Algorithm 3, and set a lower bound for its complexity.
For the particular case of EPPL we can simplify the algorithm and get the exact
complexity. We remark that the algorithm looks for models in S

(p+g)
CPL , given the

equivalence of Proposition 4.1.9.

Given ϕ ∈ L(p+g)
CPL (Λ), we denote by Λ(ϕ) the set of propositional symbols that

occur in ϕ.

Algorithm 4: SatEPPL(ϕ)

Input: formula ϕ ∈ L(p+g)(Λ)

Output: m = 〈M,P〉 (m 
(p+g)
CPL ϕ) or ∅ (No Model)

1 foreach ϕi = (ϕi,g ⊓ ϕi,p) molecule of ϕ do
2 foreach M ⊆ 2Λ(ϕ) of size 2× Size(ϕi) do
3 if M 

g ϕi,g then

4 φ←− hp(ϕi,p ⊓ ψi,p);
5 ψ ←− φ ∧∆Σ

φ (M);
6 η ←− SatRCF(ψ);
7 if η 6= ∅ then return m = 〈M,Pη〉;
8 end

9 end

10 end
11 return ∅ (No Model);

Remark that, in line 5, we denote by ∆Σ
φ (M) the set ∆Σ

φ (Γ) (see Lemma 3.3.3),
where Γ is the set of base formulas βv (CPL formulas), over Λ(ϕ), that characterizes
valuation v ∈M , i.e. βv = (∧v(α)=1α) ∧ (∧v(α)=0(¬α)).

Theorem 4.1.11. Algorithm 4 solves the satisfaction problem for EPPL in PSPACE,

and provides a witness (model) in EXPSPACE.
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4.1.3 Model Checking

Given a finite set of propositional symbols Λ, and using the small–model theorem
we can assume that all EPPL models are defined over a discrete and finite probability
space.

For the model checking procedure we have to deal with computer representation
and, in practice, probabilities are represented by floating point notation and not
symbolically by algebraic real numbers. Thus, we consider only EPPL finite models
m = 〈S,F ,P,X〉 specified with floating point notation arrays. Observe that, since
floating point numbers are rational numbers, they are also algebraic real numbers.
Therefore the semantics given does not require any modification. We represent an
EPPL model as a |Λ|×|S|-matrixX of boolean values for the random variables (where
the entry X(β, s) is Xβ(s)) and an |S|-array P of real numbers for the probabilities.
The size of S is at most 2|Λ| (up to equivalent states). Consequently, an EPPL model
can be stored in memory by the record (P,X).

Let ϕ be an EPPL formula. We construct the arrays

sbf(ϕ) = (β1, . . . , βk), str(ϕ) = (t1, . . . , ts) and sf(ϕ) = (ϕ1, . . . , ϕn, ϕ)

as the ordered tuples of base subformulas, algebraic real subterms and subformulas
of ϕ, respectively, ordered by increasing length. As usual for floating points, we
assume that the basic arithmetical operations take O(1) time.

Given an EPPL model m and formula ϕ, then the model–checking problem
consists of determining whether m EPPL ϕ. Model checking of EPPL is detailed in
Algorithm 5.

Theorem 4.1.12. Assuming that all basic arithmetical operations and that access-

ing array/matrix values take O(1) time, Algorithm 5 takes O(|ϕ| × |S|) time to
decide if an EPPL model m = 〈P,X〉 satisfies ϕ.

Proof. The first part of the model checking algorithm (lines 1–7) consists of writing
a Boolean |sbf(ϕ)| × |S|-matrix B, where the entry B(i, j) is Xβi(sj), for all 1 ≤
i ≤ |sbf(ϕ)| and 1 ≤ j ≤ |S|. In the second part of the algorithm (lines 8–15), we
evaluate all the subterms to a floating–point |str(ϕ)|-array T , where T (i) = [[ti]]m, for
all 1 ≤ i ≤ |str(ϕ)|. In this part, denotation of the term

∫

βi is calculated in line 11
by the matrix product of the two arrays, [[

∫

βi]]m = B(i).P, for all 1 ≤ i ≤ |sbf(ϕ)|.
Finally, in the third part of the algorithm (lines 16–23), we evaluate all subformulas
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Algorithm 5: ModelCheckEPPL(m,ϕ)

Input: EPPL model m = (P,X) and formula ϕ ∈ LEPPL(Λ)
Output: Boolean value G(|sf(ϕ)|)

1 for i = 1 to |sbf(ϕ)| do /* this loop iterates O(|ϕ|) times */

2 switch βi do /* each case takes O(|S|) time */

3 case α : B(i) = Xα;

4 case (¬βj) : B(i) = 1−B(j);
5 case (βj ⇒ βl) : B(i) = max(1−B(j), B(l));

6 endsw

7 end

8 for i = 1 to |str(ϕ)| do /* this loop iterates O(|ϕ|) times */

9 switch ti do /* each case takes O(|S|) */

10 case r : T (i) = r :;
11 case

∫

βj : T (i) = B(j).P ; /* this case takes O(2|S|) */

12 case (tj + tl) : T (i) = T (j) + T (l);
13 case (tj .tl) : T (i) = T (j).T (l);

14 endsw

15 end

16 for i = 1 to |sf(ϕ)| do /* this loop iterates O(|ϕ|) times */

17 switch ϕi do /* each case takes O(|S|) */

18 case [βj ] : G(i) = Π
|S|
l=1B(j, l) ; /* this case takes O(|S| − 1) */

19 case (tj ≤ tl) : G(i) = (T (j) ≤ T (l));
20 case (∼ϕj) : G(i) = 1−G(j);
21 case (ϕj = ϕl) : G(i) = max(1−G(j), G(l));

22 endsw

23 end

to a Boolean |sf(ϕ)|-array G, where G(i) = 1 iff m EPPL ϕi, for all 1 ≤ i ≤ |sf(ϕ)|,
and return as output G(|sf(ϕ)|).

4.1.4 Applications

Propositional logic is widely used in the verification of hardware circuits in indus-
try. The techniques used exploit the increasing power of propositional SAT solvers.
The use of satisfaction algorithms in formal verification has been gaining importance
due to the lack of scalability of binary decision diagrams [BCC+99]. The MTBDDs
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used in probabilistic verification suffer from the same problem [HKNP06]. With
EPPL we are able to model defective gates. Consequently, we can extend verifica-
tion to quantitative properties and analyze defect-tolerant systems, circuits in the
presence of noise.

Hardware

α1
α2 α4

α3

α5 α6

Figure 4.1: AND-OR-INVERTER (AOI21)

Consider the compositional circuit showed in Figure 4.1. In the usual verification
of hardware we write a formula describing the implementation of the circuit and a
formula for the specification, both in propositional logic, CPL. In this case, the
formulas are the following:

Implementation: (α4⇔ α1 ∧ α2) ∧ (α5⇔ α3 ∨ α4) ∧ (α6⇔¬α5);

Specification: (α6⇔¬(α3 ∨ (α1 ∧ α2))).

The aim of the verification process is to prove that from the implementation
we can derive the specification. Deploying the complete Hilbert calculus for the
propositional logic, we are able to prove that the circuit is correct for all inputs.

With EPPL we can extend the verification to quantitative properties. Suppose
that we know, from experimental results, that the real implementation of the AND
gate yields a correct value at least 99% of the time, the OR gate delivers correct
output at least 97% of the time and that, in the case of the NOT gate, no faults are
detected. In this situation, the formula that describes the implementation is

(
∫

(α4⇔ α1 ∨ α2) > 0.97) ⊓ (
∫

(α5⇔ α3 ∧ α4) > 0.99) ⊓ [(α6⇔¬α5)].

Using the weakly complete EPPL Hilbert calculus, we can derive that the imple-
mentation implies the specification, which is described by the formula

(
∫

α6⇔¬(α3 ∧ (α1 ∨ α2)) ≥ 0.98),



4.1. Exogenous probabilistic propositional logic 79

that states the quantified correctness of the circuit. The same is to say, that the
circuit has the correct behavior at least 98% of the time. As in the framework of
classical hardware verification, where SAT tools are used to validate the implemen-
tation, we can do the same for EPPL SAT. Let ϕimp and ϕspec be the implementation
and specification formulas, respectively. We apply the EPPL SAT algorithm to the
conjunction (ϕimp ⊓ ∼ϕspec). If the algorithm returns “No Model” it means that
the circuit satisfies the specification, otherwise it will return a model that witnesses
a situation where the specification fails. Finally, we note that for EPPL formulas
without terms multiplication, the SAT algorithm can be simplified so that it is in
NP, by adapting the results in [FHM90]. This is no worse than the case of classical
propositional logic.

Software

Another potential application of EPPL is on bounded verification of programs
with random calls. Bounded model checking [CBRZ01, BCC+03] has been a suc-
cessful technique for catching bugs in software and hardware. The system under
verification is unfolded n times and sent together with a correctness property to a
SAT solver. In this way, bugs up to executions of length n can be eliminated. This
technique can typically be used to ensure the reliability of many critical systems.

Given a boolean probabilistic program1 P , we are able to translate it into an EPPL

formula ϕP representing its behavior. As in the previous example, the formula ϕP
describes the implementation. Consider the execution of the lines of the code in
Figure 4.2 (a) and its translation in Figure 4.2 (b) to an EPPL formula.

Now, if we wish to verify a probabilistic safety property, for instance,

ϕsaf = ((
∫

αx1 ≤ 0.5) ⊓ (
∫

αx2 ≤ 0.5) ⊓ . . . ⊓ (
∫

αx5 ≤ 0.5))

we can send the formula (ϕP ⊓ ϕsaf) to the EPPL SAT solver.

The Dining Cryptographers Protocol

Our next example is the “Dining Cryptographers protocol" [Cha88]. Consider
the following scenario. Three cryptographers working for a covert organization are

1A boolean probabilistic language is program in a simple WHILE programing language with coin
tosses and boolean variables.
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x = rand();

y = rand();

y = x ∨ y;

if (x) {

x = ¬ x ;

else

x = x ∨ y;

}

(a)
(b)

(
∫

αx1 = 0.5) ⊓ (
∫

αy1 = 0.5)⊓

[αy2⇔ αx1 ∨ αy1] ⊓ [αx3⇔¬αx2]⊓

[αx4⇔αx2∨αy2]⊓[αx5⇔(αx2?αx3 : αx4]

Figure 4.2: Translation of a program to an EPPL formula

sitting at a round table, dining in a fine restaurant. After the meal, when it is
time to pay, the waitress informs them that the bill had already been settled. It
seems that either one of the cryptographers has paid, or the secret agency has. The
cryptographers would like to know which is the case, without revealing the identity
of the cryptographer if one of them has paid.

A probabilistic solution to this problem is as follows. Three (fair) coins are placed
on the table, one between each cryptographer. Each cryptographer tosses the coin
to his right, and records its outcome. In addition, each cryptographer is also able to
see the outcome of the coin toss immediately to his left. At the end of the tossing,
each cryptographer announces whether the outcomes of the coin toss on their left
and right agree. However, the cryptographer who has paid, if there is one, lies i.e.
inverts the answer. Now, if the total number of “agrees" is odd, then one of the
cryptographers has paid, otherwise it is their organization that has footed the bill.

The anonymity in this protocol can be expressed by the fact that the two cryp-
tographers who have not paid are unable to identify the one who has paid, if there
is one. The anonymity with the respect to the first cryptographer corresponds to
the assertion that the programs in which the second and the third cryptographers
pay, respectively, are equivalent. In [LMOW08] the authors solve the problem of
program equivalence by translating them to probabilistic automata, and solving the
correspondent equivalence problem for probabilistic automata. A similar process is
possible by checking equivalence of EPPL formulas.
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Let c1, c2, and c3 denote the outcome of the coin toss of the first, second and
third cryptographer respectively. For each {i | 1 ≤ i ≤ 3}, we let ai be 0, if
ci = c(i+1), and 1 otherwise. In the case where the second cryptographer has paid,
the knowledge of the first cryptographer about the state of the variables c1, c2, a1,
a2, and a3 is described by the formula

(
∫

α
c1
= 1/2) ⊓ (

∫

α
c2
= 1/2) ⊓

[αa1⇔ (αc1⇔ αc2)] ⊓ (
∫

α
a2

= 1/2) ⊓ ([(αa3] ⊔ [¬αa3]).

Moreover, the case where the second cryptographer has paid yields exactly the
same EPPL formula as the case where the third cryptographer has paid. Hence,
these different situations are indistinguishable by cryptographer one, which proves
the anonymity.

We remark that using EPPL we can perform reasoning on finite integer data
types. Given a variable x ranging over the integer modulus n, we can use a basic
formulas, with at most log(n) + 1 propositional symbols, to specify all the possible
values of that variable. For example, for a integer variable x modulus 5, we use the
abbreviation

(x = 4) := (¬αx1) ∧ (¬αx2) ∧ (αx3).

Therefore, we can write the EPPL formula (
∫

(x = 4) ≤ 1/2) = [y = 0]).

4.2 Probabilistic temporal logic

In this section we define the probabilistic temporal logic (PTL) introduced in
[VW86], to reasoning about probabilities of path-events in Markov chains. Then,
we establish the equivalence with probabilization (plus globalization) of LTL. By
this process and capitalizing the results obtained in Chapter 3, we get a weakly
complete axiomatization and SAT algorithm for PTL.

Given a countable set of propositional symbols Λ, a labeled Markov chain, over
Λ, is a tuple m = 〈S, P, µ, V 〉 were 〈S, P, µ〉 is a Markov chain and V : S → 2Λ.
Given a labeled Markov chain m, let Pm = 〈Sω,F ,P〉 be the sequence (probability)
space defined by m. For a path π = s0s1s2 . . . ∈ Sω, we write π(i) = sisi+1 . . . to
denote its suffixes, and π(i) = si, for all i ≥ 0.

From a labeled Markov chain m = 〈S, P, µ, V 〉 we define an induced Kripke
structure Km = 〈S,RP , V 〉, where (s, s′) ∈ RP iff P (s, s′) > 0, for all s, s′ ∈ S.
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For each LTL formula β, over a set of propositional symbols Λ, we define by
induction the function Xβ : Sω → 2, such that:

• Xα(π) = (V (π(0)))(α), where V (π(0)) ∈ 2Λ;

• X(¬β)(π) = 1−Xβ(π);

• X(β1⇒β2)(π) = 1−Xβ1(π) +Xβ1(π)×Xβ2(π);

• X(Xβ)(π) = Xβ(π
(1));

• X(β1Uβ2)(π) = Xβ2(π) +X(¬β2)(π)×Xβ1(π)×X(β1Uβ2)(π
(1)), for all π ∈ Sω.

Now, each formula β ∈ LLTL(Λ) defines a language X−1
β (1) ⊆ Sω. By induction

we can easily verify that X−1
β (1) is the set all paths over S that satisfy β ∈ LLTL(Λ).

And this set may contain paths that are not possible in Km. The next result states
that the languages defined by LTL formulas are measurable events of the sequence
space.

Proposition 4.2.1. [VW86] For every β ∈ LLTL(Λ), the function Xβ : Sω → 2 is a

random variable over Pm.

Given a countable set of propositional symbols Λ, the probabilistic temporal
logic over Λ (PTL) is the system

SPTL(Λ) = 〈LPTL(Λ),MPTL,PTL〉

where

• LPTL(Λ) is defined by

β ::= α 8 (¬β) 8 (β⇒ β) 8 (Xβ) 8 (βUβ)

t ::= r 8 (
∫

β) 8 (t+ t) 8 (t.t)

ϕ ::= [β] 8 (t ≤ t) 8 (∼ϕ) 8 (ϕ = ϕ)

with α ∈ Λ, and r ∈ alg(R);
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• MPTL is the class of tuples m = 〈S, P, µ, V 〉 where 〈S, P, µ〉 is a Markov chain
and V : S → 2Λ;

• PTL is defined by

– [[r]]m = r;

– [[
∫

β]]m = P(Xβ = 1) = E(Xβ), where P is the probability measure of Pm;

– [[t1 + t2]]m = [[t1]]m + [[t2]]m;

– [[t1.t2]]m = [[t1]]m.[[t2]]m;

– m PTL [β] iff Km LTL β;

– m PTL (t1 < t2) iff [[t1]]m < [[t2]]m;

– m PTL (∼ϕ) iff m 6PTL ϕ;

– m PTL (ϕ1 = ϕ2) iff m 6PTL ϕ1 or m PTL ϕ2,

for m ∈MPTL and ϕ ∈ LPTL(Λ).

We remark that our logic is more expressive that the one in [VW86]. First,
we have real algebraic terms with addition and multiplication. Second, we include,
through globalization, classic LTL reasoning over the underlying Kripke structure of
the Markov chain. The past work about this logic have been focus in techniques to
compute the probabilities [[

∫

β]]m. Thus, syntax reasoning brings to verification of
probabilistic systems and important complement to model-checking.

4.2.1 Completeness

The logic PTL is not an exogenous enrichment of LTL, at least not completely
exogenous since the models are Markov chains. Although, as the next result proves,
the probabilization of LTL yields a system that is weakly equivalent to PTL.

Proposition 4.2.2. SPTL(Λ) ≅
w
S S

(p+g)
LTL (Λ).

Proof. Let ϕ ∈ L(p+g)
LTL (Λ) and m ∈Mp

LTL. From the small-model property (Corollary
3.5.5) there is a finite probability distribution m′ = 〈M,P〉, with |M | = N , for some
N ≥ 1. Now, from the the small-model construction, M ⊆ MLTL can be taken
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as a subset of models of distinct LTL formulas β1, . . . , βN ∈ atb(ϕ); and where
these models are finite paths (by the PSPACE SAT algorithm for LTL). Hence,
there is a set of finite paths, one for each model in M , (ultimately periodic models,
see Subsection B.6.4) M ′ = {〈K1, π1〉, . . . , 〈KN , πN〉}, with Ki = 〈Si, Ri, Vi〉 for
i = 1, . . . , N , such that m′′ = 〈M ′,P〉 is a model of ψ if and only if m is a model of
ψ, for all ψ ∈ sf(ϕ). Given 〈M ′,P〉, the tuple mϕ = 〈S, P, µ, V 〉 is a well-defined
finite Markov chain, where

• S = ∪Ni+1Si is the disjoint union of the states present in the paths π1, . . . , πk;

• P (s, s′) = 1 if (s, s′) ∈ Ri for s, s′ ∈ Si, and 0 otherwise;

• µ(s) = P(π) if s is the initial state of πi for s ∈ Si, and 0 otherwise;

• V (s) = Vi(s) if s ∈ Si.

Indeed, the set S is finite since is the finite union of finite sets S1, . . . , SN . Next, the
matrix P is stochastic since each row has all entries equal to zero expect one and
always one. In addition, the initial probability distribution µ mimics the distribution
P. And finally, V : S → 2Λ is defined using the labelings V1, . . . , VN .

Now, the probability sequence space, induced bymϕ, is simple, and can clearly be
simplified to Pmϕ

= 〈M ′,P〉, whereM ′ represents the set of finite paths {π1, . . . , πN}.
We want to verify that

[[
∫

β]]m = [[
∫

β]]mϕ
, for all β ∈ atb(ϕ).

In fact, if β is one of the formulas β1, . . . βN , say βi, then there is one and only one
path πi, such that Ki, πi LTL β, and

[[β]]m = [[β]]m′′ = P(πi) = P(Xβ = 1) = [[
∫

β]]mϕ
.

And if β ∈ atb(ϕ) is not in β1, . . . βN , then it is not satisfied by any model of
M . Hence, [[

∫

β]]m = P(∅) = 0 = [[
∫

β]]mϕ
. Therefore, if β ∈ bf(ϕ), and from the

properties proved in Lemma 3.1.7, we conclude that [[
∫

β]]m = [[
∫

β]]mϕ
. Thus, from

the equality on subterms str(ϕ) we get that m and mϕ satisfy the same inequalities
of iq(ϕ). We need also to check that they agree on global atoms of sf(ϕ).

The Kripke structure induced by mϕ is Kmϕ
= 〈S, P, V 〉, and we have that

mϕ PTL [β] iff Kmϕ
LTL β iff ∀i = 1, . . . , N Ki, πi LTL β iff
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iff m′′


(p+g)
LTL [β] iff m 

(p+g)
LTL [β]

for all [β] ∈ sf(ϕ). Now, from the above base cases, and by induction on
subformulas of ϕ, we conclude that m 

(p+g)
LTL ϕ if and only if mϕ PTL ϕ.

Let h1 : SPTL(Λ)→ S
(p+g)
LTL (Λ) such that:

• h1 : LPTL(Λ)→ L(p+g)
LTL (Λ) is the identity;

• h1 : LPTL(Λ) × Mp
LTL → MPTL, with h1(ϕ,m) = mϕ as defined above, for

ϕ ∈ LPTL(Λ) and m ∈Mp
LTL.

The map h1 is a total weak morphism since

h1(ϕ,m) = mϕ PTL ϕ iff m 
(p+g)
LTL ϕ = h1(ϕ),

for ϕ ∈ LPTL(Λ) and m ∈Mp
LTL.

Consider the map h2 : S
(p+g)

LTL (Λ)→ SPTL(Λ), where

• h2 is the identity;

• h2 :MPTL →Mp
LTL, such that for m = 〈S, P, µ, V 〉,

h2(m) = 〈A,FA,P′, V ′〉
where:

– A ⊆ Sω is the set of all possible paths in m given by Km = 〈S,RP , V 〉;
– FA = {A ∩ B : B ∈ F}, where Pm = 〈Sω,F ,P〉 is the sequence space

defined by 〈S, P, µ〉;
– P′(B) = P(B|A) = P(B), for all B ∈ FA;

– V ′ : A→MLTL is defined by V ′(π) = 〈Km, π〉, for π ∈ A ⊆ Sω.

The model h2(m) is well-defined. First, A ∈ F because ω-regular languages2, over
S, are F -measurable [VW86]. Second, from the definition of FA and P′ we conclude
that 〈A,FA,P′〉 is a probability space. To verify that h2 is a morphism of satisfaction
systems we proceed by induction on the structure of formula ϕ ∈ L(p+g)

LTL (Λ).

Base: ϕ is [β] or (t1 < t2).

2The language A ⊆ Sω is recognized by Km when considered as ω-automata [VW86].
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• h2(m) 
(p+g)
LTL [β] iff V ′(A) LTL β iff ∀π ∈ A, 〈Km, π〉 LTL β iff

iff Km LTL β iff m PTL [β]

• [[
∫

β]]h2(m) = P′((V ′)−1[β]) = P(Xβ = 1) = [[
∫

β]]m, for all β ∈ LLTL(Λ).

Step: The step cases, negation (∼) and implication (=) are straightforward.

Therefore, h1 and h2 are total weak morphisms of satisfaction systems, and we
conclude that SPTL(Λ) ≅

w
S S

(p+g)
LTL (Λ).

Corollary 4.2.3. The axiomatization AX
(p+g)
LTL

def
= AXg

LTL
+ AXp

LTL
+ IN is a sound

and weakly complete axiomatization for SPTL(Λ).

4.2.2 Satisfiability

The satisfaction problem for SPTL(Λ) can be solved by Algorithm 3.

Theorem 4.2.4. The satisfaction problem for SPTL(Λ) can be solved in PSPACE,

a witness can be obtained in EXPSPACE.

Proof. In line 5, Algorithm 3 calls the SAT procedure for LTL a polynomial number
of times, which is known to be PSPACE. Hence, line 5 keeps the algorithm in
PSPACE. Therefore, it is line 11 that determines the overall complexity, depending
if it returns just “yes–no” (PSPACE) or a witness model (EXPSPACE).

4.3 Temporalizing EPPL

In this section, we study the temporalization of EPPL using the results obtained
in Chapter 2. The technique can be applied to any temporal logic LTL, CTL or
others.

In the sequel, we choose to temporize with CTL, given the connection to proba-
bilistic automata established in Section 4.3.2. Consider the system

SCTPL(Λ) = 〈LCTPL(Λ),MCTPL,CTPL〉,

where
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• LCTPL(Λ) is

– ϕ := β 8 (¬ϕ) 8 (ϕ⇒ ϕ) 8 (AXϕ) 8 (A(ϕUϕ)) 8 (AGϕ)

with β ∈ LEPPL(Λ);

• MCTPL is the class of tuples m = 〈S,R, V : S →MEPPL〉, where 〈S,R〉 is a
Kripke frame;

• CTPL is defined by

m CTPL ϕ iff m, s ℓ
CTPL

ϕ for all s ∈ S

where 
ℓ
CTPL

is given by

– m, s ℓ
CTPL

β iff V (s) EPPL β;

– m, s ℓ
CTPL

(¬ϕ) iff m, s 6ℓ
CTPL

ϕ;

– m, s ℓ
CTPL

(ϕ1⇒ ϕ2) iff m, s 6ℓ
CTPL

ϕ1 or m, s ℓ
CTPL

ϕ2;

– m, s ℓ
CTPL

(AXϕ) iff m, s′ ℓ
CTPL

ϕ for all s′ ∈ S, (s, s′) ∈ R;

– m, s ℓ
CTPL

(A(ϕ1Uϕ2)) iff for all paths π = ss1s2 . . ., there is i ≥ 0, such
that m, si ℓ

CTPL
ϕ2 and m, sj ℓ

CTPL
ϕ1, for all 0 ≤ j < i;

– m, s 
ℓ
CTPL

(AGϕ) iff for all paths π = ss1s2 . . ., and all i > 0, we have
m, si 

ℓ
CTPL

ϕ;

for ϕ ∈ LCTPL(Λ) and m = 〈S,R, V 〉 ∈ MCTPL.

4.3.1 Completeness

In order to provide an axiomatization for SCTPL(Λ) we proceed by establishing
an equivalence.

Let Λ′ be a set of propositional symbols equipollent with the subset of atomic
formulas of LEPPL(Λ), i.e. such that there is a bijection h : Λ′ → at(LEPPL(Λ)).

Consider the map h1 : SCPL(Λ
′)→ SCTL(Λ

′) where:

• h1 : LCPL(Λ
′)→ LCTL(Λ

′) is the natural inclusion, h1 = idLCPL(Λ′);

• h1 :MCTL → 22
Λ′

is given by h1(m) = V (S), for m = 〈S,R, V 〉 ∈ MCTL.
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Lemma 4.3.1. The map h1 : SCPL(Λ
′) → SCTL(Λ

′) is a conservative (power) mor-

phism of satisfaction systems.

Proof. Clearly, for m ∈MCTL and ϕ ∈ LCPL(Λ
′), we have that h1(m) = V (S) CPL ϕ

iff m CTL ϕ. Now, let h∗ :MCPL →MCTL, such that

h∗(v) = Kv = 〈{s}, {(s, s)}, V (s) = v〉.

Since h1(h
∗(v)) = v we conclude that h1 fulfills the surjective condition, and h1 is

conservative.

Let h2 : SCPL(Λ
′)→ SEPPL(Λ) be the map of satisfaction systems where:

• h2 : LCPL(Λ
′)→ LEPPL(Λ) is given by

– h2(α) = h(α);

– h2(¬ϕ) = (∼h2(ϕ));
– h2(ϕ1⇒ ϕ2) = (h2(ϕ1) = h2(ϕ2)),

with α ∈ Λ′;

• h2 : MEPPL → 2Λ
′

such that h2(m) = vm(α) =

{

1 if m EPPL h(α)

0 otherwise
, for

α ∈ Λ′.

Lemma 4.3.2. The map h2 : SCPL(Λ
′)→ SEPPL(Λ) is a total morphism of satisfac-

tion systems.

Proof. Let m ∈ MEPPL and ϕ ∈ LCPL(Λ
′). We prove that h2 is a morphism by

induction on the structure of ϕ.

Base: If ϕ is α ∈ Λ′, then h2(m) = vm CPL α iff vm(α) = 1 iff m EPPL h(α) =
h2(α).

Step: The cases for negation (¬) and implication (⇒) are straightforward.

Hence, we conclude that h2 is a total morphism of satisfaction systems.

Lemma 4.3.3. The pair of morphisms 〈h1, h2〉 is finitary.
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Proof. For ϕ ∈ LCTL(Λ
′), let Λ′

ϕ be the finite subset of propositional symbols present
in ϕ. For each subset A ⊆ Λ′

ϕ, let

ψA = (∧α∈Aα) ∧ (∧α6∈A(¬α)).

And consider the formula ψϕ = ∨ψA, where A runs through all subsets of Λϕ,
such that ψA has a model in h1(M(h1⇒h2)) = h2(MEPPL). Clearly, �EPPL h2(ψϕ) and
�(h1⇒h2) ψϕ.

Now, we need to verify that �(h1⇒h2) ϕ iff ψϕ �CTL ϕ.

(→) Assume that �(h1⇒h2) ϕ. Let m = 〈S,R, V 〉 ∈ MCTL, such that m CTL ψϕ.
So, for every s ∈ S, there is As ⊆ Λ′

ϕ, such that V (s) CPL ψAs
. And each ψAs

has a model in h1(M(h1⇒h2)) = h2(MEPPL), that we denote by V ′(s). The Kripke
structure m′ = 〈S,R, V ′〉, where V ′(s) is the model of ψAs

, satisfies ϕ iff m satisfies
ϕ, because m and m′ are equivalent over Λ′

ϕ. Thus, we have that m′ ∈ M(h1⇒h2)

and m′
CTL ϕ. Therefore, m CTL ϕ.

(←) Assume that 6�(h1⇒h2) ϕ. So, there is m ∈ M(h1⇒h2), such that m 6CTL ϕ.
From the fact that �(h1⇒h2) ψϕ, we conclude that ψϕ 6�CTL ϕ.

Finally, we observe that ψϕ = ψ(¬ϕ), and we conclude that 〈h1, h2〉 is finitary.

SCTL(Λ
′)

SCPL(Λ
′)

h1

OO

h2
// SEPPL(Λ)

We are now ready to prove the equivalence.

Proposition 4.3.4. S(h1⇒h2) ≅S SCTPL(Λ).

Proof. Consider the map h3 : S(h1⇒h2) → SCTPL(Λ), where

• h3 : L(h1⇒h2)(= LCTL(Λ
′)) → LCTPL(Λ), such that h3(ϕ) is the formula where

we replace all occurrences of propositional symbols α ∈ Λ′ by the EPPL atom
h(α);

• h3 :MCTPL →M(h1⇒h2) such that h3(m) = 〈S,R, Vm : S → 2Λ
′〉 and Vm(s) =

h2(V (s)) = vV (s), for all s ∈ S.
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The map h3 is a morphism of satisfaction systems. In fact, for α ∈ Λ′, we have
that h3(m) (h1⇒h2) α iff ∀s ∈ S, (Vm(s))(α) = 1 iff ∀s ∈ S, V (s) EPPL h(α) iff
m CTPL h3(α). Now, since the semantics of all CTL connectives is the same in both
systems, the step cases of induction are trivially true and we conclude that h3 is a
total morphism.

Consider the map h4 : SCTPL(Λ)→ S(h1⇒h2) where

• h4 : LCTPL(Λ)→ LCTL(Λ
′) and h4(ϕ) is defined by replacing in ϕ all occurrences

of atomic EPPL formulas β ∈ LEPPL(Λ), by the correspondent propositional
symbol h−1(β) ∈ Λ′;

• h4 : M(h1⇒h2) → MCTPL is given by h4(m) = 〈S,R, V ′ : S →MEPPL〉, such
that V (s) = h2(V

′(s)), for all s ∈ S.

As before, we proceed by induction on ϕ ∈ LCTL(Λ
′). For β ∈ LEPPL(Λ),

h4(m) (h1⇒h2) β iff ∀s ∈ S, V ′(s) EPPL β = h2(α) iff

iff h2(V
′(s)) = V (s) CPL α iff m (h1⇒h2) α = h4(β).

Once more, the step cases are straightforward, and we conclude that h4 is a total
morphism. As a result, S(h1⇒h2) ≅S SCTPL(Λ).

From the equivalence and Theorem 2.3.20 we obtained a weakly complete ax-
iomatization.

Theorem 4.3.5. The axiomatization AXCTL + h1(h
−1
2 (AXEPPL)) is weakly complete

and sound for SCTPL(Λ).

Now, by Lemma 2.3.19 we can easily solve the satisfaction problem for SCTPL(Λ).
Although, we remark that the translation, of a formula ϕ ∈ LCTPL(Λ), given by the
equivalence on Proposition 4.3.4, may increase exponentially.

Theorem 4.3.6. The satisfaction problem for CTPL is 2EXPTIME.
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4.3.2 Model Checking

The model-checking problem for the case of a finite CTPL model, a tuple

m = 〈S,R, V : S →MEPPL〉,
where S is finite and V assigns finite EPPL models, is clearly decidable. The proof
relies on the decidability of both problems for CTL and EPPL, and on its parametric
nature.

Now, we will consider the case of CTPL models over finite probability distri-
butions, i.e. where the set of states S may be infinite, but L assigns finite EPPL

models. This class includes systems such as probabilistic finite automata (PFA) and
Markov decision processes, [Rab63, BdA95].

Let Σ be a finite alphabet. To a PFA A = (S, {Pa}a∈Σ, µ, F ) over Σ we associate
the CTPL model mA = (Σ∗, R, V ) such that:

• Σ∗ is the set of all finite words over Σ;

• (w1, w2) ∈ R iff w1a = w2 for some a ∈ Σ;

• V (w) = 〈µ|Pw = µw, assigns to w ∈ Σ∗ the probability distribution µw, of the
PFA, after reading input w (consider as an EPPL model).

Theorem 4.3.7. Let m = 〈S,R, V 〉 be a CTPL model over finite probability distri-

butions, and s ∈ S. If 0 < r < 1 then the following problems are undecidable:

(i) m, s ℓ
CTPL

(AG(
∫

β > r));

(ii) m, s ℓ
CTPL

(EF(
∫

β > r)).

Proof. Let A = (S, {Pa}a∈Σ, µ, F ) be a PFA over an alphabet Σ, and 0 < r < 1
a non-zero cut-point. We denote by ε ∈ Σ∗ the empty word. Consider the CTPL

model mA, and an EPPL base formula βF that represents the set F ⊆ S. Hence,

mA, ε 
ℓ
CTPL

AG(
∫

β
F
> r) if and only if L>r(A) = Σ∗.

Since the universality problem for PFAs with non zero cut-point is undecidable
[NH69], (i) is undecidable as well. For (ii), we have that MA, ε 

ℓ
CTPL

EF(
∫

β
F
> r) if

and only if L>r(A) 6= ∅. Therefore, from the undecidability of the emptiness problem
for PFAs with non zero cut-point we conclude that (ii) is also undecidable.
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We can show decidability for a certain class of problems, capitalizing on the
decidability results for PFAs [Rab63].

Theorem 4.3.8. Let A = (S, {Pa}a∈Σ, u, F ) be a PFA over an alphabet Σ. The

following problems are decidable:

(i) mA, ε 
ℓ
CTPL

AG(
∫

β
F
> 0);

(ii) mA, ε 
ℓ
CTPL

EF(
∫

β
F
> 0);

(iii) mA, ε 
ℓ
CTPL

AG(
∫

β
F
= 1);

(iv) mA, ε 
ℓ
CTPL

EF(
∫

β
F
= 1).

Proof. In all the cases the PFA is equivalent to a deterministic automaton. Hence,
from the decidability of the emptiness and universality problem for deterministic
automata, we get the decidability for the corresponding model-checking problem.

4.4 Remarks

The semantics of EPPL and CTPL are defined in terms of probability distributions
over sets of propositional valuations, whereas the usual approaches are designed
for reasoning about distributions over paths of possible behavior [BK98, KNP04,
KNP05]. Furthermore, existing logics, such as PCTL [HJ94], are designed mainly
for model checking, and they use Markov chains as the underlying model. In addition
to model checking, we are also able to verify probabilistic systems using a syntactic
approach, based on a (weakly complete) Hilbert calculus. The approach presented
here is very well suited for handling non-determinism and probability, in contrast
to PCTL, which requires the use of a min–max semantics in order to assign just a
single value to probability assertions in the presence of non–determinism [BdA95].



Chapter 5

Conclusion

We conclude this dissertation with a summary of its main contributions and
possible future lines of work.

5.1 Final remarks

In general, this work contributes to the line of research followed by our group,
SQIG, in the context of combining logics; and to the thread of quantum systems
as well. Based on the extensive background for combining logics and exogenous
enrichments, that has been developed for the last decade by the group, we were
able to settle some generic results to study the exogenous probabilization of logics.
In particular, we address the transference of metaproperties such as completeness,
decidability, and model-checking. About quantum systems, we proved that our
techniques can be used also in the context of exogenous quantum logic, and problems
such as model-checking and SAT were tackled for probabilistic specifications and its
temporal extensions.

In the Chapter 2, we would like to stress that the main contribution is the def-
inition of a technique to study exogenous combinations of logic systems. In this
setting, the combining operation is defined by morphisms of satisfaction systems.
Using these morphisms, a subsystem is defined that incorporates the characteristics
of the intended combined logic. This technique is more general than parametriza-
tion because the latter comes as a particular case, by imposing to the morphisms the
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necessary restrictions. We underscore also the fact that our construction differs from
the usual ones, used for example in (algebraic) fibring [SSC99] and parallel compo-
sition [RSS10]. In these cases, the combining operation requires the logics, both
syntactically and semantically, to be presented (translated) in the same framework
(ex. ordered–algebras and multi-graphs, respectively). In our case, the combination
is performed over satisfaction systems.

Chapter 3 is definitely the core of this dissertation. The results present in
this chapter were drawn from the study of particular cases [BM09, HBBM10]. In
the second section, Completeness, we call attention to the translation hp : Lp →
LRCF(Xp), of the enriched base formulas to first–order formulas in RCF. Previously,
[MSS05, BM09], the technique was to include logic variables in the terms of Lp. And
then, each formula was rewritten, such that the measure terms

∫

β were replaced by
a finite sum of variables, each of them denoting the probability of a specific model
of β. Instead, in our approach, we consider that to each term

∫

β, in Lp, corresponds
a variable xβ in LRCF(Xp). Therefore, rather than models, now variables are used
to represent base formulas β. This change is important because it allows a more
direct translation from Lp to LRCF(Xp); and it makes possible to translate any logic,
regardless of its signature and models. Once performed the translation, we use the
theory ∆p

S
, induced by the probabilistically enriched systems S p, to guide all the

probabilistic reasoning in RCF.

The option to address first the probabilization, and then add globalization, is
justified by the different techniques needed to study each of these operations; and
the conclusion that their combination can be addressed by combining theirs results.
Finally, the main purpose of the quantum section is to illustrate the applicability
of our work also in the study of exogenous quantum logic [MS06]. Although it
not embraces all the features of the logic, it establishes the main results for the
probabilistic fragment.

In Chapter 4, we applied the theory developed before to some concrete examples.
In all these examples, the results are obtained by establishing an (weak) equivalence
between the logic we want to analyze and an exogenous probabilization. This fact
shows us that the exogenous probabilization works more as a tool to study proba-
bilistic logics, than to produce new meaningful logics. Moreover, in Example 4.2, we
were able to give a weakly complete calculus and SAT algorithm to one of the most
important logics in model-checking of probabilistic systems [Var85]. Such proba-
bilistic logic is not an exogenous enrichment, at the semantical level, since Kripke
structures (the models) are endogenously enriched with probabilistic transitions.
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And this fact emphasizes the broad applicability of our framework.

Finally, in Example 4.3, we study a temporalization of EPPL (probabilistic logic
of Example 4.1), and this example has two important points. The first is the ex-
emplification that the technique developed in Chapter 2, for combining logics, is
suitable for handle temporalization. The second point is the undecidability results
for the temporalization, based in the results of probabilistic automata. Which es-
tablish an analogous relationship to the one introduced in [BBG08], between Büchi
automata and the probabilistic temporal logic of Example 4.2.

We are far from considering to have addressed all questions about these subjects,
and, of course, much more was to be said.

5.2 Future work

Below we list some topics and possible new directions of research raised by this
dissertation.

The technique introduced in Chapter 2, to combine logic systems, relies on the
intended connection between satisfaction systems (established by particular mor-
phisms). The main results, Proposition 2.3.15 and Theorem 2.3.20, are motivated
by their application to obtain Theorem 3.2.15 and Theorem 4.3.5, respectively. We
believe that this technique deserves a more exhaustive study. Another point that
may be important to analyze is the extension of the main results of Chapter 2 to
different proof systems. A close examination of the proofs reveals that the fact of
being constrained to Hilbert calculus is seldom used.

Clearly, in Chapter 3, the section that beseeches a more long and deep analysis
is the last one, about the exogenous quantum enrichment. This section would have
easily expanded to a full chapter if we had proceed with a similar study to the
one carry on for probabilization. As mention before, such task would be done by
replacing the first–order theory of real closed fields with the theory of algebraically
closed fields.

With respect to our examples, there is at least one question that should be
addressed. In Example 4.2, a weakly complete axiomatization is obtained for the
probabilistic logic under consideration. Although, such axiomatization hides all the
probabilistic reasoning about temporal formulas in the RCF axiomatization. That is
to say, the probabilities of temporal formulas are computed by systems of equations.
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Without explicit rules or axioms to handle probabilities of modal operators, such
as “until” and “eventually”, the axiomatization given is not very useful for practical
purposes. Therefore, one should look for equivalent axiomatizations, where the
relationship between temporal modalities and probabilities is detailed. And we
believe that other kinds of proof systems, such as sequent calculus or tableaux
techniques, might be more appropriate for this situation.
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Appendix A

Probability

In this appendix we introduced notation and important results, needed in the
sequel, from Probability and stochastic processes [Por93].

Probability theory provides a mathematical model for random phenomena, i.e.,
those involving uncertainty. First one identifies the set Ω of possible outcomes of
(random) experiment associated with the phenomenon. This set Ω is called the
sample space, and an individual element ω ∈ Ω is called a sample point.

Definition A.0.1. A field of sets F is a class of subsets of some fixed Ω such that

1. ∅ ∈ F ;

2. if A ∈ F , then Ω \ A ∈ F ;

3. if A, B ∈ F , then A ∪B ∈ F .

Definition A.0.2. A field of sets F is called a σ-field if for any family of sets An
in F , ∪∞n=1An ∈ F .

Clearly, the class 2Ω of all subsets of Ω is a σ-field, and the smallest σ-field is
{Ω, ∅}. Let A be a family of subsets of Ω. The smallest σ-field of subsets of Ω
containing A is called the σ-field generated by A and is denoted by σ〈A〉. The field
generated by A is defined as the smallest field containing A. Observe that for any
σ-field F in a space Ω and any set A ⊂ Ω, the class FA := {B ∩ A : B ∈ F} is a
σ-field in A, and is called the a trace σ-field.
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Definition A.0.3. A real-valued set function µ : A → R defined on a class A of

sets is called additive if

µ(

n
⋃

i+1

Ai) =

n
∑

i+1

µ(Ai) (A.1)

for all n ≥ 0 and all disjoint sets A1, . . . , An, such that ∪ni=1Ai ∈ A.

If the class A is closed with respect to finite unions, then the additivity property
A.1 is equivalent to

µ(A ∪B) = µ(A) + µ(B) (A.2)

for all disjoint sets A,B ∈ A. And if ∅ ∈ A, then µ(∅) = 0.

Definition A.0.4. A real-valued function µ on A is called σ-additive if

µ(

∞
⋃

i=1

Ai) =

∞
∑

i=1

µ(Ai) (A.3)

for all pairwise disjoint sets An in A such that ∪∞i=1An ∈ A. A non–negative σ-
additive set function defined on a field is called a measure.

Proposition A.0.5. [Por93] Let µ be a real-valued additive set function on a field

F . Then the following conditions are equivalent:

1. µ is σ-additive,

2. µ is continuous at zero in the following sense: if An ∈ A, An+1 ⊂ An for all
n ≥ 1 and ∩∞n=1An = ∅, then limn→∞ µ(An) = 0.

A measure µ on a σ-field F is called σ-finite if there exist a countable collection
of sets A1, A2, . . . ,∈ F , such that

∞
⋃

n=1

An = Ω and µ(An) <∞ for all n ≥ 1. (A.4)

Theorem A.0.6. [Por93][Caratheodory extension] Let µ be a measure in a field F .

Then, there is a measure µ∗ on σ〈F〉, that extends µ. Moreover, if µ is σ-finite,
then its extension to σ〈F〉 is unique.
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Definition A.0.7. A measure µ on a σ-field F of subsets of Ω is called a probability

measure if µ(Ω) = 1. For denoting a probability measure it is traditional to use P.

A triple 〈Ω,F ,P〉 containing a set Ω, a σ-field F of subsets of Ω, and a probability
measure P on F , is called a probability space.

Definition A.0.8. Let 〈Ω,F ,P〉 be a probability space and S a countable set. A

function X : Ω → S with the property that {ω ∈ Ω : X(ω) ∈ A} ∈ F for each
A ⊆ S is called a random variable. Such a function is said to be F -measurable.

In the sequel, given a probabilistic space 〈Ω,F ,P〉 where Ω is countable and
F = 2Ω, we will write simply 〈Ω,P〉. A random variable X : Ω → S induces the

probability space 〈S,PX〉 defined by PX(A)
def
=P(X−1(A)), and PX is called the

probability distribution of X. This probability distribution is characterized by the

values ps
def
= PX({s}), for s ∈ S. Therefore, every countable set {pi : i ∈ I} ⊂ [0, 1],

such that
∑

i∈I pi = 1 is called a discrete probability distribution.

Definition A.0.9. A stochastic process on 〈Ω,F ,P〉, with values in the countable

set S and index set Λ, is a family of random variables {Xα : Ω→ S}α∈Λ.

Let P = 〈Ω,F ,P〉 be a probability space and X = {Xα : Ω→ S}α∈Λ a stochastic
process over P. Given a finite set Λ′ = {α1, . . . , αk} ⊆ Λ, we can define the random
variable

XΛ′ : Ω → Sk

w → (Xα1
(w), . . . , Xαk

(w)).

And the variable XΛ′ defines the joint probability space 〈Sk,PΛ′〉 of the random
variables Xα1

, . . . , Xαk
.

When the set Λ is denumerable the stochastic process X = {Xα}α∈Λ induces
a probability space called sequence space defined as follows. A subset A ⊆ SΛ is
called a finite dimensional cylinder set (fdcs) if there exists a finite subset Λ′ ⊂ Λ,
say Λ′ = {α1, . . . , αk}, with k ≥ 1, and a subset BA ⊆ Sk such that A = {f ∈ SΛ :
(f(α1), . . . , f(αk)) ∈ BA}. The set BA is called a base for A. We denote by CS,Λ
the collection of all finite dimensional cylinder sets of SΛ and by FS,Λ = σ〈CS,Λ〉 we
denote the σ-field generated by CS,Λ.

Proposition A.0.10. [Por93] Let X = {Xα : S → Ω}α∈Λ be a stochastic process
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over P = 〈Ω,F ,P〉. Then, there is a probability space PX = 〈SΛ,FS,Λ,PΛ〉, called
the sequence space of X, such that

PΛ(A) = P(X−1
Λ′ (BA))

for every A ∈ CS,Λ, with A = {f ∈ SΛ : (f(α1), . . . , f(αk)) ∈ BA}, for Λ′ =
{α1, . . . , αk} ⊆ Λ, and where BA ⊆ Sk is the base of A as above.

An important example of stochastic process is the one defined by stochastic
matrices. We say that a square matrix P = (pst : s, t ∈ S) is stochastic, over a fixed
countable set S, if every row (pst : t ∈ S) is a probability distribution.

A discrete-time Markov chain (DTMC) is a tuple D = 〈S, P, µ〉 where

• S is a countable set (of states);

• P is a stochastic matrix over S;

• µ = {µ(s)}s∈S a (initial) probability distribution.

Such DTMC induces the stochastic process {Xi : Sω → S}i∈N and sequence
space 〈Sω,FS,N,P〉 such that for all s0, . . . , sn ∈ S

P(X0 = s0, X1 = s1, . . . , Xn = sn) = µ(s0)ps0s1ps1s2 . . . psn−1sn. (A.5)

And, every stochastic process satisfying equation A.5 is a Markov chain.

The next result gives another characterization of Markov chains, that follows
directly from Equation A.5.

Proposition A.0.11. [Por93]

Let {Xi}i∈N be the stochastic process defined by the Markov chain 〈S, P, µ〉. Then,
for n ≥ 0 and s, s0, . . . , sn ∈ S:

1. P(X0 = s) = µ(s);

2. P(Xn+1 = sn+1|X0 = s0, . . . , Xn = sn) = P(Xn+1 = sn+1|Xn = sn) = psnsn+1
.
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A.1 Probabilistic automata

The notion of DTMC can be generalized by allowing one of a finite number of
different probabilistic transitions (stochastic matrices) to occur at each step. Let Σ
be a finite set (of alphabet symbols), Σ∗ the set of finite words over Σ, and ǫ the
empty word.

Definition A.1.1. [Rab63] A probabilistic finite automata (PFA), over the alphabet

Σ, is a tuple A = 〈S, {Pa}a∈Σ, µ, F 〉 where

• S is a finite set (of states);

• Pa is a stochastic matrix over S, for every a ∈ Σ;

• µ = {µ(s)}s∈S is a (initial) probability distribution over S;

• F ⊆ S is a subset (of accepting states).

Notation A.1.2. For vector spaces V , real or complex, we use the Dirac notation,

[NC00], also called braket notation. The vectors are denoted by ket’s, |w〉 ∈ V , and
its conjugate transpose by a bra, 〈w|. The inner product of two vectors |w〉 and |w′〉
is written by a braket 〈w′|w〉.

Clearly, for every a ∈ Σ, the tuple 〈S, Pa, u〉 constitutes a DTMC. A probabilistic
automata defines a function pA : Σ∗ → [0, 1], such that

pA(w)
def
= 〈u|Pa1 . . . PanPF , for every w = a1 . . . an ∈ Σ∗, (A.6)

is the probability of A accepting the word w, where PF is the projection onto F .

Let 0 ≤ λ < 1 be a real number. The set of words accepted by A with cut-point
λ is

L>λ(A)
def
= {w ∈ Σ∗ : pA(w) > λ}.

If there is an ǫ > 0 such that |pA(w)−λ| > ǫ for all w ∈ Σ∗, then we say that the
language L>λ(A) is recognized with an isolated cut-point (or bounded error). And
any language L ⊆ Σ∗ recognized by a probabilistic automata with isolated cut-point
is regular [Rab63].
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Theorem A.1.3. [NH69]

Let Σ contain at least two letters. It is recursively undecidable to determine for
an arbitrary PFA A, over Σ, and threshold λ > 0 if

1. Lλ(A) is empty,

2. Lλ(A) is Σ∗, and

3. Lλ(A) is regular.

For the case λ = 0, all the previous problems are decidable since the probabilistic
automata is equivalent to a deterministic finite automata.

A.2 Quantum probability

The laws of quantum mechanics postulate that the description of quantum en-
tities and phenomena have a nature inherently probabilistic and non-commutative.
The central notions in quantum probability (and also in quantum mechanics) are
states which encapsulate the status of physical systems, and observables, which are
mathematical representations of state related physical quantities that can be mea-
sured.

We start by introducing some concepts of quantum systems, without going into
too much detail (see [HO07, NC00] for a more detailed description).

The mathematical realm of quantum mechanics is Hilbert spaces, which is a
complex vector space H with inner product. The tensor product of Hilbert spaces
is denoted by ⊗.

Definition A.2.1. A quantum state (mixed state), over a finite dimensional Hilbert

space H(n) def= Cn, is a density operator (matrix) A : H(n)→ H(n), which is

1. Hermitian (or self-adjoint): A† = A;

2. positive: 〈w|A|w〉 ≥ 0, for all |w〉 ∈ H;

3. normalized: tr(A) = 1.
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Above, the matrix operation (·)† yields the conjugate-transpose matrix, and tr(·)
the sum of the diagonal elements. A positive operator is always Hermitian, and so
condition (1) is redundant. We denote quantum states by ρ. A projection is an
Hermitian operator P : H → H, such that P 2 = P .

Definition A.2.2. Let |w〉 ∈ H be a unit (or normalized) vector (i.e. with

〈w|w〉 = 1). Then, the (projection onto the subspace spanned by |w〉) density
operator |w〉〈w| : H → H is called a pure quantum state. One identifies pure quan-
tum states with unit vectors of H.

Thus, because Hermitian operators are diagonalizable, any density operator A
can be written as

A =
n

∑

i=1

λi|wi〉〈wi|,

where the vectors {|wi〉}ni=1 are orthogonal, and λi are real, non-negative eigenvalues
of A. The ensemble {|wi〉}ni=1 can be taken normalized, and from the trace condition
(3), one has that {λi}ni=1 is a probability distribution,

∑n
i=1 λi = 1. Therefore,

density operators can be identified with probability ensembles of pure quantum
states.

A Hermitian operator A on a finite dimensional Hilbert space H(n) has at most
n (distinct) real eigenvalues. The set spec(A) = {λ1, . . . , λk}, with k ≤ n, of
eigenvalues of A is called the spectrum of A, and A can be written as

A =

k
∑

i=1

λiPλi

where Pλ is the projection operator onto the subspace of H(n) spanned by eigen-
vectors with eigenvalue λ ∈ spec(A). And the projections commute and resolve the
identity

∑k
i=1 Pλi = I.

Definition A.2.3. An observable is a Hermitian operator A : H → H, and the

possible outcomes of an observation are spec(A), the eigenvalues of A.

Given a quantum state ρ, the probability of getting λ ∈ spec(A) with observation

A is pA(λ)
def
= tr(Pλρ). If ρ is a pure state (i.e. ρ = |w〉〈w| for some unit vector

|w〉 ∈ H), then tr(Pλρ) = 〈w|Pλ|w〉, for all λ ∈ spec(A).
A ∗-algebra A , over C, is a complex vector space equipped with a multiplication

and with an involution (·)∗ : A → A , which is an anti-automorphism (see [HO07]).
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Example A.2.4. The set M(n,C) all complex square matrices of dimension n,

with the usual addition and multiplication (of matrices), in addition to the operation
(·)† (as involution) constitutes a ∗-algebra, of all (linear) operators on H(n). More
generally, the set of all bounded (linear) operators B(H) of a Hilbert space H is
endowed with a structure of ∗-algebra.

Definition A.2.5. [BHJ07]

Let A be a ∗-algebra of operators on H. A quantum probability measure is a
complex-valued linear operator Q : A → C, which is

• positive: Q(A†A) ≥ 0, for all A ∈ A ;

• normalized: Q(I) = 1.

A triple Q = (H,A ,Q) is called a quantum probability space. And the elements
A ∈ A are called quantum random variables.

Given a density operator ρ : H(n)→H(n), the triple 〈H(n),M(n,C),Qρ〉, such
that

Qρ(A) = tr(Aρ), for all A ∈M(n,C)

is a quantum probability space. Moreover, there is an one-to-one correspondence
between quantum measures and quantum states (density operators), such that all
quantum probability spaces over H(n) are obtained in this fashion [Gle57]. There-
fore, for a Hermitian operator A ∈ A and Q = (H,A ,Q), the value Q(A) is
real, and is the expected value of observable A. And if A =

∑k
i=1 λiPλi , with

spec(A) = {λ1, . . . , λk}, then Q(Pλ) is the probability of observe λ ∈ spec(A).
In classic probability theory, given two events A and B, it is always possible

to assign a probability to the joint event A ∩ B. Although, in the quantum set-
ting, given two projections P1 and P2, the operator P1P2 is not guaranteed to be a
projection or even an observable, unless they commute. This fact has the physical
interpretation that in a single realization of a quantum experiment, one can only
measure simultaneously commutative events. Whereas in classical probability, in
every realization any event is either true or false, whether we choose to observe it or
not. Hence, in quantum probability one must a priori choose what event to observe,
but subsequently some of others events (those that do not commute with the one
choose) became meaningless within the same experiment. Of course, one can always
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conduct two consecutive experiments where in each non-commutative events are ob-
served, but the outcome may change, by the wave-collapse effect, if one reverses the
order of the experiments.

In quantum computation a quantum bit (or qubit) is a pure quantum state |w〉
of H(2), usually written

|w〉 = a0|0〉+ a1|1〉, a0, a1 ∈ C

where |0〉 and |1〉 represent the canonic base vectors. And n-qubits state is a pure
quantum state of H(2n) ≅ H(2)⊗ · · · ⊗ H(2) (tensor of n-copies of H(2)).

Example A.2.6. Consider the Hilbert space H(4) and the quantum pure state

|w〉 = 1

2
|00〉 −

√
3

2
|10〉.

Let M(4,C) be the ∗-algebra of all 4 × 4 complex matrices, all linear operators
on H(4). Hence, the operator Q|w〉 :M(4,C)→ C, defined by

Q|w〉(A)
def
= 〈w|A|w〉, for all matrices A ∈M(4,C),

is a quantum probability measure. And Q|w〉 = 〈H(4),M(4,C),Q|w〉〉 is a quantum
probability space. For the case of the projector operators P00 = |00〉〈00| and P10 =
|10〉〈10| one gets Q|w〉(P00) =

1
4
, and Q|w〉(P10) =

3
4
.

For the cases of finite-dimensional Hilbert spaces, a quantum probability space
Q = 〈H(n),M(n,C),Q〉 is completely determined by the associated quantum state
ρ, and we will abbreviate and write Q = 〈H, ρ〉 to denote the quantum space.
Moreover, as in the classic setting, one can understand simply ρ (or quantum states)
has quantum probability distribution when the underlying Hilbert space is clear (it
will be enough to fix the dimension).

Next, we show briefly that the notion of quantum probability space includes
classic probability. We do this without going into too much detail about Lebesgue
spaces (for more see [Bob05]).

Example A.2.7. Given a probability space P = 〈Ω,F ,P〉, let A = L∞(Ω,F ,P)

be the ∗-algebra (Lebesgue space) of all bounded random variables X : Ω → C,
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acting on the Hilbert spaceH = L2(Ω,F ,P) of all square-integrable random variables
X : Ω→ C. Now, the operator defined by

QP(X)
def
= EP(X), for all X ∈ L∞(Ω,F ,P)

is a quantum probability measure. And QP = 〈H,A ,QP〉 is a quantum probability
space. For the case of a finite probability distribution 〈Ω,P〉, we have that H ∼= C|S|

and A = M(|Ω|,C) (all square complex matrices of dimension |S|) is generated by
the projections onto subspaces spanned by subsets of S.

The following result shows that quantum measures (of quantum probability
space) defined on commutative ∗-algebras can be reduced to classic probability.

Theorem A.2.8. [BHJ07] (Spectral theorem, finite-dimensional case) Let A be a

commutative ∗-algebra of operators on a finite-dimensional Hilbert space, and let Q
be a quantum measure on A. Then, there is a (finite)1 probability space (Ω,F ,P),
and a map i : A → L∞(Ω,F ,P) (which is a ∗−isomorphism) and Q(A) = EP(i(A)).

The following example helps to illustrate the correspondence established by the
spectral theorem.

Example A.2.9. Consider the Hilbert space H(2) of the simple spin model, and the

quantum pure state

|w〉 = 1√
2
(|0〉+ |1〉).

The observable representing the spin in the x direction is the Pauli matrix

Ax =

[

0 1
1 0

]

= Px,1 − Px,−1 =
1

2

[

1 1
1 1

]

− 1

2

[

1 −1
−1 1

]

Let Ax be the commutative ∗-algebra generated by the operator Ax. Hence, the tu-
ple Q = (H(2),Ax,Q|w〉) is a quantum probability space. The ∗-algebra Ax is gener-
ated by the projectors {Px,1, Px,−1}. The classic probability space associated with Q is
(Ω,F ,P), where Ω = {1, 2}, F = {∅, {1}, {2},Ω}, and P({1}) = P({2}) = 1

2
. And

the association is given by the ∗-isomorphism i(Px,1) = χ
{1}

, and i(Px,−1) = χ
{2}

,
where χA denotes the characteristic function of subset A ⊆ Ω.

1In fact, from the proof we know that Ω is the base of the Hilbert space, and F the power set
2Ω.
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Logic Systems

In this appendix the basic notions about complexity and logic systems are intro-
duced.

B.1 Complexity

The Church-Turing thesis postulates that the intuitive notion of an effective
computable procedure (or function) is materialized by the kind of functions that can
be realized by a mechanical machine. Alan Turing introduced a mathematical notion
of such a machine. A Turing machine is a finite state system, with a reading/writing
head, that operates in discrete time over an infinite tape, by following a given finite
number of instructions. At each moment, and executing one of the instructions, the
system can read and/or write one and only one symbol on the tape, from a finite
alphabet, and move left or right on the tape afterwards. Some states of the Turing
machine are halting, and once the system reaches one of these states the machine
halts [DW83].

Now, if for each state and symbol, of a given machine, there is no more than
one possible instruction, then the machine is said deterministic, otherwise is called
nondeterministic. Given a finite alphabet Σ, a word w ∈ Σ∗ is given as input to a
Turing machine by starting the machine with w written on the tape. A language
L ⊆ Σ∗ is said to be accepted by a Turing machine T if for all inputs w ∈ L the
machine can halt, and never halts for w 6∈ L.

119
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Definition B.1.1. A subset L ⊆ Σ∗ is said

• semi-decidable (or recursively enumerable) if it is accepted by a Turing ma-
chine;

• decidable (or recursive) if both L and Σ∗ \L are accepted by Turing machines.

Now, for the halting executions of a machine, two complexity measures can be
defined. The first measures the number of steps (TIME), and the second the amount
of tape (SPACE), used until reaching a halting state.

Using these two measures of complexity several classes of languages are defined.

Definition B.1.2. Let L ⊆ Σ∗. The language L belongs to the class:

• P of polynomial–time languages, if there is a deterministic Turing machine T
and a polynomial p(x), such that for all w ∈ L, T accepts w in p(|w|) time;

• PSPACE of polynomial–space languages, if there is a deterministic Turing
machine T and a polynomial p(x), such that for all w ∈ L, T accepts w in
p(|w|) space;

• EXPSPACE of exponential space languages, if there is a deterministic Turing
machine T and a polynomial p(x), such that for all w ∈ L, T accepts w in
2p(|w|) space;

• EXPTIME of exponential time languages, if there is a deterministic Turing
machine T and a polynomial p(x), such that for all w ∈ L, T accepts w in
2p(|w|) time;

• NP of nondeterministic polynomial-time languages, if there is a nondetermin-
istic Turing machine T and a polynomial p(x), such that for all w ∈ L, T
accepts w in p(|w|) time.

These classes verify the following inclusions:

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE

P ( EXPTIME and NP ( NEXPTIME and PSPACE ( EXPSPACE.
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For a class C of languages, the class co–C is the class of all languages L such
that its complement is in C. Moreover, a language L of a class C is call C–complete
if L is in C, and for any other language of C there is a reduction to L (under some
notion of reduction).

B.2 Consequence systems

Given a set of formulas L the notion of derivation (or deduction) is now intro-
duced.

Definition B.2.1. A consequence system is a pair C = 〈L,⊢〉, where L is a set (of

formulas) and ⊢⊆ 2L×L is a (consequence) relation satisfying, for all Γ∪Γ′∪{ϕ, ψ} ⊆
2L, the following conditions [Tar56]:

reflexivity: if ϕ ∈ Γ then Γ ⊢ ϕ;

cut: if Γ ⊢ ψ for all ψ ∈ Γ′ and Γ′ ⊢ ϕ then Γ ⊢ ϕ;

weakening: if Γ ⊢ ϕ and Γ ⊆ Γ′ then Γ′ ⊢ ϕ.

The reader should notice that weakening is a particular case of cut. We consider
only these three conditions, though more conditions could be imposed. Namely the
condition o finitariness which was present on the original Tarski’s proposal.

finitary: if Γ ⊢ ϕ then Γ′ ⊢ ϕ, for some finite Γ′ ⊆ Γ.

A set (theory) Γ ⊆ L is consistent if Γ 0 ϕ, for some ϕ ∈ L, otherwise, it
is inconsistent. A consequence system is said consistent if it contains a consistent
theory.

In the sequel, let us consider C = 〈L,⊢〉 and C
′ = 〈L′,⊢′〉 two fixed but arbitrary

consequence systems.

Definition B.2.2. A consequence systems morphism h : C → C ′ is a function

h : L → L′ such that, for all Γ ∪ {ϕ} ⊆ L, the following holds:

if Γ ⊢ ϕ then h(Γ) ⊢′ h(ϕ). (B.1)

If also the converse implication of B.1 holds, the morphism is said to be conservative.
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Given a conservative morphism h : C → C ′, we say that C ′ is a conservative
extension of C and we write C �C C ′.

Definition B.2.3. We say that the consequence systems C and C ′ are equivalent,

and we write C ≅C C ′, if there are conservative maps h : C → C and h′ : C ′ → C

such that
ψ ⊣⊢′ h(h′(ψ)) and ϕ ⊣⊢ h′(h(ϕ)) (B.2)

for all ϕ ∈ L and ψ ∈ L′.

By ⊣⊢ we denote mutual consequence.

The presence of classical derived connectives in a consequence system C = 〈L,⊢〉
can be identified by the existence of formulas in L that, relatively to ⊢, have certain
proof-theoretic properties [MDT09]. We say that C has a classical proof-theoretic
connective if it possible to define in L an operation with the specified property.

connective properties

verum ⊤ Γ ⊢ ⊤
falsum ⊥ ⊥ ⊢ ψ
conjunction ∧ Γ ⊢ ϕ1 ∧ ϕ2 iff Γ ⊢ ϕ1 and Γ ⊢ ϕ2

disjunction ∨ Γ, ϕ1 ∨ ϕ2 ⊢ ψ iff Γ, ϕ1 ⊢ ψ or Γ, ϕ2 ⊢ ψ
implication ⇒ Γ,⊢ ϕ1⇒ ϕ2 iff Γ, ϕ1 ⊢ ϕ2

negation ¬ ϕ ⊣⊢ ¬¬ϕ and Γ, ϕ1 ⊢ ϕ2 implies Γ,¬ϕ2 ⊢ ¬ϕ1

Table B.1: Classical proof properties of the connectives

We say that a morphism h : C → C ′ preserves a proof-theoretic connective if
the presence of the operation in C implies its existence, also, in C ′. And, we say
that it transfers if the converse holds.

Proposition B.2.4. [MDT09] Let h : C → C
′ be a morphism of consequence

systems.

1. If h is conservative, then it transfers all those proof-theoretic connective under
which h(L) is closed.

2. If h is conservative and surjective, then C and C ′ have the same proof-theoretic
connective.

3. Equivalent consequent systems have the same proof-theoretic connectives.
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B.3 Satisfaction systems

In this section we present one of the fundamental structures used in the sequel,
namely satisfaction system [Bar74], that generically introduces the usual semantic
notions of model, satisfaction, entailment, that we will use to study the relationship
between the several enrichments.

Definition B.3.1. A satisfaction system is a tuple S = 〈L,M,〉 where L is a set

(of formulas),M is a class (of models) and ⊆M×L is a (satisfaction) relation.

We write m  ϕ whenever (m,ϕ) ∈, in which case we say the model m satisfies
the formula ϕ ∈ L. Given a set of formulas Γ ⊆ L, we write m  Γ whenever m  ϕ
for every ϕ ∈ Γ. And, given a class M ⊆ M, we write M  ϕ if m  ϕ, for all
m ∈ M . A set (theory) Γ ⊆ L is satisfiable if it has a model m ∈ M, (i.e m  Γ).
Given Γ ⊆ L and M ⊆M, we write

Mod(Γ)
def
= {m ∈M : m  Γ}, and

Th(M)
def
= {ϕ ∈ L :M  ϕ}.

We say that Γ ⊆ L entails ϕ ∈ L, denoted by Γ � ϕ, if, for every m ∈ M, m  ϕ
whenever m  Γ. We say that a formula ϕ is valid, denoted by � ϕ, if ∅ � ϕ.

Three important problems on satisfaction systems are the following.

• model-checking problem: Given m ∈M and ϕ ∈ L, does one have m  ϕ?

• satisfaction problem (SAT): Given ϕ ∈ L, is there m ∈M such that m  ϕ?

• validity problem: Given ϕ ∈ L, does one have m  ϕ, for all m ∈M?

Clearly, when L has a classical negation the validity problem becomes comple-
mentary to the satisfaction problem.

Example B.3.2. Given a set Λ of propositional constants, the set of formulas of

classic propositional logic, CPL, LCPL(Λ) is defined in BNF notation by

ϕ ::= α 8 (¬ϕ) 8 (ϕ⇒ ϕ) (B.3)
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where α ∈ Λ. The (derived) connectives ⊥, ⊤, ∧ and ∨ are defined by abbreviation
as usual.

A literal is a proposition symbols α or its negation ¬α. It is known that every
CPL formula ϕ has a disjunctive normal form (DNF), ϕ1 ∨ . . . ∨ ϕk, where each ϕi
is a conjunction of literals, and is called a molecule.

The satisfaction system for CPL, over a set of propositional symbols Λ, is the
tuple SCPL(Λ) = 〈LCPL(Λ), 2

Λ,CPL〉, where for every ϕ ∈ LCPL(Λ) and m ∈ 2Λ the
relation CPL is defined as follows:

• m CPL α iff α ∈ m;

• m CPL (¬ϕ) iff m 6CPL ϕ;

• m CPL (ϕ1⇒ ϕ2) iff m 6CPL ϕ1 or m CPL ϕ2.

We now define morphisms between satisfaction systems [Bar74]. In [GR02] there
is a survey on the existing notions of morphisms (between institutions). We intro-
duce a sightly different notion of the one in [Bar74].

A map of satisfaction systems h : 〈L,M,〉 → 〈L′,M′,′〉 is a pair 〈h, h〉 where
h : L → L′ is a function and h :M′ →M is a partial function. We define the class

Mh
def
= dom(h) = {m ∈M′ : h(m) is defined }.

The map h : S → S
′ is said total if h is a function, i.eMh =M′.

Definition B.3.3. A morphism of satisfaction systems is a map h : S → S ′ such

that
m′


′ h(ϕ) iff h(m′)  ϕ (B.4)

for all ϕ ∈ L and m′ ∈ Mh. Moreover, we say that h is a total morphism if it is a
total map.

We refer to condition (B.4) as the satisfaction condition, as was called in the
original proposal by Barwise [Bar74].

As in the case of consequence systems, where morphism preserve consequence,
morphism of satisfaction systems also preserve entailment.
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Lemma B.3.4. Let h : S → S ′ be a morphism of satisfaction systems and ∆ ⊆ L′,

such that Mod(∆) ⊆Mh.

If Γ � ϕ, then ∆, h(Γ) �′ h(ϕ). (B.5)

Proof. Let Γ ∪ {ϕ} ⊆ L and suppose also that Γ � ϕ. Let m ∈ M, such that
m  ∆, h(Γ). So, m ∈ Mh, and from B.4 we get that h(m)  Γ. From Γ � ϕ, we
have h(m)  ϕ. Using again B.4, we conclude that m  h(ϕ) and, therefore, that
∆, h(Γ) � h(ϕ).

Lemma B.3.5. If h : S → S ′ is a morphism, then Mh ⊆Mod(h(Th(M))).

Proof. Letm ∈Mh and h(ϕ) ∈ h(Th(ϕ)) Since ϕ ∈ Th(M), we have that h(m)  ϕ
iff m 

′ h(ϕ). Hence, m ∈Mod(h(Th(M))).

Corollary B.3.6. If h : S → S
′ is a total morphism of satisfaction systems, then

Γ � ϕ implies h(Γ) �′ h(ϕ).

Definition B.3.7. A morphism h : S → S ′ is called ∆-exhaustive, for ∆ ⊆ L′, if

Mh =Mod(∆).

Definition B.3.8. A ∆-exhaustive morphism of satisfaction systems h : S → S ′

is called ∆-conservative, if

Γ � ϕ iff ∆, h(Γ) �′ h(ϕ) (B.6)

for all Γ ∪ {ϕ} ⊆ L. In case ∆ = ∅, h is total and is called conservative.

In the presence of a ∆-conservative morphism h : S → S ′, we say that S ′ is a
∆-conservative extension of S and we write S �∆

S S ′.

Given a satisfaction system S = 〈L,M,〉, we say that m1, m2 ∈ M are
equivalent in S , denoted by m1 ≃ m2, if

for all ϕ ∈ L, m1  ϕ iff m2  ϕ. (B.7)

We extend this definition to classes of models. Given M1,M2 ⊆ M, we write
M1 ≃ M2 if Th(M1) = Th(M2). We write M ≃ m if we have M ≃ {m}, for
M ∪ {m} ⊆ M.
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Definition B.3.9. Let h : S → S ′ be a morphism of satisfaction systems. We say

that h fulfills the surjective condition if there is a function h∗ :M→Mh such that:

∀m ∈ M, h(h∗(m)) ≃ m. (B.8)

We now prove a sufficient condition of conservativeness.

Proposition B.3.10. If a ∆-exhaustive morphism h : S → S ′ satisfies the sur-

jective condition (B.8), then it is ∆-conservative.

Proof. (→) Assume that Γ � ϕ. From Proposition B.3.4 we can conclude that
∆, h(Γ) �′ h(ϕ).

(←) Assume ∆, h(Γ) � h(ϕ) for Γ ∪ {ϕ} ⊆ L. Take m ∈ M such that m  Γ.
By the surjective condition, h(h∗(m)) ≃ m and h(h∗(m))  Γ. Using Propriety
B.4 we get that h∗(m) 

′ h(Γ). Since h∗(m) ∈ Mod(∆), we have that h∗(m) 
′

∆, h(Γ). Applying the initial assumption yields that h∗(m) 
′ h(ϕ). Once more,

by satisfaction condition B.4, we conclude that m ≃ h(h∗(m)  ϕ. As a result,
Γ � ϕ.

The entailment relation � is a consequence relation on L and, therefore, each
satisfaction system S = 〈L,M,〉 induces the consequence system 〈L,�〉.

We can also define (classical) derived connectives at the semantic level using
model-theoretical properties.

connective properties

verum ⊤ m  ⊤
falsum ⊥ m 6 ⊥
conjunction ∧ m  ϕ1 ∧ ϕ2 iff m  ϕ1 and m  ϕ2

disjunction ∨ m  ϕ1 ∨ ϕ2 iff m  ϕ1 or m  ϕ2

implication ⇒ m  ϕ1⇒ ϕ2 iff m 6 ϕ1 or m  ϕ2

negation ¬ m  ¬ϕ iff m 6 ϕ

Table B.2: Classical satisfaction properties of the connectives

Proposition B.3.11. [MDT09] Let h : S → S ′ be a total morphism of satisfaction

systems:
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1. if the morphism fulfills the surjective conditions B.8, then it transfers all those
model-theoretic connectives for which h(L) is closed;

2. if the function h is surjective, then it preserves all model-theoretic connectives.

We say that S = 〈L,M,〉 is a morphic image of a CPL system if there are a
set of propositional symbols Λ and a total morphism h : SCPL(Λ) → S , such that
h(LCPL) = L.

Corollary B.3.12. If S is a morphic image of a CPL system, then it has all

classical model-theoretical connectives.

We now present the notion of equivalence for satisfaction systems. By �� we
denote mutual entailment.

Definition B.3.13. [MDT09] The satisfaction systems S and S ′ are said equiva-

lent if there are two total morphisms h : S → S ′ and h′ : S ′ → S such that

ϕ ��
′ h

′
(h(ϕ)) and ψ �� h(h

′
(ψ)); (B.9)

for all ϕ ∈ L, ψ ∈ L′.

B.4 Hilbert calculi

In a calculus, symbolic manipulation of formulas is used to establish which are the
consequences of a set of formulas. The confirmation that a formula is a consequence
of set of formulas should be provided in a finite number of steps. And the main
concept in a calculus is the one of derivation. There are different ways to present
the notion of derivation. In the sequel, we focus our attention on Hilbert calculi.

Definition B.4.1. A Hilbert calculus is a pair H = (L, R) where L is a set (of

formulas), and R = {(∆i, ϕi) : i ∈ I} where ∆i ⊆ L is a set and ϕi ∈ L, for each
i ∈ I.

Each pair r = (∆, ϕ) of R is called an inference rule. An inference rule is
called axiom if ∆ = ∅. A rule where ∆ is finite set is called finitary. We do not
consider non-finitary rules so, in the sequel, when we refer to a rule (∆, ϕ) we always
assume that ∆ is a finite set. The elements of ∆ are called premises and ϕ is called
conclusion.
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Definition B.4.2. Given a Hilbert calculus H = 〈L, R〉, a formula ϕ ∈ L is

derivable from a set of formulas Γ ⊆ L in H , if there is a sequence ϕ1, . . . , ϕn of
formulas such that:

• ϕn is ϕ;

• for each i = 1, . . . , n− 1, the formula ϕi is either an element of Γ or there is a
rule 〈∆, ψ〉 ∈ R such that ∆ ⊆ {ϕ1, . . . , ϕi−1} and ψ is ϕi.

We write Γ ⊢H ϕ to denote that ϕ is derivable from Γ in H . When ∅ ⊢H ϕ we
say that ϕ is a theorem in H and we write ⊢H ϕ.

A Hilbert calculus H = 〈L, R〉 induces the consequence system 〈L,⊢H 〉.

Example B.4.3. The Hilbert calculus for CPL, that we denote by AXCPL, [BM77],

is traditionally presented as the three axioms:

Ax1 (ϕ1⇒ (ϕ2⇒ ϕ1));

Ax2 ((ϕ1⇒ (ϕ2⇒ ϕ3))⇒ ((ϕ1⇒ ϕ2)⇒ (ϕ1⇒ ϕ3)));

Ax3 ((¬ϕ1⇒¬ϕ2)⇒ (ϕ2⇒ ϕ1));

together with one rule (Modus Ponens)

MP (ϕ1⇒ ϕ2), ϕ1 ⊢ ϕ2.

Example B.4.4. A first-order logic, FOL, is defined over a set X of variables, a

family (possibly empty) F = {Fn}n>0 of function symbols, and a family R = {Rn}n>0

of relation symbols. The language LFOL(X,F,R) is

t ::= x 8 f(t, . . . , t) (B.10)

ϕ ::= r(t, . . . , t) 8 (¬ϕ) 8 (ϕ⇒ ϕ) 8 (∀xϕ) (B.11)

where x ∈ X, f is a function symbols of F , and r a relation symbols of R. As usual,
we have the abbreviation (∃xϕ) ab= (¬(∀x(¬ϕ))).

A Hilbert calculus for FOL, [BM77], that we denote by AXFOL, is AXCPL in addition
to:
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Ax5 (∀x(ϕ1⇒ ϕ2)⇒ (∀xϕ1⇒∀xϕ2));

Ax6 (ϕ⇒∀xϕ)), where x is not free in ϕ;

Ax7 ((∀xϕ)⇒ ϕ[x← t]), where t is free for x in ϕ;

and the rule of generalization

GR ϕ ⊢ (∀xϕ).

B.5 Putting deduction and satisfaction together

We now introduce the notion of logic system.

Definition B.5.1. A logic system is a tuple L = 〈L,M,,⊢〉 where 〈L,M,〉 is

a satisfaction system and 〈L,⊢〉 is a consequence system.

Definition B.5.2. Let L = 〈L,M,,⊢〉 be a logic system. We say that L is

complete if for all Γ ∪ {ϕ} ⊆ L:

Γ � ϕ then Γ ⊢ ϕ. (B.12)

On the converse, L is sound if for all Γ ∪ {ϕ} ⊆ L:

Γ ⊢ ϕ then Γ � ϕ. (B.13)

And, L is weakly complete if for all ϕ ∈ L:

� ϕ then ⊢ ϕ. (B.14)

The logic system L is said Henkin-complete, [Hen49], if every consistent theory
Γ ⊆ L is satisfiable, i.e for every Γ ⊆ L,

if Γ 6⊢ ϕ, for some ϕ ∈ L, then there exists m ∈M such that m  Γ. (B.15)

On the other hand, it is said Henkin-sound if the converse (of B.15) holds. Moreover,
L is called weakly Henkin-complete if every consistent formula is satisfiable.
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Proposition B.5.3. [MDT09] Let L be a logic system. The following properties

hold.

1. If L is sound and has a falsum, both model-theoretic and proof-theoretic, then
it is Henkin-sound.

2. If L is Henkin-sound and M is not empty, then it is consistent.

Proposition B.5.4. [MDT09] A (weakly) Henkin-complete logic system with falsum

and negation, both of them model-theoretic and proof-theoretic, is (weakly) complete.

Finally, a Hilbert calculus H = 〈L, R〉 is said to be a (weakly) complete (resp.
sound) axiomatization for a satisfaction system S = 〈L,M,〉 if the logic system
〈L,M,,⊢H 〉 is (weakly) complete (resp. sound). And, we may denote simply by
〈L,M,,H 〉.

In this sequel, we adopt the common understanding of omission of parenthesis.

B.6 Examples

We present, in this section, some relevant logics system for the sequel, to illustrate
the previous notions.

B.6.1 Propositional modal logic

The set of formulas of propositional modal logic, PML, is obtained from the
language for CPL, by adding a new connective 2 called box [BdRV01].

Let Λ be a set of propositional symbols. The set of formulas LPML(Λ) is defined
by

ϕ ::= α 8 (¬ϕ) 8 (ϕ⇒ ϕ) 8 (2ϕ) (B.16)

with α ∈ Λ.

The semantics is defined over tuples K = 〈S,R, V 〉, called Kripke structure,
where S is a not-empty set (of states), R ⊆ S×S is a relation (of accessibility), and
V : Λ→ 2S is a (valuation) function.
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The function V : Λ→ 2S can be extended to all formulas by induction on their
structure:

• VK(α) = V (α)

• VK(¬ϕ) = S \ VK(ϕ);

• VK(ϕ⇒ ϕ) = (S \ VK(ϕ1)) ∪ VK(ϕ2);

• VK(2ϕ) = {s ∈ S : (s, s′) ∈ R and s′ ∈ VK(ϕ)}.

We have the (local) satisfaction system S ℓ
PML

(Λ) = 〈LPML(Λ),Mℓ
PML
,ℓ

PML
〉, where

Mℓ
PML

is the class of pairs 〈K, s〉 constituted by a Kripke structure K = 〈S,R, V 〉
and a state s ∈ S. The relation 

ℓ
PML

is defined for 〈K, s〉 ∈ Mℓ
PML

and formula ϕ,
by

〈K, s〉 ℓ
PML

ϕ iff s ∈ VK(ϕ).

We define the size of a formula ϕ, denoted by size(ϕ), as the number of symbols
necessary to write it. For a Kripke structure K = 〈S,R, V 〉, we define size(K) as
the number of states in S and pairs in R.

The satisfaction problem for S ℓ
PML

(Λ) was addressed in [Lad77] and proved to
be PSPACE-complete. Moreover, in [FL79] it was showed that if a formula ϕ has a
model, then it has a model with at least 2size(ϕ) states. In [CE82], the model-checking
problem for S ℓ

PML
(Λ) was determined to be linear, O(size(ϕ)× size(m)).

LetMPML be the class of all Kripke structures. We define a (global) satisfaction
relation PML, for K = 〈S,R, V 〉 ∈ MPML and formula ϕ, by

K PML ϕ iff VK(ϕ) = S.

So, we have the (global) satisfaction system SPML(Λ) = 〈LPML(Λ),MPML,PML〉.
The Hilbert calculus AXPML is obtained from the calculus AXCPL by appending

to it the axiom K and the necessitation rule N:

K (2(ϕ1⇒ ϕ2))⇒ ((2ϕ1)⇒ (2ϕ2));

N ϕ ⊢ (2ϕ).
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And, we write AXPML

def
= AXCPL +K+N.

In [Kri63] it was proved that the calculus AXPML is a sound and weakly complete
axiomatization for the systems S ℓ

PML
(Λ) and SPML(Λ). In addition, the satisfaction

problem for LPML(Λ) was proved to be EXPTIME–complete in [Hem96].

A pair 〈S,R〉, obtained from a Kripke structure 〈S,R, V 〉, is called a frame.
Another (global) satisfaction relation 

F
PML

is given, for ϕ ∈ LPML(Λ) and frame
〈S,R〉, by

〈S,R〉 F
PML

ϕ iff 〈S,R, V 〉 PML ϕ, for all valuations V : Λ→ 2S.

The axiomatization AXPML is sound and complete for the satisfaction system

S
F
PML

(Λ) = 〈LPML(Λ),MF
PML
,F

PML
〉,

where byMF
PML

we denote the class of all frames.

B.6.2 Propositional mu-calculus

In [Koz83], Kozen presents an enrichment of PML by introducing a fixed point
operator to its signature. Given a set of propositional symbols Λ and a set of
propositional variables Ξ, the set of formulas LPMC(Λ,Ξ) of the propositional mu-
calculus is

ϕ ::= α 8 (¬ϕ) 8 (ϕ⇒ ϕ) 8 (2ϕ) 8 (µξϕ) (B.17)

with α ∈ Λ, and ξ ∈ Ξ. Moreover, in (µξϕ), if the variable ξ occurs in ϕ then it
must be in scope of an even number of negations.

As models we take again Kripke structure 〈S,R, V 〉, but now with V : Λ∪Ξ→ 2S.
The extension of the valuation V to all formulas is now accomplished by setting

VK(µξϕ) =
⋂

{T ⊆ S : VK [ξ ← T ](ϕ) ⊆ T}. (B.18)

By VK [ξ ← T ] we mean the extended valuation V ′ such that V ′(ξ) = T and it is
identical to V otherwise.

Traditionally, the model-checking and satisfaction problem are defined over the
local satisfaction system. It was determined that the model-checking problem is
in NP∩co-NP [EJS93], and later, in the case of satisfaction, that it is EXPTIME-
complete [EJ00].
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The Hilbert calculus AXPMC

def
= AXPML+S+MU, given in [Koz83], for the global

satisfaction system SPMC is weakly complete [Wal95]:

S (ϕ[ξ ← ϕ]⇒ µξϕ);

MU (ϕ1[ξ ← ϕ2]⇒ ϕ2) ⊢ (µξϕ1⇒ ϕ2),

where by ϕ[ξ ← ψ] we denote the formula obtained from the formula ϕ by substi-
tution of all free occurrences of ξ by the formula ψ.

B.6.3 Computation tree logic

An important logic in verification is CTL [CE82], the computation tree logic.
Given a set of propositional symbols Λ, the set LCTL(Λ) of formulas is given by

ϕ ::= α 8 (¬ϕ) 8 (ϕ⇒ ϕ) 8 (Aβ)

β ::= (Xϕ) 8 (ϕUϕ) 8 (Gϕ)

where α ∈ Λ. For formulas A(Gϕ) and A(Xϕ) we omit the parentheses and write
AGϕ and AXϕ, respectively. The other temporal connectives are introduced as
abbreviations:

• Fϕ
ab
= (⊤Uϕ);

• EXϕ
ab
= ¬(AX¬ϕ);

• EFϕ
ab
= ¬(AG¬ϕ);

• EGϕ
ab
= ¬(AF¬ϕ);

• E(ϕ1Uϕ2)
ab
= ¬(AG¬ϕ2) ∧ ¬(A(¬ϕ2U(¬ϕ2 ∧ ϕ2))).

The semantics of CTL is defined over Kripke structures. A possible path in
K = 〈S,R, V 〉 is a sequence π = π(0)π(1) . . . ∈ Sω, such that (π(i), π(i+ 1)) ∈ R,
for all i ≥ 0. Let LK ⊆ Sω be the subset of all possible paths in K. In order to
extend the valuation V : Λ → 2S to all formulas we need also to extend it to path
formulas, such that VK(β) ⊆ Sω. Taking into consideration the previous used rules
for negation and implication, we add the additional rules:
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• VK(Aβ) = {s ∈ S : for all π ∈ LK with π(0) = s, π ∈ VK(β)};

• VK(Xϕ) = {π ∈ LK : π(1) ∈ VK(ϕ)};

• VK(ϕ1Uϕ2) = {π ∈ LK : ∃i ≥ 0, π(i) ∈ VK(ϕ2), and ∀j < i, π(j) ∈ VK(ϕ1)};

• VK(Gϕ) = {π ∈ LK : ∀i ≥ 0, π(i) ∈ VK(ϕ)}.

As in the previous examples, Kripke structures define a local S
ℓ

CTL
(Λ) and a

global SCTL(Λ) satisfaction system.

The satisfaction problem for S ℓ
CTL

is EXPTIME-complete [EH85, FL79], and the
model-checking is linear on sizes of the formula and the model [CE82, CES86, QS82].

Consider the following set of axioms and rule:

C1 EX(ϕ1 ∨ ϕ2)⇔ (EXϕ1 ∨ EXϕ2);

C2 A(ϕ1Uϕ2)⇔ (ϕ2 ∨ (ϕ1 ∧ AXA(ϕ1Uϕ2)));

C3 AG(ϕ1⇒ ϕ2)⇒ (EXϕ1⇒ EXϕ2);

C4 AG(ϕ3⇒ (¬ϕ2 ∧ EXϕ3))⇒ (ϕ3⇒ (¬A(ϕ1Uϕ2)));

C5 AG(ϕ3⇒ (¬ϕ2 ∧ (ϕ1⇒ AXϕ3)))⇒ (ϕ3⇒ (¬E(ϕ1Uϕ2)));

CG ϕ ⊢ (AGϕ).

The Hilbert calculus AXCTL

def
= AXCPL+{C1,C2,C3,C4,C5,CG} is sound and

weakly complete for both systems [EH85].

B.6.4 Linear temporal logic

Another popular logic in Verification is LTL [Pnu77], linear temporal logic. The
previous consider set of path formulas can be extended with boolean operations and
considered as a satisfaction system SLTL(Λ) = 〈LLTL(Λ),MLTL,LTL〉 over paths. The
linear temporal logic has a single-sorted signature with set of formulas:

ϕ ::= α 8 (¬ϕ) 8 (ϕ⇒ ϕ) 8 (Xϕ) 8 (ϕ1Uϕ2)

where α ∈ Λ. And by abbreviation we obtain the other temporal connectives:
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• Fϕ
ab
= (⊤Uϕ);

• Gϕ
ab
= ¬F(¬ϕ).

The class of models MLTL consists of pairs 〈K, π〉, where K = 〈S,R, V 〉 is a
Kripke structure and π ∈ LK (where as before LK is the set of possible paths in K).
Using the rule

VK(α) = {π ∈ LK : π(0) ∈ V (α)}, (B.19)

the correspondent set-theoretic operation of negation and implication, and the above
rules for temporal connectives X and U, we extend the valuation V : Λ → 2S to all
path formulas ϕ, such that VK(ϕ) ⊆ Sω.

The satisfaction relation LTL is defined for a model 〈K, π〉 and a formula ϕ by

〈K, π〉 LTL ϕ iff π ∈ VK(ϕ).

Consider the following axioms and inference rule:

L1 (G(ϕ1⇒ ϕ2)⇒ (Gϕ1⇒ Gϕ2));

L2 (X(¬ϕ)⇔ (¬Xϕ));

L3 (X(ϕ1⇒ ϕ2)⇒ (Xϕ1⇒ Xϕ2));

L4 (G(ϕ1⇒ Xϕ2)⇒ (ϕ1⇒ Gϕ2));

L5 (ϕ1Uϕ2)⇔ (ϕ2 ∨ ϕ1 ∧ X(ϕ1Uϕ2));

LG ϕ ⊢ Gϕ.

The set AXLTL

def
= AXCPL +{L1,L2,L3,L4,L5,LG} is a sound and weakly com-

plete Hilbert calculus to the satisfaction system SLTL, [GPSS80]. The satisfaction
and model-checking problems are PSPACE-complete [SC85]. In particular, is it
proved in [SC85] that every satisfiable formula ϕ has an ultimately periodic model of
size less than 2size(ϕ)+1+4size(ϕ)+1, i.e. a finite path with a initial segment of length
less than 2size(ϕ)+1, followed by loop of length less than 4size(ϕ)+1.

In the sequel, we will be also consider Kripke structures where the valuation is
V : S → 2Λ; and V (s) will be treated either as a subset of Λ or as a function.
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B.6.5 Real closed fields

In order to preform reasoning over probability values, we need in general to
have all valid formulas about real numbers. For that purpose, we consider the
decidable first-order theory of real closed fields, RCF, over the non-logical symbols
{=,+, ., <, 0, 1}, [Tar51].

Given a denumerable set of variable X = {x1, x2, . . .}, the first-order language
LRCF(X) of RCF is given by

t ::= 0 8 1 8 x 8 (t+ t) 8 (t.t)

ϕ ::= (t = t) 8 (t < t) 8 (¬ϕ) 8 (ϕ⇒ ϕ) 8 (∀xϕ)

with x ∈ X.

The semantics is defined over the domain R and given by assignments γ : X → R

such that:

• the denotation of terms [[t]]γ is defined by

– [[0]]γ = 0;

– [[1]]γ = 1;

– [[x]]γ = γ(x);

– [[t1 + t2]]γ = [[t1]]γ + [[t2]]γ ;

– [[t1.t2]]γ = [[t1]]γ .[[t2]]γ ;

• the satisfaction relation RCF is given by

– γ RCF (t1 = t2) iff [[t1]]γ = [[t2]]γ ;

– γ RCF (t1 < t2) iff [[t1]]γ < [[t2]]γ ;

– γ RCF (¬ϕ) iff γ 6RCF ϕ;

– γ RCF (ϕ1⇒ ϕ2) iff γ 6RCF ϕ1 or γ RCF ϕ2

– γ RCF (∀xϕ) iff γ′ RCF ϕ for all assignments γ′ ∼x γ (x-equivalent
to γ), i.e such that γ′ agrees with γ in the values of all variables different
from x.
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And we write SRCF(X) = 〈LRCF(X),RX ,RCF〉 to denote the RCF satisfaction
system.

One of the main characteristics of RCF is that it has elimination of quantifiers
[Tar51, Hod93], i.e for each formula ϕ(x1, . . . , xn) (where x1, . . . , xn occur free in
ϕ) it is possible to build a formula ψϕ(x1, . . . , xn) with the same free variables and
without quantifiers, such that γ RCF ϕ iff γ RCF ψϕ, for all γ ∈ RX . And the
decidability of it is a consequence of the fact that it has quantifier elimination.

Consider the axiomatization AXRCF, [Tar51, Sho67], given by adding to the first-
order axiomatization AXFOL the following axioms:

F1 ∀x∀y∀z((x + y) + z) = x+ (y + z);

F2 ∀x(x+ 0 = x);

F3 ∀x∃y(x+ y = 0);

F4 ∀x∀y(x+ y = y + x);

F5 ∀x∀y∀z((x.y).z = x.(y.z));

F6 ∀x(x.1 = x);

F7 ∀x((x 6= 0)⇒ (∃y(x.y = 1)));

F8 ∀x∀y(x.y = y.x);

F9 ∀x∀y∀z(x.(y + z) = (x.y) + (x.z));

F10 (0 6= 1);

F11 ∀x(¬(x < x));

F12 ∀x∀y∀z((x < y) ∧ (y < z)⇒ (x < z));

F13 ∀x∀y((x < y) ∨ (x = y) ∨ (y < x));

F14 ∀x∀y∀z((x < y)⇒ ((x+ z) < (y + z)));

F15 ∀x∀y(((0 < x) ∧ (0 < y))⇒ (0 < x.y));

F16 ∀x((0 < x)⇒ (∃y(y.y = x)));
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F17 ∀x1 . . .∀x2n∃y(y2n+1 +
∑2n

i=0 xiy
i = 0).

One has that axioms F1-F10 are the field axioms, axioms F11-F13 are the
axioms for linear orders, axioms F14-F15 are the additional axioms for ordered
fields, and axioms F16-F17 are the additional axioms for real closed fields. The
set of valid formulas over the class of all real closed fields is exactly the set of
formulas valid over all the real assignments in RX . Therefore, the axiomatization
AXRCF for RCF, [Tar51], is a sound and weakly complete axiomatization for SRCF(X).
Moreover, the satisfaction problem for SRCF(X) is in general 2EXPSPACE, but for
the existential fragment (formulas of the form ∃x1 . . . ∃xnϕ(x1, . . . , xn), with just
existential quantification) the problem can be solved in PSPACE [Can88], and a
witness (assignment) can be obtained in EXPSPACE [BPMF03].

For the sequel, another important fact is that all algebraic real numbers can
be represented by a RCF existential formula [Tar51, BPMF03]. Hence, this fact
allows us to integrate algebraic number into the logic language. The next example
illustrates this property.

Example B.6.1. Consider the RCF formula

ϕ(x1) = ∃x2((x1 + (1 + 1)x1 + (1 + 1)x2 = 0) ∧ (0 < x1) ∧ (x2 + 1 = 0)).

The variable x2 represents the value −1 and we have that γ RCF ϕ(x1), for assign-
ment γ : X → R, if and only if γ(x1) = 1 +

√
2.

Let Alg(R) be the countable set of all algebraic real numbers. For each algebraic
real number r ∈ Alg(R) we consider the RCF existential formula ϕr(x), with one and
only one free variable x ∈ X, such that for all γ : X → R, γ RCF ϕr(x) iff γ(x) = r.

Finally, we remark that the satisfaction system defined in this example SRCF(X)
and its properties will be fundamental to obtained the main results of Chapter 3.
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