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Abstract

Herein we study the probabilization of Quantified Linear Temporal
Logic, which we call PQLTL. PQLTL can reason about any semialge-
braic constrain over probabilities of paths of a Markov chain satisfying
a QLTL formulae. PQLTL is related with other commonly used prob-
abilistic temporal logics (such as PLTL, PCTL and PCTL∗) that were
devised only to specify properties for which model checking algorithms
are amenable and whose basic results, such as completeness and decid-
ability, were never investigated.

In this paper, we devise a strong and a weak SAT algorithm for
PQLTL. The former relies in [n+2]-EXPSPACE and the latter in [n+1]-
EXPSPACE where n is the alternation depth of the quantifiers in the
input formula. The weak SAT algorithm for the existential fragment,
which has all the expressive power of PQLTL, is in EXPSPACE. Another
relevant fragment of PQLTL is the linear closure of PCTL∗ without
nesting of the probability operator. We show that the SAT problem
for this fragment is PSPACE complete. Capitalizing in these results,
we derive a complete calculus for PQLTL and illustrate it with a toy
example.

1 Introduction

Temporal logics, such as CTL, LTL and CTL∗, are widely used to reason
about distributed and dynamic systems, with multiple applications to di-
verse fields such as software and hardware verification [6, 11, 20], biological
systems [4], or even Philosophy [16]. Despite their expressiveness, these
logics are not suited for quantitative reasoning about common probabilistic
systems, which has been an active research subject. Because of this, alter-
native semantics over Markov processes have been proposed and thoroughly
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studied. Logics like PLTL [12, 26, 27], PCTL or PCTL∗ [1, 10, 15], have
emerged and are nowadays commonly used for these purposes. These logics
have been used more as a specification language than as a proper “logic”,
as they are only used to specify properties intended to be model-checked
against some Markov model. As far as the authors know, the completeness
and satisfiability problems for these logics were never studied. In this paper
we investigate these questions, although acknowledging that the problems
we are tackling have less applications than model checking.

We introduce a logic to reason about probabilities of paths of a Markov
chain, following the line of research on probabilistic temporal logic (PLTL)
introduced in [26, 27]. We consider two enrichments to PLTL. First, we deal
with probabilities of sets of paths that can be expressed in quantified linear
temporal logic (QLTL). Secondly, we consider semialgebraic sets over prob-
abilized QLTL formulae (i.e., the set of polynomial inequations formed by
probabilistic QLTL expressions, algebraic real numbers and variables). We
call this language Probabilistic Quantified Linear Temporal Logic (PQLTL).

We note that other probabilistic logics (PCTL, PCTL∗) allow higher-
order probabilities (events that are defined by probabilistic assertions) but
these features have shown lack of intuition and applicability, while still not
addressing simple issues regarding lack of expressiveness. Our logic, while
not allowing for this nesting of probability operators, is still rich enough to
specify very relevant properties, such as probabilistic fairness or almost-sure
termination but also many previously disregarded requests easily expressible
in natural language.

For example, while requests of the form “with probability of 99%, the
process eventually reaching the critical state implies that a flag will always
be raised” can easily be expressed in PCTL, other reasonable requests such as
“The probability of the process entering region 5 is at least double the prob-
ability of entering regions 1 to 4” or “The probability of reaching Undecided

is at least 10% less than reaching either Accept or Reject” are just not ex-
pressible in this logic (or any other logic the authors are aware of). PQLTL
is able to express this kind of assertions.

Moreover, the introduction of quantification over propositional symbols
allows reasoning about events that only happen with some periodicity. This
is a very useful feature when dealing with Markov chains. Indeed, the limit
behavior of aperiodic chains is well known, but limit properties of periodic
Markov chains are hard to study. By considering only transitions constant
modulo the period of the chain, we can eventually reduce a periodic chain
to a set of aperiodic subchains, which we know how to handle.

We derive algorithms for the decidability of PQLTL, and a complete
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Hilbert calculus. The algorithms are presented in two different versions: a
weak SAT algorithm that just decides whether a certain formula is satisfi-
able, and a strong SAT algorithm that provides a model for a given satisfiable
formula.

Concerning the SAT algorithm, the strong version relies in [n+2]-EXPSPACE
whereas the weak version is in [n+1]-EXPSPACE, where n is the alternation
depth of the quantifiers in the input formula. The weak SAT algorithm for
the existential fragment, which has all the expressive power of PQLTL, is in
EXPSPACE.

While PQLTL has theoretically interesting properties, the SAT algorithm
proposed is very hard, which severely limits its application. However, if
we restrict ourselves to linear inequalities without quantification, we still
have relevant quantitative expressiveness while significantly reducing the re-
quirements of the SAT algorithm. We call this more “practical” logic by
PLTL+. Indeed, we show that the SAT problem for PLTL+ is PSPACE-
complete, which may be surprising, since the SAT algorithm for simple
non-probabilistic LTL is already in this complexity class. Moreover, PCTL∗

without nesting of the probability operator is a sublanguage of PLTL+.
Capitalizing in the SAT algorithms, we derive a weakly complete calculus

for PQLTL, and consequently for all the sublogics considered. We illustrate
the calculus with a toy example using a PONGTM game. We leave less
academic applications of the calculus for future work.

We also present a model-checking algorithm, however the algorithm is
straightforwardly obtained by applying well-know reduction of QLTL formu-
lae to deterministic Rabin automata together with the SAT algorithm for
the existential theory of the real numbers. This result is a simple generaliza-
tion of an already existing automata-theoretical algorithm for PCTL∗ [10],
and so it is only shown in Appendix, for the sake of completeness.

The structure of the paper is the following; in Section 2 we introduce
PQLTL, namely by providing its syntax and semantics. Both SAT algo-
rithms for the logic are introduced in Section 3. In Section 4, we present the
sublogic containing only linear inequalities for which we obtain a PSPACE
SAT algorithm. The complete calculi for all the logics considered are devel-
oped in Section 5, where we also illustrate its use with a simple example.
Finally, we draw some conclusions and future work.
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2 Probabilization of quantified linear temporal logic

2.1 PQLTL Syntax

The construction of PQLTL is the following: a set of formulae is taken at
a base level - basic formulae - and another set is built over it at an higher
level - global formulae. A set of probabilistic terms is also considered. The
syntax is described in Table 1 by mutual recursion.

β := p 8 (¬β) 8 (β⇒ β) 8 Xβ 8 βUβ 8 ∃p.β basic formulae

t := z 8 0 8 1 8
∫

β 8 (t+ t) 8 (t · t) probabilistic terms

δ := (t ≤ t) 8 (∼δ) 8 (δ ⊃ δ) global formulae

where p ∈ Λ, z ∈ Z.

Table 1: PQLTL syntax

Basic formulae are simply QLTL formulae over a finite set Λ of propo-
sitional symbols, allowing for classical quantified temporal reasoning over
them. The usual abbreviations for falsum ⊥, disjunction (β1 ∨β2), conjunc-
tion (β1 ∧ β2), equivalence (β1 ⇔ β2) and universal quantification ∀p.β, as
well as for future (Fβ) and globally (Gβ) are henceforth used freely.

Probabilistic terms permit quantitative reasoning over the set of alge-
braic real numbers by introducing a set of algebraic real variables Z which,
together with addition, multiplication, 0, 1 and the equality relation of global
formulae, allow the representation of any algebraic real number. Measure
terms, terms of the form (

∫

β) denote the probability of satisfying β.
Global formulae are built by taking comparison formulae (t1 ≤ t2) as

atoms and building an analog of the propositional language over them. As
in the basic case, we will assume the analogs of usual abbreviations for global
falsum f , global disjunction (δ1∪ δ2), global conjunction (δ1 ∩ δ2) and global
equivalence (δ1 ≡ δ2). The comparison operators {=, 6=,≥, <,>} will also
be used as usual.

When no ambiguity arises, we shall drop the parenthesis.

2.2 PQLTL Semantics

In order to define the semantics for PQLTL, we need to build upon the
semantics for QLTL. These semantics are detailed in the Appendix and follow
the presentation by Sistla, Vardi and Wolper in [24]. From this point on, we
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shall assume that all QLTL formulae are given in prefix normal form, as in
Proposition A.9 in the Appendix, page 30.

The models of PQLTL are pairs, where the first element is a discrete
time Markov chain with states labeled by valuations over Λ and the second
element is an assignment over Z to the set of algebraic real numbers. In
the model-checking community, it is common to call these labeled Markov
chains by probabilistic deterministic transitions systems (PDTS) and we will
adopt this custom. We follow [2] for the formal definition; a PDTS is a tuple
M = (S, d0,T , L) where:

- S is a finite set of states, S = {s1, s2, ..., sN};

- d0 is the initial distribution, a probability distribution over S;

- T is the probabilistic transition function which assigns a probability
to each transition between states, that is, T : S× S→ [0, 1], s.t.

∀s∈S
∑

s′∈S

T (s, s′) = 1.

- L is the labeling function, assigning a valuation over Λ to each state.

To avoid technical complications, we assume T to be total (possibly
enriching it with pairs with probability zero).

There is a uniquely induced probability measure for each PDTS M and
state s0 over sets of paths that depart from s0. The measure is defined over
the sets of all paths departing from s0 with common prefixes (cylinders):

µM ,s0({π : π|k = s0s1...sk}) = T (s0, s1)× T (s1, s2)× ...× T (sk−1, sk),

with the base case of all paths departing from s0 having measure set to 1
(since µM ,s0 is σ-additive, this is enough to fully define the measure [17]).
When the context is evident and no ambiguity arises, we shall drop the
subscript M .

Given a model (M = (S, d0,T , L), ρ : Z → R), the denotation of proba-
bilistic terms is as follows:

• [[z]]M ,ρ = ρ(z); [[0]]M ,ρ = 0; [[1]]M ,ρ = 1;

• [[t1 + t2]]M ,ρ = [[t1]]M ,ρ + [[t2]]M ,ρ; [[t1.t2]]M ,ρ = [[t1]]M ,ρ.[[t2]]M ,ρ; and

• [[
∫

β]]M ,ρ =
∑

si∈S
d0(si)µsi({π : (S, π, L) QLTL β, π [0] = si}).
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We must be cautious regarding the measurability of the sets {π : (S, π, L)
QLTL β, π [0] = si}. In [22, 24], it is shown that QLTL is exactly as expres-
sive as non-deterministic Büchi automata, which means that for each QLTL
formula β, there is a Büchi automaton over the alphabet {0, 1}Λ, Bβ such
that {L(π) : (S, π, L) QLTL β} = Lω(Bβ). Furthermore, in [26] (see Proposi-
tion A.16 in the Appendix, page 32), it is shown that the set of paths whose
associated sequence of valuations is accepted by Bβ is measureable, and so
the sets {π : (S, π, L) QLTL β, π [0] = si} are measureable.

Since the denotation of terms of the form
∫

β does not depend on the
assignment ρ, we will drop it from the denotation in some statements. It
will always be implied, in these cases, that the assertion is true for any
assignment ρ. Moreover, the satisfaction of global formulae is given by:

• M , ρ PQLTL (t1 ≤ t2) iff [[t1]]M ,ρ ≤ [[t2]]M ,ρ;

• M , ρ PQLTL (∼δ) iff M , ρ 6 δ; and

• M , ρ PQLTL (δ1 ⊃ δ2) iff M , ρ  δ2 or M , ρ 6 δ1.

Moreover, the notion of semantic entailment is introduced as usual:
Γ |=PQLTL δ iff, for every model (M , ρ), M , ρ PQLTL δ whenever M , ρ PQLTL

γ for each γ ∈ Γ. Whenever it is clear from the context which logic we are
interested in, we will drop the subscript.

Remark 2.1 Due to Proposition A.13 (in Appendix, page 31), we know
that we can rewrite any QLTL formula in order to obtain a formula in ex-
istential prenex normal form. This fact motivates the natural fragment of
PQLTL, PEQLTL, where we directly assume that the measure terms are built
using only formulae in existential prenex normal form. This syntactic frag-
ment allows us to obtain much better complexity bounds in the presented
algorithms.

Lemma 2.2 Let β, β1, ..., βm ∈ QLTL. For any PDTS M , we have that

[[
∫

β]]M = [[
∫

2m−1
∨

i=0

(β ∧ (
m
∧

j=1

bij))]]M =
2m−1
∑

i=0

[[
∫

(β ∧ (
m
∧

j=1

bij))]]M (1)

where bij =

{

βj if the j-th bit of i is 1,
(¬βj) otherwise.

Proof. For any β1, β2 ∈ QLTL the set of paths (in M ) that satisfy β1∧β2 and
the set of paths that satisfy β1∧(¬β2) are disjoint and their union is the set of
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paths that satisfy β1, we have that [[
∫

β1]]M = [[
∫

(β1∧β2)∨ (β1∧ (¬β2))]]M =
[[
∫

(β1 ∧ β2)]]M + [[
∫

(β1 ∧ (¬β2))]]M by additivity of the probability measure.
It is a simple exercise in induction to generalize this result. △

Notice that the syntax and semantics strictly contain the PLTL infor-
mally presented in [26, 27]. In addition, they allow quantitative reasoning,
namely through the use of variables and comparisons between terms. Read-
ers familiar with probabilistic temporal logics may wonder about the lack
of nesting of the probability operator like, for instance, in PCTL. It is the
opinion of the authors that nesting of probabilities is unintuitive, and for
the sake of simplicity, we have disregarded it in this work. Still, it must be
noticed that this means that some assertions in PCTL cannot be expressed
in PQLTL (and vice versa).

3 SAT algorithm for PQLTL

We now derive an algorithm for deciding the satisfiability problem for PQLTL.
This algorithm, although computationally demanding for PQLTL formulae
in general form, will be adapted to specific (but widely used) cases, resulting
in comparatively efficient algorithms. We will develop two versions of the
algorithm: one version will solve the classical SAT problem of determining
if there is any model that satisfies the input formula; the other version will
in fact provide a witness for the satisfiability. We will call these the weak
and strong SAT problems, respectively.

Given a PQLTL global formula δ, let gatmδ = {a1, ..., an} be the subset
of global atoms that occur in δ. Consider a countable set of propositional
symbols (or local atoms) Ξ = {ξ1, ...ξn, ...} and an injective map λ that
assigns a propositional symbol λ(ai) = ξi ∈ Ξ to each global atom in gatmδ;
this function can be extended to map PQLTL formulae δ into propositional
formulae λδ by simple structural induction. Let Vλ(gatmδ) be the set of
valuations over λ(gatmδ), that we will identify with {0, 1}n in the expected
way. Clearly, we have that λ(gatm(δ)) = atm(λδ).

We can use any classical SAT algorithm to check the satisfiability of
λδ. If λδ is not satisfiable, then δ is also not satisfiable and we are done.
Otherwise, let mol(λδ) (henceforth called the molecules of λδ) be the set of
all Φ ⊂ atm(λδ) such that the following propositional formula holds:

((
∧

ξi∈Φ

ξi) ∧ (
∧

ξi∈atm(λδ )\Φ

¬ξi))⇒ λδ. (2)
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Then, each formula λδ is equivalent to
∨

Φ∈mol(λδ)

((
∧

ξi∈Φ

ξi) ∧ (
∧

ξi∈atm(λδ)\Φ

¬ξi)). (3)

Which is just a syntactic characterization of the disjunctive normal form.
To prove satisfiability of δ, in addition to λδ being satisfiable, we must

have that
⋃

Φ∈mol(λδ)

((
⋂

ξi∈Φ

λ−1(ξi)) ∩ (
⋂

ξi∈atm(λδ)\Φ

∼λ−1(ξi))). (4)

must also be satisfiable. For each molecule Φk ∈ mol(λδ), we will denote
the expression

((
⋂

ξi∈Φ

λ−1(ξi)) ∩ (
⋂

ξi∈atm(λδ)\Φ

∼λ−1(ξi))). (5)

by µk, and abusively call it the k-th molecule of δ.

Lemma 3.1 The PQLTL formula δ is satisfiable iff there exists v ∈ Vλ(gatmδ )

such that v(λδ) = 1 and µv is satisfiable.

Proof. (⇒) Suppose δ is satisfiable. Let (M , ρ) be a model of δ and recall
gatmδ = {a1, .., an}. Consider

µ =
n
∧

i=1

αi where αi =

{

ai M , ρ  ai,
(∼ai) otherwise.

(6)

Then, obviously M , ρ  µ. Furthermore, this µ is associated with v ∈
Vλ(gatmδ) s.t. v(ai) = 1 iff M , ρ  ai, which is a witness for λδ.

(⇐) Suppose µv is satisfiable and v(λδ) = 1. Let (M , ρ) be a model of
µv. Then M , ρ  ai iff v(λ(ai)) = 1, by induction in the structure of δ,
M , ρ  δ:

- if δ = a ∈ gatm(δ), then v(λδ) = v(λ(a)) = 1 iff M , ρ  a, that is
M , ρ  δ;

- if δ = ∼δ1, then v(λδ) = v(λ(∼δ1)) = v(¬λ(δ1)) = 1− v(λ(δ1)) = 1 iff
v(λ(δ1)) = 0 iff, by IH, M , ρ 6 δ1 iff M , ρ  ∼δ1, that is M , ρ  δ;

- if δ = δ1 ⊃ δ2, then v(λδ) = v(λ(δ1 ⊃ δ2)) = v(λ(δ1) ⇒ λ(δ2)) =
max[1− v(λ(δ1)), λ(δ2)] = 1 iff v(λ(δ1)) = 0 or v(λ(δ1)) = 1 iff, by IH,
M , ρ 6 δ1 or M , ρ  δ2 iff M , ρ  δ1 ⊃ δ2, that is M , ρ  δ.
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△

We will now propose a SAT algorithm for a molecule µk. If, for all k,
this algorithm returns no model, then δ is not satisfiable. If it does return
a model for some k, then that model also satisfies δ.

Before fixing a µk, consider the set of QLTL formulae that occur in δ that
are not subformulae of other QLTL formula and denote it by Θ(δ) (essentially,
β ∈ Θ(δ) iff

∫

β is subterm of δ). Since Θ(µk) = Θ(δ) for all k, so we will
denote this set just by Θ. For the remaining, we fix an enumeration of Θ,
β1, ..., βl, and denote the set {0, 1}l by VΘ.

Fix now a µk. We will consider, for each βi ∈ Θ, the disjunction of its
“molecules” in Θ:

βi ≡
∨

σ ∈ VΘ :

σ(βi) = 1

(βi ∧ (
∧

σ(βj) = 1,

j 6= i

βj ∧
∧

σ(βj) = 0,

j 6= i

¬βj)). (7)

Where σ(βi) = 1 if the i-th bit of σ is 1, σ(βi) = 0 otherwise. Let us now
assign, to each σ ∈ VΘ, an algebraic real variable xσ 6∈ Z indexed by a binary
integer σ identified with σ in the obvious way. Intuitively, this variable will
take on the value of the denotation of its corresponding molecule of formulae
of Θ in the output PDTS M :

xσ = xσ1,...,σl
= [[

∫

∧

σj=1

βj ∧
∧

σj=0

¬βj]]M . (8)

Where σi represents the i-th bit of σ. Therefore, by Lemma 2.2,

[[
∫

βi]]M = [[
∫

∨

σ ∈ VΘ :

σ(βi) = 1

(βi ∧ (
∧

σ(βj) = 1,

j 6= i

βj ∧
∧

σ(βj) = 0,

j 6= i

¬βj))]]M = (9)

=
∑

σ ∈ VΘ) :

σ(βi) = 1

[[
∫

(βi ∧ (
∧

σ(βj) = 1,

j 6= i

βj ∧
∧

σ(βj) = 0,

j 6= i

¬βj))]]M =
∑

σ ∈ VΘ :

σi = 1

xσ.

Each atom in uk can now be written as an inequality between polyno-
mials in xσ and Z variables, taking ¬(t1 ≤ t2) as (t1 > t2) and the other
obvious syntactic shortcuts. In addition, we must have that xσ ≥ 0 and
∑

σ
xσ = 1. Therefore, any model satisfying µk must also satisfy the fol-

lowing system of inequations:
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α1k

α2k

...
αnk
∑2l

i=0 xi = 1
xi ≥ 0

where αik is the i-th literal of µk . (10)

Before we solve the system, we must also include one additional restric-
tion in non-feasible xσ, that is, xσ whose associated QLTL molecule

∧

σj=1

βj ∧
∧

σj=0

¬βj (11)

is not satisfiable. For each such variable, we add “xσ = 0” to the system.
By using the well-known SAT algorithm [3] for the existential fragment

of the first-order theory of real ordered fields, we can check whether the
system has solutions. If this system has at least one solution, then we can
construct the witness for the SAT Algorithm for δ, that we describe next.

Consider the individual QLTL models Mσ associated with each xσ 6=
0, regarding them as a Markov chains with transitions of probability 1.1

Consider the disjoint union of all these models, and starting distribution
on the initial state of each model Mσ with probability pσ = xσ; then M
is a PDTS. Consider also the assignment ρ that maps each real algebraic
variable in δ to its solution in the previous system. And so, (M , ρ) witness
the satisfiability of δ.

The procedure is summarized in Algorithm 1.

Theorem 3.2 Algorithm 1 is correct, i.e., if Algorithm 1 returns a model,
then that model witnesses the satisfiability of δ.

Proof. If Algorithm 1 returns a model, then each M σ satisfies φσ corre-
sponding only to that σ, because φσ contains at least one conjunct that
is the negation of the respective conjunct in φσ′ , σ 6= σ′. Then, on M σ′

seen as a Markov chain with transitions of probability 1, the measure of
the paths that satisfy φσ is 1 if σ′ = σ (there is only one path and it sat-
isfies φσ), and 0 otherwise (there is only one path and it does not satisfy
φσ). Therefore, [[

∫

φσ]]M =
∑

si∈S
d0(si)µsi({π : π QLTL

∫

φσ, π [0] = si}) =

1If a QLTL SAT algorithm, for some reason, returns a branching model, there will

always be a non-branching model satisfying the same formula obtained by considering a

path in the original model
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Algorithm 1: StrongSATPQLTL(δ)

Input: PQLTL formula δ
Output: PQLTL model (M = (S, di,T , L), ρ) or no model

compute λδ, atm(λδ);1

foreach v ∈ Vλ(gatmδ) such that v(λδ) = 1 do2

compute µv, Θ;3

κ←− [































α1v

α2v

...
αnv
∑

{σ∈VΘ} xσ = 1

xσ ≥ 0

;

4

foreach
∫

βi ∈ κ do5
∫

βi ←−[
∑

{σ∈VΘ:σ(βi)=1} xσ;6

end7

foreach xσ do8

φσ ←−
∧

σ(i)=1 βi ∧
∧

σ(i)=0(¬βi);9

M σ ←− StrongQLTLSat(φσ);10

if M σ = no model then11

κ←− [ κ ∩ xσ = 0;12

end13

end14

s←− ∃StrongRealSat(κ);15

if s = no solution then16

goto next µv in line 2;17

end18

M =
⋃

σ∈VΘ
M σ ;19

S = SM ; d0 = {xσ1 , ..., xσ2l+1
} over {s

Mσ1
0 , ..., s

Mσ
2l+1

0 } for xσ 6= 0;20

L = LM ; T (s1, s2) = 1 iff s1 → s2 in the respective M σ;21

return m = (S, d0,T , L) and ρ(x) = κ(x) for x ∈ Z ;22

end23

return no model ;24
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∑

σ′∈V d0(s
σ′

0 )µ
sσ

′
0
({π : π QLTL

∫

φσ, π [0] = sσ
′

0 }) = d0(s
σ
0 )µsσ0 ({π : π QLTL

∫

φσ, π [0] = sσ0}) +
∑

σ′ 6=σ d0(s
σ′

0 )µ
sσ

′
0
({π : π QLTL

∫

φσ′ , π [0] = sσ
′

0 }) =

d0(s
σ
0 )1 +

∑

σ′ 6=σ d0(s
σ′

0 )0 = xσ.

We also have that βi is satisfied if
∨

{σ∈Vp(µ):σ(βi)=1} φσ is satisfied since

each of the paths that satisfy βi satisfy also one (and only one) φσ such
that σ(βi) = 1. On the other hand, since each of these paths satisfy only
one such φσ, we have [[

∫
∨

{σ∈VΘ:σ(βi)=1} φσ]]M =
∑

{σ∈VΘ:σ(βi)=1}[[
∫

φσ]]M =
∑

{σ∈VΘ:σ(βi)=1} xσ.
Since these values and the values assigned to each ρ(x) are exactly the

solutions of the system, each inequality in some µv (the one for which output
is produced) must hold for this model. But satisfaction of each inequality
means satisfaction of µv, which means δ is satisfiable by Lemma 3.1. △

Lemma 3.3 If µv is satisfiable, then the foreach command at line 2 must
exit in line 22.

Proof. All steps of the algorithm are computations of total functions, there-
fore, the cycle quits. If the cycle quits, it must exit either in line 24 or in
line 22. Suppose that it exits in line 24. Then the system κ has no solution.

On the other hand, if µv is satisfiable, there must be a model M and
assignment ρ such that M , ρ  αiv, where αiv is the i-th literal of µv. For
this model, the denotation of each measure term must take on a value such
that the polynomial equation defined by each αiv is satisfied.

By Lemma 2.2,

[[
∫

β]]M ,ρ =

2m−1
∑

i=0

[[
∫

(β ∧ (

l
∧

j=1

bij))]]M ,ρ

for the basic subformulae β1, ..., βl of Θ.
By the same lemma,

1 = [[
∫

⊤]]M ,ρ =

2m−1
∑

i=0

[[
∫

(⊤ ∧ (

l
∧

j=1

bij))]]M ,ρ = [[
∫

(

l
∧

j=1

bi,j)]]M ,ρ.

From the semantics of PQLTL, [[
∫

γ]]M ′,ρ ≥ 0 for any basic (QLTL) for-
mula γ, model (M ′, ρ).

Finally, if any QLTL formula γ is not satisfied by some path, then
[[
∫

γ]]M ′,ρ = 0 regardless of the model (M ′, ρ).
Consider now the values for algebraic variables in Z assigned by ρ and

xσ = [[
∧l

j=1 bij ]]M ,ρ where bij = βj if the i-th bit of σ is 1, bij = (¬βj)
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otherwise. It is clear from the previous points that these xσ witness the
consistency of the system κ, which is a contradiction.

Therefore the cycle must exit at line 22. △

Theorem 3.4 Algorithm 1 is adequate, i.e., if Algorithm 1 returns no
model, then formula δ is not satisfiable.

Proof. Suppose δ is satisfiable. Then, by Lemma 3.1, there is µv satisfiable,
s.t. v ∈ Vλ(gatmδ) and v(λδ) = 1. Algorithm 1 will enter the foreach at line
2 at least once with such µv. By Lemma 3.3, Algorithm 1 must exit at line
22 and therefore, cannot return no model. △

Theorem 3.5 Algorithm 1 decides the strong satisfiability problem for
PQLTL in [n+2]-EXPSPACE, where n is the alternation depth of the quan-
tifiers in the input.

Proof. By Theorem 3.2 and Theorem 3.4, Algorithm 1 clearly decides the
satisfiability problem for PQLTL.

Storage of atm(λδ) in line 1 requires O(|δ|) space.
After each iteration of the cycle in line 2, if the algorithm has not finished,

we can discard all computations done inside the cycle before starting over,
so the number of iterations does not influence the space requirements of the
algorithm.

Computation of µv and Θ can be done in O(|δ|). Storing system κ,
however, requires storing a variable for each σ ∈ VΘ, which takes O(2|Θ|) =
O(2|δ|).

There is a polynomial number of βi, so the substitution in line 6 does
not increase space constraints.

The cycle of line 8 runs O(2|δ|) times, each time either storing M σ

or adding “xσ = 0” to the system. φ can be computed in O(|δ|) and
adding “xσ = 0” takes constant space. However, StrongQLTLSat is in
(n+1)-EXPSPACE (c.f. Proposition A.15 in the Appendix, page 31), and,
because we consider terms of the form ¬β, we actually need an [n+2]-
EXPSPACE algorithm. Therefore, each M σ takes [n+2]-EXPSPACE space in
|δ|. There are O(2|δ|) variables, each requiring saving at most one M σ this
means that this cycle uses space of the order O(2|δ|)O((n+2)-exp{p(|δ|)}) =
O((n+2)-exp{p(|δ|)}). Notice the size of the system remains O(2|δ|).

In [3](c.f. Theorem A.18 in the Appendix, page 32), it is shown that
the strong algorithm for the satisfaction of Real Algebraic Numbers is in
EXPSPACE. Since we actually need a solution for the system, this means
line 15 takes O(22

|δ|
) space.
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Line 19 adds no complexity, as it is merely a union of previously stored
objects and line 20 just collects one subset of already existent structures
(xσ’s and s0’s).

Therefore, the space complexity of the algorithm is

O(|δ|) +O(22
|δ|
) +O((n+2)-exp{p(|δ|)}) = O((n+2)-exp{|δ|}),

which is [n+2]-EXPSPACE. △

Corollary 3.6 Algorithm 1 decides the strong satisfiability problem for
PEQLTL in 2-EXPSPACE.

Algorithm 1 can easily be adapted to solve the weak version of the SAT
problem. The impact of relaxing the requirements is twofold: in line 10,
we need only to consider the weak version of the SAT algorithm for QLTL,
which is n-EXPSPACE (in our case, since we consider terms of the form
(¬

∫

β), we introduce an extra alternation, leaving us in [n+1]-EXPSPACE).
Furthermore, we do not have to save the witnesses, only an indicator of
the satisfiability of each φσ. Therefore, the cycle of line 8 reduces to [n+1]-
EXPSPACE complexity. The other consequence of considering the weak SAT
is that in line 15, where we need only to check the consistency of system κ.
By Theorem A.18, this procedure can be done in PSPACE over the size of
the system, which is EXPSPACE. Therefore, line 15 needs only EXPSPACE
resources. This is of particular importance for the PEQLTL weak SAT prob-
lem, since for n ≥ 1, the QLTL SAT already dominates the 2-EXPSPACE
complexity of solving system κ, but for n = 0 (PEQLTL), the complexity of
the whole algorithm would be dominated by line 15. We refrain from explic-
itly writing this algorithm for the weak SAT problem since it is very similar
to Algorithm 1. Instead, we present the following modified algorithm:

Theorem 3.7 Algorithm 2 decides the weak satisfiability problem for PQLTL
in [n+1]-EXPSPACE, where n is the alternation depth of the quantifiers in
the input.

Corollary 3.8 Algorithm 2 decides the weak satisfiability problem for PEQLTL
in EXPSPACE.

4 Restriction to non-quantified linear inequalities

- PLTL+

We now consider the case of non-quantified LTL. The SAT algorithm for a
single LTL formula in a probabilistic setting is essentially the same as the

14



Algorithm 2: WeakSATPQLTL(δ)

Input: PQLTL formula δ
Output: δ satisfiable or no model

Consider Algorithm 1 and:1

replace line 10 with y ←−WeakQLTLSat(φσ);2

replace line 11 with if y = no model ;3

replace line 15 with s←− ∃WeakRealSat(κ);4

delete lines 19, 20 and 21;5

replace line 22 with return δ satisfiable.6

SAT for the non-probabilistic version. However, when we consider quanti-
tative reasoning as introduced in the syntax of PQLTL, the procedure be-
comes much less obvious, since different measure terms can share proposi-
tional symbols. Theorem 3.5 proves the decidability of the SAT problem for
PQLTL, which is strictly more complicated than this problem, but the algo-
rithm presented hinges on the fact that an exponential number of variables
(in |δ|) is used to represent the probability of each conceivable configura-
tion of QLTL statements or their negations in the original formula δ. This
representation can be much simplified. In this section, we show that con-
sidering non-quantified LTL formulae and a simple syntactic restriction, we
can adapt Algorithm 1 to only consider a number of these variables linear
on the size of the original formula, assuming all other to be 0. This will
allow a significant reduction on the space requirements of the algorithm.

4.1 Syntatic restriction

A critical requirement for the new algorithm is that we must have a sys-
tem of linear inequalities instead of a polynomial one. This can be done by
weakening PQLTL, removing (besides the quantification, obviously) multi-
plication at the term level and leaving only sum as an algebraic connective.
We baptize this weaker logic by PLTL+. Its syntax is given in Table 4.1

β := p 8 (¬β) 8 (β⇒ β) 8 Xβ 8 βUβ basic formulae
t := z 8 8

∫

β 8 (t+ t) 8 (c.t) probabilistic terms
δ := (t ≤ t) 8 (∼δ) 8 (δ ⊃ δ) global formulae

where p ∈ Λ, z ∈ Z, c is a real algebraic number.

Table 2: PLTL+ syntax

15



The semantics for PLTL+ is the restriction of the semantics of PQLTL
obtained by removing the denotation of multiplication. Notice that PLTL+

is still very expressive and that most of the natural language assertions con-
cerning probabilities (of traces) are expressible within it. The most interest-
ing feature of PLTL+ is that satisfiability can be checked within PSPACE,
as we show next.

4.2 SAT algorithm for PLTL+

We now present the (weak) SAT algorithm for PLTL+. It is an adaptation of
Algorithm 2 that removes the need to consider all xσ variables at once, thus
reducing the space complexity. Notice that the strong version of the SAT
problem for this problem is in EXPSPACE, since the strong SAT for LTL
reduces to it and therefore, in this case, the previous algorithms can be used
without increasing the required complexity of the procedure. Algorithm 3
describes the procedure.

Theorem 4.1 Algorithm 3 is correct, i.e., if Algorithm 3 returns δ satisfiable,
then δ is indeed satisfiable.

Proof. The proof of correction for this algorithm mimics the proof of cor-
rection of Algorithm 1 with the obvious changes in the domain of the sums
and removing the construction of the witnesses. △

Naturally, there is the concern that by considering only subsets of xσ of
size at most |δ| + 1, we might leave out models where the formula would
be satisfied. We claim this is not the case by showing that the existence
of such models implies the existence of at least one suitably sized (|{xσ 6=
0}| ≤ |δ|+ 1) model that is found by Algorithm 3.

Theorem 4.2 Algorithm 3 is adequate, i.e., if Algorithm 3 returns no
model, then formula δ is not satisfiable.

Proof. Suppose δ is a PLTL+ satisfiable formula; then Algorithm 1 applied
to δ returns a PDTS M and assignment ρ such that M , ρ  δ. Consider now
the system stored in memory when Algorithm 1 is at line 22, just before
exiting. Remove the 2l conditions xσ ≥ 0, all conditions of the form xσ = 0
and all the corresponding xσ. This transformed system has |atms(δ)| + 1
inequations and these inequations are linear, since δ is a PLTL+ formula.
Furthermore, the system has a nonnegative solution (the set of values of
xσ that would be outputted). Then, from linear programming [9], there
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Algorithm 3: Sat PLTL+(δ)

Input: PLTL+ formula δ
Output: δ satisfiable or no model

compute λδ, atm(λδ);1

foreach v ∈ Vλ(gatmδ) such that v(λδ) = 1 do2

compute µv, Θ;3

κ←− [















α1v

α2v

...
αnv

;

4

foreach V ⊆ VΘ s. t. 0 < |V | ≤ |δ|+ 1 do5

foreach
∫

βi ∈ κ do6
∫

βi ←−[
∑

{σ∈V :σ(pi)=1} xσ;7

end8

κ←−[ κ ∩

{ ∑

σ∈V xσ = 1
xσ ≥ 0 for σ ∈ V

;
9

s←− LinearSolve(κ);10

if s = no solution then11

break;12

end13

foreach xσ 6= 0 do14

φσ ←−
∧

σ(i)=1 βi ∧
∧

σ(i)=0(¬βi);15

y ←−WeakLTLSat(φσ);16

if y = no model then17

goto next V in line 5;18

end19

end20

return δ satisfiable;21

end22

end23

return no model ;24
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is a solution for the system with at most |atms(δ)| + 1 variables taking
values different from 0. Consider this solution and construct M ′ from M
reassigning probabilities according to the new values of xσ and discarding
unneeded M σ . It is clear that M

′, ρ  δ, since the denotations of terms yield
the same values.

Furthermore, this particular set of xσ (different form 0) has size at most
|atms(δ)| + 1, so it will eventually be considered in the cycle in line 2 of
Algorithm 3. At least in this iteration of the cycle, the algorithm must exit
at line 21 and therefore, cannot return no model. △

Theorem 4.3 Algorithm 3 decides the weak satisfiability problem for PLTL+

in PSPACE.

Proof. By Theorem 4.1 and Theorem 4.2, Algorithm 3 clearly decides the
satisfiability problem for PLTL+.

Storage of atm(λδ) in line 1 requires O(|δ|) space.
After each iteration of the cycle in line 2, if the algorithm has not finished,

we can discard all computations done inside the cycle before starting over,
so the number of iterations does not influence the space requirements of the
algorithm.

Computation of µv and Θ can be done in O(|δ|). Storing system κ,
requires storing a variable for each of |atms(δ)|+1 σ ∈ VΘ, which also takes
O(|δ|).

There is a polynomial number of βi, so the substitution in line 7 leaves
the algorithm still in O(p1(|δ|)), for some polynomial p1.

Line 9 requires an additional O(|δ|) space. Notice the size of the system
remains O(p2(|δ|)), for some polynomial p2.

It is well known from linear algebra that the algorithm for the satisfac-
tion of systems of linear inequations is in P, which means that at line 10,
the algorithm is still in O(p3(|δ|)) space, for some polynomial p3. Notice
that considering only linear systems avoided once again an increase in the
complexity of the algorithm.

The cycle of line 14 runsO(|δ|) times, but it does not need to save any in-
formation at each iterations, so the space complexity does not increase with
each iteration. Moreover, φσ can be computed in O(|δ|), and WeakLTLSat

is in PSPACE [23]. These means that this cycle uses space of the order
p4(O(p5(|δ|))) = O(p6(|δ|)), for polynomials p4, p5 and p6.

Therefore, the space complexity of the algorithm is O(|δ|)+O(p3(|δ|))+
p4(O(p5(|δ|))) which is PSPACE. △

Theorem 4.4 The satisfiability problem for PLTL+ is PSPACE-complete.
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Proof. Algorithm 3 shows the satisfiability problem for PLTL+ can be solved
in PSPACE.

LTLSat is PSPACE complete [23]. Given a LTL formula β, we can ob-
viously build the formula (

∫

β > 0), from β in constant time. If there is a
model for β, at least that model seen as a Markov chain satisfies (

∫

β > 0)
and an algorithm for the PLTL+ SAT returns a model. If β is not satis-
fiable, then no path satisfies β and, in particular, all probability measures
over paths that satisfy β in any model (the empty set) yield 0 and no model
can be returned by a PLTL+ SAT. △

5 Complete Hilbert calculus

We now turn our attention towards using the previous algorithms to obtain
a complete Hilbert calculus for PQLTL and its reducts. The proof technique
closely follows those in [8, 13, 18].

We present the axiomatization in Table 3. We consider an Hilbert system
- recursive set of axioms and finitary rules. We recall the axiom schemaROF
is decidable thanks to Tarski’s result on the decidability of real ordered fields
and for the decidability of QLTL, one can reference [14]. Thus, the axioms
in Table 3 constitute a recursive set.

Axioms

[GTaut] ⊢PQLTL δ
for each PQLTL instantiation δ of a
tautological propositional formula;

[Prob] ⊢PQLTL (
∫

ϕ = 1) for each QLTL valid formula ϕ;

[ROF] ⊢PQLTL (t1 ≤ t2)
for each instantiation of a
valid analytical inequality;

[FAdd] ⊢PQLTL ((
∫

(¬(β1 ∧ β2)) = 1) ⊃ (
∫

(β1 ∨ β2) =
∫

β1 +
∫

β2));

[Mon] ⊢PQLTL ((
∫

(β1⇒ β2) = 1) ⊃ (
∫

β1 ≤
∫

β2));

Inference rules

[MP] δ1, (δ1 ⊃ δ2) ⊢PQLTL δ2.

Table 3: HCPQLTL : complete calculus for PQLTL.

Theorem 5.1 The calculus presented on Table 3 is sound, that is ⊢PQLTL δ

implies |=PQLTL δ.

Proof. Proof of correction is straightforward and will not be detailed; Ax-
ioms GTaut and Prob follow trivially from the definition of the semantics,
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the correctness of ROF comes from Tarski’s result; FAdd and Mon are a
consequence, respectively of the finite additivity and monotonicity of prob-
ability measures. The MP rule follows from the definition of the semantics
of ⊃. △

The proof of completeness will follow by the usual contrapositive ap-
proach: If 6⊢PQLTL δ then 6|=PQLTL δ. Then, there is a PDTS M and an as-
signment ρ such that M , ρ 6PQLTL δ. A formula δ is said PQLTL-consistent
if 6⊢PQLTL (∼δ). We must first show that the consistency of a global formula
is propagated to the consistency of at least one of its molecules.

Lemma 5.2 Let δ be a PQLTL-consistent formula. Then there is a molecule
Φk ∈ mol(δ) such that µk is consistent.

Proof. Suppose, by contradiction, that for each Φk ∈ mol(δ), (∼µk) is a
theorem, then, by tautological reasoning (GTaut),

⋂

Φk∈mol(δ)

(∼µk) =
⋂

Φ∈mol(δ)

(∼((
⋂

ϕ∈Φ

ϕ) ∩ (
⋂

ϕ∈atm(δ)\Φ

(∼ϕ)))). (12)

is also a theorem. Therefore,

∼(
⋃

Φ∈mol(δ)

((
⋂

ϕ∈Φ

ϕ) ∩ (
⋂

ϕ∈atm(δ)\Φ

(∼ϕ)))). (13)

is also a theorem. And so∼δ is also a theorem and δ is not PQLTL-consistent,
which is a contradiction. △

Theorem 5.3 The calculus presented on Table 3 is complete, that is |=PQLTL

δ implies ⊢PQLTL δ.

Proof. We will prove that every PQLTL-consistent formula has a model.
This will suffice, since 6⊢PQLTL δ implies 6⊢PQLTL (∼(∼δ)), that is, (∼δ) is
PQLTL-consistent and so (∼δ) is satisfiable which means 6|=PQLTL δ.

Suppose then that γ is a PQLTL-consistent formula. By Lemma 5.2
there is a molecule of (γ), µγ = (

⋂

i∈I(t ≤ t′)i) ∩ (
⋂

j∈J(t ≤ t′)j) that is
PQLTL-consistent.

Assume, by contradiction, that the SAT Algorithm 1 returns no model
for µγ . If the SAT algorithm returns no model for µγ it has to be for one of
the following two reasons: (i) it can not find a v at line 2; (ii) for all viable
v the SatReal algorithm returns no model at line 15. We will now show that
for both cases we can contradict the consistency of µγ .
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In case (i), λµγ (a propositional formula) is not satisfied by any valuation,
i.e. (¬λµγ ) is a valid formula and, by completeness of the propositional
calculus, a theorem. Therefore, by GTaut, ⊢PQLTL (∼µγ).

In case (ii), using Prob, FAdd and Mon, and considering Θ the set of
subformulae of µγ as in Subsection 3 we can rewrite each

∫

βj ∈ µγ as

∑

{σ∈{0,1}|Θ|:σj=1}

∫

(βj ∧ (
∧

σi=1

βi ∧
∧

σi=0

(¬βi))). (14)

We will refer to this rewritten form as µ∗γ . The same axioms also allow us
to derive the theorems

∑

σ∈{0,1}|Θ|

∫

(
∧

σi=1

βi ∧
∧

σi=0

(¬βi)) = 1. (15)

and
∫

(
∧

σi=1

βi ∧
∧

σi=0

(¬βi)) ≥ 0. (16)

for all σ ∈ {0, 1}|Θ|. Finally, we can derive which of these conjuncts are
impossible with the use of Prob. We will call the set of all σ s.t.

∧

σi=1 βi ∧
∧

σi=0(¬βi) is impossible by I.
By GTaut we can conjunct these theorems to µ∗γ :

µγ ≡
µ∗γ ∧

∧

σ∈I (
∫

(
∧

σi=1 βi ∧
∧

σi=0(¬βi)) = 0) ∧
(
∑

σ∈{0,1}|Θ|

∫

(
∧

σi=1 βi ∧
∧

σi=0(¬βi)) = 1) ∧
∧

σ∈{0,1}|Θ| (
∫

(
∧

σi=1 βi ∧
∧

σi=0(¬βi)) ≥ 0).

(17)

The system generated by κ
(
∧

σi=1 βi∧
∧

σi=0(¬βi))
xσ , which is just the right

hand side of the expression in (17) with each conjunct of the form (
∧

σi=1 βi∧
∧

σi=0(¬βi)) substituted by a fresh variable xσis exactly the system κ in line
15 of Algorithm 1 , which we are assuming has no solution. Therefore, by
completeness of the axiomatization of the real ordered fields, it must be
possible to derive (∼κ), and, using ROF, derive its instantiation (∼µγ),
which completes the proof. △

Corollary 5.4 The calculus presented Table 3 with axioms GTaut and
Prob substituted by
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[GTaut2] ⊢ δ
for each PEQLTL instantiation δ of a
tautological propositional formula;

[Prob2] ⊢ (
∫

ϕ = 1) for each EQLTL valid formula ϕ;

is a complete axiomatization of the PEQLTL fragment of PQLTL.

Corollary 5.5 The calculus presented Table 3 with axioms GTaut, Prob
and ROF substituted by

[GTaut3] ⊢ δ
for each PLTL instantiation δ of a
tautological propositional formula;

[Prob3] ⊢ (
∫

ϕ = 1) for each LTL valid formula ϕ;

[LROF] ⊢ (t1 ≤ t2)
for each instantiation of a
valid linear analytical inequality;

is a complete axiomatization of the PLTL+ fragment of PQLTL.

5.1 Example: Training for the PONGTM world championship

We now present a very basic toy example, just to illustrate the use of the
calculus. The setting is as follows. PONGTM is a primitive computer game,
akin to tennis, where players control a pad on each side of a screen and
bounce back and forth a “ball”. The world champion of PONGTM is training
for the next series, but also has to watch over his young nephew. He decides
to play the game with him, but the youngster has a non-negligible chance
of not being able to return the “ball” successfully. Therefore, the world
champion sets a “wall” in the nephew’s side of the field which automatically
returns the “ball” should the nephew fail to do it. Figure 1 summarizes the
setting.

Figure 1: A PONGTMgame between the world champion and his nephew.

Assume that the world champion never fails to return the ball; we will
use PQLTL to show that on all even transitions, the ball is returned by a
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human player. Notice that the “intuitive” approach of using LTL to state
(G(hum⇒ XXhum)) fails in this model, since the nephew would be required
to keep returning the ball after his first success.

In order to model this situation, we will take as hypothesis the following
formulae:

a)
∫

G((s1 ⇒ hum) ∧ (s2 ⇒ hum) ∧ (s3 ⇒ ¬hum)) = 1;

b)
∫

G(s1 ∨̇ s2 ∨̇ s3) = 1;

c)
∫

G(s1 ⇒ X(s2 ∨ s3) ∧ (s2 ⇒ Xs1) ∧ (s3 ⇒ Xs1)) = 1;

d)
∫

s1 = 1.

Where ∨̇ denotes the exclusive or connective. Let Γ be the set of formulae
a), b), c), d). The Markov chain of Figure 5.1 is one of many that satisfies
Γ and we will use it as a guideline for following the example. In this case,
s1 is a state that represents the world champion, s2 the nephew and s3 the
wall. The propositional symbol hum indicates if the player is human.

1
2

1
2

1

1

hum

¬hum

hum

s1

s3

s2

Figure 2: A model satisfying Γ, assuming the nephew has 1
2 probability of

failing to return the ball

Condition a) fixes which states pertain to human players; b) states that
the ball can only be played by one player at a time and ensures that the
players are different entities; c) expresses the possible transitions of the ball;
d) just states that the world champion has the service (starts the game).

We are trying to derive the expression:
∫

(∃p.(p ∧ (X¬p) ∧ (G(p⇔ XXp)) ∧ (G(p⇒ hum)))) = 1. (18)

The following lemma will be extensively used in the following derivations.
It essentially allows propositional reasoning to be used inside measure terms
of probability 1.
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Lemma 5.6 Let ∆ ⊢ (
∫

(β1 ⇒ β2) = 1) and ∆ ⊢ (
∫

β1 = 1). Then ∆ ⊢
(
∫

β2 = 1).

Proof. By Mon, ∆ ⊢ ((
∫

(β1⇒ β2) = 1) ⊃ (
∫

β1 ≤
∫

β2)), therefore, by MP,
∆ ⊢ (

∫

β1 ≤
∫

β2). Now, by ROF and Prob we get ∆ ⊢ (1 ≤
∫

β2)∩ (
∫

β2 ≤
1) and once again by ROF, ∆ ⊢ (

∫

β2 = 1). △

From Γ, we have directly
Γ ⊢

∫

s1 = 1; (19)

Γ ⊢
∫

(G(s1 ⇒ hum)) = 1. (20)

From b), we derive, by tautological reasoning permitted by Lemma 5.6,
∫

G((s2 ∨ s3) ⇔ (¬s1)) = 1, and more concretely
∫

((s2 ∨ s3) ⇔ (¬s1)) = 1.
From c) we derive

∫

G(s1 ⇒ X(s2 ∨ s3)) = 1. From these assertions, d), and
Lemma 5.6 again, we get

Γ ⊢
∫

(X(¬s1)) = 1. (21)
∫

G(s1 ⇒ X(s2 ∨ s3)) = 1 allows us to get
∫

G((s1 ⇒ Xs2)∨ (s1 ⇒ Xs3)) = 1.
With this assertion and c), we derive

Γ ⊢
∫

G(s1⇒ XXs1) = 1. (22)

Finally, from
∫

G(s2 ⇒ Xs1) = 1 and
∫

G(s1 ⇒ X(s2 ∨ s3)) = 1 (both from
c)) we derive

∫

G(s2 ⇒ XX(s2 ∨ s3)) = 1 and, in a similar way,
∫

G(s3 ⇒
XX(s2 ∨ s3)) = 1. Both these assertions together yield

∫

G((s2 ∨ s3) ⇒
XX(s2 ∨ s3)) = 1. Joining

∫

((s2 ∨ s3)⇔ (¬s1)) = 1, which we have already
justified, we get

∫

G((¬s1) ⇒ XX(¬s1)) = 1, which is classically equivalent
to

Γ ⊢
∫

G(XXs1 ⇒ s1) = 1. (23)

Once again by classical reasoning permitted by Lemma 5.6, we can join (19),
(20), (21), (22), (23) and get

Γ ⊢
∫

(s1 ∧ (X¬s1) ∧ (G(s1 ⇔ XXs1)) ∧ (G(s1 ⇒ hum))) = 1. (24)

From the contrapositive version of Axiom QX2 from QLTL calculus in [14],
we have

Γ ⊢
∫

((s1 ∧ (X¬s1) ∧ (G(s1 ⇔ XXs1)) ∧ (G(s1 ⇒ hum)))⇒
(∃s1.(s1 ∧ (X¬s1) ∧ (G(s1 ⇔ XXs1)) ∧ (G(s1 ⇒ hum)))) = 1.

(25)

Therefore, by MP, we have
∫

(∃s1.(s1 ∧ (X¬s1) ∧ (G(s1 ⇔ XXs1)) ∧ (G(s1 ⇒ hum)))) = 1 (26)

as we wanted.
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6 Conclusions and future work

not introduced

in this work

① PLTL - “With probability of 99%, the process eventually
reaching the critical state implies that a flag will always
eventually be raised.”

② PCTL∗ - “With probability of 98%, the process
eventually reaching the critical state implies that a flag
will always eventually be raised with probability 99%.”

③ PLTL+ - “The probability of reaching Undecided is at
least 10% less than reaching either Accept or Reject.”

④ PQLTL/ ⑤ PEQLTL- “The probability that process A
refrains from reading from the common channel in all even
steps and that process B refrains from doing so in all odd
steps is at least 99.9%.”
“The probability of reaching Accept is inversely propor-
tional to that of reaching Undecided.”

Logic Strong SAT Weak SAT MC

PQLTL [n+2]-EXPSPACE [n+1]-EXPSPACE [n+2]-EXPSPACE

PEQLTL 2-EXPSPACE EXPSPACE 2-EXPSPACE

PLTL+ EXPSPACE PSPACE PSPACE

PLTL EXPSPACE PSPACE PSPACE

PCTL∗ unknown unknown PSPACE

Table 4: Relations between PLTL, PCTL∗, PLTL+ , PEQLTL and PQLTL.

Herein we have proposed a new probabilistic logic to reason about semi-
algebraic constrains of probabilities of sets of path of a Markov chains speci-
fied by a QLTL formula. Moreover, we presented a model-checking and SAT
[n+2]-EXPSPACE algorithm for the logic and a weakly complete Hilbert cal-
culus. We have considered relevant subfragments with a more efficient SAT
algorithm, namely PLTL+ which extends PLTL. In Table 4 we summarize
the results obtained. We note that SAT algorithms presented also work
for models that incorporate both non-deterministic and probabilistic tran-
sitions, such as those in [5, 10, 26], since Markov chains are particular cases
of these models.

For future work we intend to enrich PQLTL with global temporal reason-
ing, and eventually, for the sake of exhaustiveness, nesting of the probability

25



operator. We also intend to explore the calculus in less academic examples.
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A Appendix

A.1 Automata notations and needed results

A Büchi automaton is a finite state automaton with a suitable accepting
condition for infinite sequences. It was proposed by Büchi in [7]. For a
detailed introduction to Automata on infinite words, see [19].

Definition A.1 A tupleB = (S,Σ, τ, s0, F ) is said to be a Büchi automaton
if S and Σ are finite, τ ⊆ S × Σ× S, s0 ⊆ S and F ⊆ S.

We say that an infinite sequence δω is fireable in N if ∀i≥1 pr1(δ [i]) =
pr3(δ [i− 1]) and pr1(δ [0]) ∈ s0, where pri are the projections on the i-th
component. Furthermore N(α) represents the sequence of states visited in
τ .

We define the language accepted by N as:

Lω(N) = {pr2(α) : α ∈ τ
ω, α is fireable in N, inf(N(α)) ∩ F 6= ∅} .
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The map inf(.) : Σω 7→ Σ produces the set of symbols appearing infinitely
often in the given infinite sequence.

Definition A.2 Let G = (V,E) be a finite directed graph. We call C ⊆ V

an ergodic set if

• ∀(u, v) ∈ E, u ∈ C ⇒ v ∈ C,

• ∀u, v ∈ C,∃ a path from u to v.

Proposition A.3 (see [7]) The set of all languages accepted by Büchi au-
tomata is precisely the set of ω-regular languages.

Proposition A.4 (see [24]) The emptiness problem for the language ac-
cepted by a Büchi automaton is decidable in NLOGSPACE over the size of
the automaton.

Proposition A.5 (see [24]) The emptiness problem for the complemen-
tary language accepted by a Büchi automaton is decidable in PSPACE over
the size of the automaton.

Looking closer at the definition of the transition relation τ in the def-
inition of Büchi automata, we are requiring that the underlying automata
should be non-deterministic. Furthermore, unlike finite state automata in
Automata Theory over finite sequences, deterministic Büchi automata are
strictly less expressive than non-deterministic Büchi automata [19]. This
fact motivates the introduction of the following automata over infinite se-
quences.

Definition A.6 (see [21]) ARabin automaton is a tupleR = (S,Σ, τ, s0, L)
where S, Σ, τ and s0 are as in Definition A.1 and L = {(A1, B1), . . . (Ak, Bk)}
where Ai, Bi ⊆ S.

Definition A.7 Let S ⊆ Q. We say that S satisfies L = {(A1, B1), . . . (Ak, Bk)}
if ∃1≤i≤k such that S ∩Ai 6= ∅ and S ∩Bi = ∅.

With this table of pairs, the accepted language of a Rabin automaton is
defined as:

Lω(R) = {pr2(α) : α ∈ δ
ω , α is fireable in R, α satisfies L}.

Proposition A.8 (see [19, 26]) The set of all languages accepted by de-
terministic Rabin automata are the ω-regular languages. Furthermore, it
is possible to convert a non-deterministic Büchi automaton into a deter-
ministic Rabin automaton in exponential space relative to the size of the
non-deterministic Büchi automaton.
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A.2 Quantified Propositional Linear Temporal Logic

Quantified Propositional Linear Temporal Logic was introduced in [22] to
address the lack of expressiveness of LTL. Let Λ be a finite set of proposi-
tional symbols. The syntax of quantified propositional linear temporal logic
(QLTL) formulae over Λ is defined as, where p ∈ Λ:

β := p 8 (¬β) 8 (β⇒ β) 8 Xβ 8 βUβ 8 ∃p.β(p)

The usual abbreviations for ⊥,⊤,∧,∨,⇔,F,G,∀ are assumed. Further-
more, when using multiple quantifiers of the same type, the symbols ∃,∀
may be used.

Regarding the semantics, let S be a set of states, and L : S → {0, 1}Λ.
A path π over S is an element of Sω. To each path is therefore associated
an infinite sequence of valuations over Λ. The k-th state of a path π is sk
and is denoted by π [k]. Given a path π = s0s1...sk..., we denote the k-prefix
s0s1...sk by π|k and say its length is k + 1.

A model for QLTL is a triple m = (S, π, L). We say that two models,
m = (S, π, L) andm′ = (S, π, L′) are pi-equivalent, for some pi ∈ Λ, if for all k
and pj 6= pi, L(π [k] (pj)) = L′(π [k] (pj)). It is clear that pi-equivalence is an
equivalence relation. The satisfaction relation QLTL over QLTL formulae
is defined inductively in the following way:

(S, π, L)  p iff π [0] (p) = 1,

(S, π, L)  ¬β iff (S, π, L) 6 β

(S, π, L)  β1⇒ β2 iff (S, π, L) 6 β1 or (S, π, L)  β2,

(S, π, L)  Xβ iff (S, π1, L)  β,

(S, π, L)  β1Uβ2 iff ∃i≥0

(

(S, πi, L)  β2 and ∀0≤j<i (S, π
j, L)  β1

)

,

(S, π, L)  ∃p.β iff there exists a p-equivalent model (S, π, L′) s.t. (S, π, L′)  β.

Sistla, in his dissertation thesis [22], presented the following proposition:

Proposition A.9 If β ∈ QLTL then there exist formulae β1, ψ s. t.

β1 ≡abv ∃∀ . . .∃∀ψ,

where ψ ∈ LTL and |=QLTL β ⇔ β1.

We say that a formula β is in normal form or prenex normal form, if
β ≡ ∃∀ . . . ∃∀ψ. This normal form theorem motivates the definition of the
set of formulae ΣQLTL

k . A formula QLTL in normal form is in ΣQLTL
k if

and only if the first quantifier is an ∃ quantifier, and there are further k
alternations of quantifiers.
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Proposition A.10 LTL is not expressive enough to encode the proposition
G2p ≡ p is true at all even instants.

However, Proposition A.10 does not hold for QLTL; the formula ∃p′.(p′∧
X¬p′ ∧ G(p′ ⇔ XXp′) ∧ G(p′⇒ p) expresses G2p.

A.3 Regarding Automata theory and QLTL

There are some deep connections between LTL and QLTL and automata
theory.

Proposition A.11 (see [14, 22, 24]) For each LTL formula ψ, there ex-
ists a Büchi automaton s.t. its accepted language is precisely the set of
models of ψ.

This translation procedure uses exponential space on the size of the LTL
formula.

Proposition A.12 (see [22]) For each QLTL formula β, there exists a
Büchi automaton such that its accepted language is precisely the set of mod-
els of β; furthermore, for each Büchi automaton B there exists a formula
β ∈ QLTL such that the set of models of β is precisely Lω(B).

In fact, this statement can even be strengthened as ΣQLTL
0 is as expres-

sive as non-deterministic Büchi automata. This fact allows us to assume an
existential normal form for all formulae in QLTL. Usually, this fragment is
named EQLTL. This translation, however, is not simple, and it is done using
Proposition A.12.

Proposition A.13 (see [14]) For each QLTL formula β, there exists ψ ∈
ΣQLTL
0 such that |=QLTL β ⇔ ψ.

We can use the translation between QLTL and Büchi automata to obtain
complexity bounds for the satisfiability problem of QLTL formulae.

Proposition A.14 (see [23]) The satisfiability problem for LTL formulae
is PSPACE-complete on the size of the formula if a witness is not required
and EXPSPACE otherwise.

Proposition A.15 (see [24]) The satisfiability problem for QLTL formu-
lae in normal form is in n-EXPSPACE in the alternation depth of the normal
form for n ≥ 1, and in [n+1]-EXPSPACE while providing a witness.
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In our case, we need to consider QLTL formulae over probabilistic deter-
ministic transition systems (PDTS). Each probabilistic deterministic transi-
tion system induces a measure over the Borel σ-algebra of the basic cylinders
of Sω, where S is the set of states of the PDTS. We need then to know if
the set of all models of a given QLTL formula is in the Borel σ-algebra. This
result was proved directly for LTL for QLTL the result was proved in [26],
using automata-theoretical tools.

Proposition A.16 (see [26]) Let β ∈ QLTL. Then the sets {π : (S, π, L) QLTL

β, π [0] = si} are measurable in the Borel σ-algebra over the basic cylinders
of Sω.

A.4 Real Ordered Fields

Theorem A.17 (see [25]) The theory of real ordered fields is decidable.

Theorem A.18 ([3] page 488) The satisfiability of quantifier-free formu-
lae in the theory of real ordered fields is decidable in PSPACE. Providing a
witness is EXPSPACE.

B Model-checking algorithm

The model-checking problem for PQLTL consists in deciding whether a cer-
tain PQLTL formula δ, is satisfied by a given PDTS M = (S, d0,T , L) for
some non-specified assignment ρ. There are two main conceptual steps on
the model-checking algorithm; the first step is to compute the denotation of
each measure term. In order to do so, we will use an automata-theoretical
algorithm for probabilistic deterministic transition systems proposed in [26],
which can be seen, for instance, in [10]. We will only adapt it to use the
already latent possibilities in the referenced algorithm to enclose the more
expressive QLTL.

After this step, we only need to compute whether there exists an as-
signment ρ that satisfies the set of polynomial inequalities obtained from δ;
this can be accomplished through the decidability result about real algebraic
closed fields originally proved by Tarski (Theorem A.17 in Appendix, page
32).

We will now describe the first step of the model-checking algorithm.
The algorithm receives as input a measure term of the form

∫

β and a PDTS

M = (S,T , d0, L), where β is a ΣQLTL

k formula; it returns as output an
algebraic real number, corresponding to [[

∫

β]]M . This automata-theoretic
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Algorithm 4: MeasureTermCalc(β,M )

Input: QLTL formula β, PDTS M = (S,T , d0, L)
Output: [[

∫

β]]M

compute DRA Bβ = (Q, 2Λ, q0, τ, α) s.t. L
ω(Bβ) = L(β);1

compute M ×Bβ = (S×Q,T ′, d′0, L):2

T ′((s, q), (s′, q′)) =

{

T (s, s′), if (q, L(s), q′) ∈ τ

0, otherwise.
;

3

d′0 = (d0, q0); L
′(s, q) = L(s);4

compute α′ = {(S × L,S × U) : (L,U) ∈ α};5

compute A =
⋃

{E ⊆ S ×Q : E is ergodic, E satisfies α′};6

foreach (s, q) ∈ A do7

label (s, q) with acc;8

end9

compute10

P∞(s, q) =























1, if (s, q) is labeled by acc;

0,
if there are only null measure paths

connecting (s,q) to a state labeled by acc;
∑

(s′,q′)∈S×Q T
′((s, q), (s′, q′))P∞(s′, q′), otherwise.

return
∑

(s′,q0)
P∞(s′, q0)d(s

′)11

approach uses the equivalence between QLTL and deterministic Rabin au-
tomata (DRA) to build a product PDTS containing the information about
the QLTL formula and the PDTS given as inputs. Afterwards, as in [10], it
is only a matter of computing the ergodic sets of the product PDTS, and
check which ergodic sets satisfy the accepting condition. In fact, we are just
reducing the computation of

∫

β, for some β ∈ QLTL on the input PDTS
to the computation of the probability of the formula

∫

Facc in a labeled
product PDTS obtained from the input and the Rabin automaton of the
input formula. This reduction already appears in [10].

Finally, we need to compute the probability in each state of satisfying
the accepting condition. Although the definition in Line 10 is recursive, it
can be solved using a system of linear equations.

Therefore, the model-checking procedure for PQLTL is fully described in
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Algorithm 5.

Algorithm 5: PQLTLModelChecker(δ,M )

Input: PQLTL formula δ, PDTS M = (S,T , d0, L)
Output: satisfied or not satisfied
foreach measure term

∫

β in δ do1

compute cβ = MeasureTermCalc(β,M );2

replace
∫

β ← [ cβ in δ;3

end4

return ∃WeakRealSat(δ);5

The space complexity of the model-checking algorithm depends mainly
on the complexity of the algorithm that translates PQLTL formulae into
deterministic Rabin automata. If we assume that our PQLTL formulae are
in ΣQLTL

k , the size of the deterministic Rabin automata generated is k + 2
exponential on the size of the inner LTL formulae, using Proposition A.8
and Proposition A.12 in the Appendix (pages 29 and 31, respectively). The
remaining instructions of Algorithm 4 can be carried out in space polynomial
in the size of the system. Finally, the last instructions in Algorithm 5 will
only use polynomial space, since we do not need to produce an assignment
ρ. Thus, assuming that the initial formula is in EQLTL we obtain precisely
the same space and time complexity as the algorithms referenced in [10].

Proposition B.1 Algorithm 5 is correct.

Proof. The proof follows immediately from the proof of the correction of the
model-checking algorithm referenced in [10]. △

34


