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Abstract

When studying probabilistic dynamical systems, temporal logic has
typically been used to reason about path properties. Recently, there has
been some interest in reasoning about the dynamical evolution of state
probabilities of these systems. In this paper we show that verifying linear
temporal properties concerning the state evolution induced by a Markov
chain is equivalent to the decidability of the Skolem problem – a long
standing open problem in Number Theory. However, from a practical
point of view, usually it is enough to check properties up to some ac-
ceptable error bound ε. We show that an approximate version of Skolem
problem is decidable, and that it can be applied to verify, up to arbitrar-
ily small ε, linear temporal properties of the state evolution induced by a
Markov chain.

1 Introduction

Verification of properties in probabilistic deterministic systems is a critical area
of research in the field of computer science. Currently, there are many tools
that verify properties of systems modeled as Markov chains [14, 9, 12]. However
most of the work is focused on verifying path-like specifications, that is, what
proportion of possible executions of the system satisfy a given property [20, 3,
4]. These specifications are undoubtedly interesting since they are ubiquitous;
however there are many interesting and intuitive properties that they can not
express, in particular, considerations about the dynamical evolution of state
probabilities are either convoluted or impossible to state in these frameworks,
as pointed in e.g. [15, 13, 7, 1].
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Recently Agrawal et al. [1, 2] developed work that builds upon well-known
results in Probability Theory in order to reason with the dynamical system
induced by a Markov chain. This work focuses on characterizing the behaviour
of a Markov chain by the use of symbolic distributions that evolve dynamically
and by considering error bounds for these evolutions. We work in the same
setting, but follow a different approach. We display the deep connection between
the exact verification of linear properties over the dynamical evolution of state
probabilities and a famous open problem in Number Theory, the Skolem problem
[17]. In fact, as remarked by Agrawal [2],“[the verification problem for linear
time properties over the dynamical of state probabilities] seems to be strongly
related to the long-standing open problem on linear recurrent sequences known
as the Skolem problem”.

The Skolem problem, originally formulated by Thoralf Skolem, was partially
solved by himself using non-constructive techniques. More recently, thanks to
the work in [16, 8], it has been reformulated as a decision problem which is only
known to be decidable for low dimensions [17, 18].

Skolem Problem can be stated [17] as follows:

Problem 1. Given x, y ∈ Qm, and L ∈ Qm2

, can we decide if the following
statement is true:

∃n.xTLny = 0

The problem itself can be seen whether the repeated mapping of a starting
vector, x, through some linear system, L, and later projected upon another vec-
tor, y, ever reaches 0. In our probabilistic setting, we have a similar problem,
a reachability query, where we ask whether, from an initial distribution (the
analogue of x), a Markovian evolution (the analogue of Li) ever reaches a point
where a combination of the probabilities of states (the analogue of y) is exactly
0. It is easy to show that these two problems are equireducible. A more inter-
esting question is whether the Skolem problem is easier than the verification of
more complex linear time properties (other than simple reachability queries).
We show that in fact, for linear time properties, the verification problem is as
difficult as the Skolem problem.

We also pursue the subject in a different perspective. If the verification prob-
lem is as hard as the (open) Skolem problem, can we at least solve approximate
versions of them? That is, if we relax Problem 1 in the following way:

Problem 2. Given x, y ∈ Qm, and L ∈ Qm2

, there exists d ∈ Q, such that for
all ε ∈]0; d[∩Q can we decide if the following statement is true:

∃n.− ε < xTLny < ε,

can we present a procedure to solve the problem (and, respectively, one for an
equivalent relaxation of the verification problem)?
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Agrawal et al. [2] considered a similar problem from the verification of dy-
namical properties perspective. Our approach focuses more on the relation be-
tween the approximate Skolem problem and the approximate verification prob-
lem, solving both.

Our contributions

• We show the equireducibility between the Skolem problem and the verifi-
cation of linear time properties for dynamical systems induced by Markov
chains.

• We present decision procedures for approximate versions of both problems.

2 Preliminaries

In this section we introduce the main definitions and prior results used through-
out the article.

2.1 Markov chains

Markov chains are a widely used formalism to model memoryless discrete prob-
abilistic dynamic systems. Let Λ be a finite set of propositional symbols.

Definition 1. A (state labelled) Markov chain M is a tuple M = (S,M,L, µ)
over the propositional symbols Λ where:

• S = {s1, . . . , sm} is a finite set of states;

• M is a stochastic matrix of dimension m with entries in Q, named the
transition matrix. Intuitively, from si we can move towards sj in one step
with probability Mi,j ;

• L : S 7→ {0, 1}Λ is the labeling function. Intuitively, it represents which
predicates are true in each state;

• µ is a probability distribution over S, named the initial distribution.

A Markov chain induces a discrete dynamical system of finite probability
distributions over states given by µ0 = µ, µTi+1 = µTi M . We are interested in
verifying properties of this dynamical system. In order to do so, we need to
express properties of probability distributions, and their evolution.

2.2 EPLTL as a logic for verification of probability distri-
butions given by Markov chains

We consider the following logic, named EPLTL, already described and studied
in [5], which has the following syntax:
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Definition 2. The well formed formulae in EPLTL over the propositional sym-
bols Λ are given below in Backus-Naur notation:

β := p 8 (β ∧ β) 8 (¬β) (basic formulae)

t := r 8 (t+ t) 8 r
∫
β (rational terms)

δ := ∼ δ 8 δ ∩ δ 8 Xδ 8 δUδ︸ ︷︷ ︸
temporal formulae

8 t = t︸︷︷︸
comparison formulae

(formulae)

where p ∈ Λ and r ∈ Q.

The logic will enable us to reason about distributions over the propositional
symbols Λ using terms of the form

∫
β and comparison formulae; the linear

temporal reasoning is performed using the outer propositional negation ∼, con-
junction ∩, the neXt time connective, and the Until connective. The common
abbreviations for sometime in the Future and Globally will also be considered.

The semantics considered in this article are designed specifically towards
Markov chains.

Definition 3. The denotation of a rational term t in a Markov chain M =
(S,M,L, µ) in the instant i ∈ N, denoted by [[t]]M,i, is defined inductively as:

• [[r]]M,i = r,

• [[r
∫
β]]M,i = rµi({s ∈ S : L(s) 
PL β}),

• [[(t1 + t2)]]M,i = [[t1]]M,i + [[t2]]M,i,

where 
PL is the satisfaction relation in propositional logic. Finally the
satisfaction relation between a Markov chain M, an instant i and a formula δ
can be defined.

Definition 4. The satisfaction relation between a Markov chainM, an instant
i, and a EPLTL formula δ is defined inductively:

• M, i 
 (t1 = t2) iff [[t1]]M,i = [[t2]]M,i,

• M, i 
 (δ1 ∩ δ2) iff M, i 
 δ1 and M, i 
 δ2,

• M, i 
 (∼ δ) iff M, i 6
 δ,

• M, i 
 (Xδ) iff M, i+ 1 
 δ,

• M, i 
 (δ1Uδ2) iff there exists j ≥ i such that M, j 
 δ2 and M, k 
 δ1,
for all i ≤ k < j.

We say that a Markov chainM is a model of an EPLTL formula δ ifM, 0 
 δ.
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Remark 1. Even though the classical model-checking logics like PCTL [10] are
quite well suited to deal with properties about probabilities of evolutions, they
are unable to deal with properties about the evolution of probabilities; for in-
stance, consider the Markov chain in Figure 1. The assertion A ”the probability
of reaching s2 sometime in the future is 1

2” is checked by considering the prob-
ability of the set of paths passing by the state s2; we are measuring sets of
evolutions. However, the statement B ”there is an instant of time such that
the probability of being in s2 is 1

2” requires, with absolute certainty, that there
exists an instant in time such that s2 holds with probability 1

2 .

s1 s2

s3

s4

1
4

1
4

1
2

11

1

Figure 1: An example of the problem described. For µ0 = (1, 0, 0, 0), there is
no evolution such that s2 holds with probability 1

2 , but the set of all evolutions
such that s2 holds has probability 1

2 .

Remark 2. Finally, while we allow any general labeling function on our Markov
chains, we will just consider, without loss of generality, that the labeling func-
tion L : S 7→ {0, 1}S maps a state s to the valuation that is only true on s.
We can easily rewrite EPLTL formulae under one of the labelings into equiva-
lent formulae under the other. In order to shorten notation,henceforth we will
represent a Markov chain M = (S,M,L, µ) simply by (M,µ).

2.3 The Skolem Problem

We now describe a problem from Number Theory that surprisingly enough is
the cornerstone for verification of EPLTL formulae in Markov chains.

The Skolem problem is usually stated as a decision problem over linear recur-
rence sequences. A linear recurrence sequence xn of order k over the rationals
is defined as:

x0 = c0, . . . , xk−1 = ck−1,

xn = ak−1xn−1 + ak−2xn−2 + . . .+ a0xn−k,

c0, . . . , ck−1, a0, . . . , ak−1 ∈ Q

Thoralf Skolem investigated [19] whether one could characterize the set
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Z({xn}) = {n ∈ N : xn = 0}, for each sequence xn. Originally Skolem proved
that the set Z({xn}) could be written as:

Z({xn}) = F ∪G1 ∪G2 ∪ . . . ∪Gj ,
where F is a finite (possibly empty) set and

G1, . . . Gj are arithmetical progressions.

Unfortunately the proof was non-constructive. Later on, it was proved that
all coefficients of all the arithmetical progressions are effectively computable
[8]. However, there is still no known means of producing F , or testing its
emptiness, which leaves the original problem open. The Skolem problem can also
be approached by considering matrices instead of linear recurrence sequences:

Given x, y ∈ Qk, L ∈ Qk
2

characterize the set Z(xTLny) = {n ∈ N : xTLny = 0}

Both versions are equireducible and so we also know that Z(xTLny) can be
written as the union of a finite set and a finite union of arithmetical progres-
sions. Since the coefficients of the arithmetical progressions are computable, the
characterization problem can be restated as the following decision problem:

Problem 3 (Skolem Problem). Given x, y ∈ Qm and L ∈ Qm2

, decide if the
following statement is true:

∃n.xTLny = 0

This more modern restatement is the one followed by the literature [17, 18];
we will motivate this restatement with a simple example:

Example 1. Assume that the Skolem problem is decidable. Now, suppose that
Z(xTLny) = F ∪Gqk+r, such that we do not know F , but we can compute the
period of the arithmetical progression q, and the shift r. Then, we can compute
F by repeatedly querying whether some subsequences of xTLny have any zeros.

• Check whether Z(xT (Lq)nLr+1y) is empty. If so, we know that there are
no zeros of the form qk + r+ 1. Otherwise, compute the index of the first
zero of this form, then consider the subsequence beginning at that position
and reiterate the process until the Skolem oracle returns that there are no
more zeroes. Repeat the procedure for each of the q − 1 residue classes
except the one with infinitely many zeroes, qk + r.

• This procedure will terminate, since there are only a finite number of
non-periodic zeroes.

• If Z(xTLny) is described by more than one arithmetical progression, for
instance with periods q1, q2, then one adapts the algorithm to be applied
to the least common multiple amongst the periods.
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We will denote the union of a finite set F and finitely many arithmetical pro-
gressions p1k+r1, . . . , pnk+rn by a pair (F,G), whereG = {(p1, r1), . . . , (pn, rn)}
(henceforth named representation) . Elements in F will be named exceptional
zeroes. We say that m ∈ N is represented in (F,G) if either m ∈ F or
m = pik + ri for some k ∈ N and (pi, ri) ∈ G. Likewise, we say that a set
S is representable if there exists a pair (F,G) such that m ∈ S iff m is repre-
sented in (F,G). We state without proof the following fact: the Skolem problem
is decidable iff for any rational matrix L, vectors x, y and representation (F,G),
we can decide whether the set of elements represented by (F,G) is precisely the
set Z(xTLny).

We note, furthermore, that the Skolem problem is equireducible to the fol-
lowing problem [17]:

Problem 4. Given x, y ∈ Qm, c ∈ Q and L ∈ Qm2

, decide if the following
statement is true:

∃n.xTLny = c

We can now see why this problem is relevant for verification of EPLTL for-
mulae. For example, checking whether M 
 F(

∫
s1 −

∫
s2) = 1

2 can be seen to
be an instance of the Skolem problem with µ as x, the Markov chain matrix
as L, and y as the vector (1,−1, 0, ..., 0) and c = 1

2 . One might entertain the
thought that, due to L being a Markov chain, these instances of the Skolem
problem might be easier than the general statement. However, that is not case,
as we now show.

2.3.1 Skolem Problem over Markov chains

The reduction between the general Skolem problem and the case for Markov
chains can be done in two simple steps; assume that we are given x, y ∈ Qm
and L ∈ Qm2

; then define x′, y′ ∈ Q2m+2 and L′ ∈ Q(2m+2)2 as follows:

• x′ ← (1, 0,0),

• L′ ←
(

0 x
0 L

)†
,

• y′ ← (0, 0, y1,−y1, . . . , ym,−ym)

where 0 is a subvector or matrix of the appropriate size.
The transformation (N)† applied to the (m+ 1)× (m+ 1) matrix consists in

rewriting each entry ni,j as the submatrix

(
n1
i,j n2

i,j

n2
i,j n1

i,j

)
, where n1

i,j , n
2
i,j are

non-negative numbers such that ni,j = n1
i,j − n2

i,j . It is easy to see that due to

the change in the vector y′, x′TL′iy′ = xTLiy holds. Now, we have a stochastic
vector as the initial distribution, and a non negative matrix L′. In order to
obtain a stochastic matrix, we will add an extra dimension wich allows us to
normalize each line. Let K = max

i
{
∑
j L
′
i,j}:
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• x′′ ← (x′, 0),

• L′′ ← 1
K


L′1,1 ... L′1,n K −

∑
j L
′
1,j

... ... ... ...
L′n,1 ... L′n,n K −

∑
j L
′
n,j

0 ... 0 K

,

• y′′ ← (y′, 0).

So, in fact, by considering stochastic matrices and an initial stochastic vector
we do not obtain an easier problem. We can also consider the probabilistic
version with equality to a constant (rather than equality to 0 only) by adapting
the proof of the reduction used in Problem 4. The major issue now is the fact
that the Skolem problem is open. Given two vectors x, y and a matrix L, there
is no known algorithm to decide whether there exists an index n such that
xTLny = 0 (except for cases of dimension less or equal to 4). Moreover, while
the Skolem problem is clearly an extremely specific case of a verification problem
for EPLTL, we would like to know whether more complex EPLTL formulae will
be even harder to verify.

3 Using Skolem problem as an oracle

We now show that the problem of verification of EPLTL formulae in Markov
chains is equireducible to the Skolem problem. Without loss of generality, we
will assume that any comparison term is of the form t = 0. We will show
that given representations, (Fi, Gi), for the atomic equalities of rational terms
ti = 0, we can compute a representation for the whole formula. This process is
possible due to sets describable as the union of a finite set and a finite union of
arithmetical progressions are closed under EPLTL connectives.

Remark 3. Note that each rational term
∑N
i=1 ri

∫
si+c is an affine combination

of probabilities of individual states; therefore we can represent this term as the
vector t∗ of N + 1 components (r1, . . . , rN ,−c). In order to compute whether
ti = 0 holds after n iterations of a Markov chain (M.µ) we just need to compute
whether µTMt∗ = 0. We will overload the notation by also denoting t∗ by t.

Definition 5. The satisfaction set of δ ∈ EPLTL in a Markov chainM = (M,µ),
represented as Iδ, is given inductively as:

• It=0 = {i ∈ N : µTM it = 0},

• I∼δ1 = Iδ1 ,

• Iδ1∩δ2 = Iδ1 ∩ Iδ2 ,

• Iδ1∪δ2 = Iδ1 ∪ Iδ2 ,

• IXδ1 = {i ∈ N : i+ 1 ∈ Iδ1},
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• IFδ1 = {i ∈ N : ∃j s.t. j ≥ i, j ∈ Iδ1},

• Iδ1Uδ2 = {i ∈ N : ∃j s.t. j ∈ Iδ2 and ∀k s.t. i ≤ k < j, k ∈ Iδ1}.

The proof of the following lemma is a simple exercise in structural induction.

Lemma 1. Let M = (M,µ) be a Markov chain and let Iδ be the satisfaction
set of δ ∈ EPLTL in M; then (M,µ), i 
 δ iff i ∈ Iδ.

We will now show that given representations (Fi, Gi) for the basic terms
ti = 0 of a formula δ, then Iδ is the union of a finite set and arithmetical
progressions, and we can also provide a representation (Fδ, Gδ) for Iδ.

Proposition 1. Let (F1, G1), (F2, G2) be representations for Iδ1 , Iδ2 , formulae
in EPLTL. Then there exist representations for:

I∼δ1 Iδ1∪δ2 Iδ1∩δ2 IXδ1 IFδ1 .

Proof. The case of the union connective is trivial. If (F1, G1) is a representation
of Iδ1 and (F2, G2) is a representation of Iδ2 , then a representation for Iδ1∪δ2 is
simply (F1 ∪ F2, G1 ∪G2).

The case of the intersection is slightly more involved, relying on the fact
that the intersection of two arithmetical progressions is still an arithmetical
progression or the empty set. The resulting arithmetical progression can be
computed using the Chinese Remainder Theorem[11, pp 873-876], even if the
periods are not coprime. If Iδ1 = F1 ∪ Gp1k+r1 ∪ . . . ∪ Gpmk+rm and Iδ2 =
F2 ∪Gq1k+s1 ∪ . . . ∪Gqnk+sn , then their intersection can be written as:

Iδ1∩Iδ2 = (F1∩F2)∪
n⋃
j=1

(F1∩Gqjk+sj )∪
m⋃
i=1

(F2∩Gpik+ri)∪
n,m⋃
i,j

(Gqik+si∩Gpjk+rj )

Now clearly the finite part can be computed, and since each intersection of arith-
metical progressions is either the empty set or another arithmetical progression,
then it is possible to obtain a representation for Iδ1∩δ2 .

The case of the complement is naturally related with the intersection. The
complement of an arithmetical progression pk+r can be seen to be the union of
the finite set {0, 1, . . . , r− 1} and p− 1 arithmetical progressions pk + r+ i, i ∈
{1, 2, . . . , p− 1}. Moreover the complement of a finite set F is again the union
of the finite set {0, . . . ,max(F )} − F with the trivial arithmetical progression
k +max(F ) + 1. Therefore, if Iδ1 = F ∪Gp1k+r1 ∪Gpnk+rn ,

I∼δ1 = Iδ1 = F ∩
n⋂
i

Gpik+ri ,

and so, thanks to the results already proved about the intersection, we prove
that I∼δ1 is still the union of a finite set and a finite number of arithmetical
progressions. All the coefficients can be computed and so we can obtain a
representation for I∼δ1 .
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Regarding the temporal connectives, the X connective is quite straightfor-
ward; assuming (F1, {(p1, r1), . . . , (pn, rn)}) is a representation for Iδ1 , a repre-
sentation for IXδ1 is (F ′1, {(p1, r

′
1), . . . , (pn, r

′
n)}), where F ′1 is the set of prede-

cessors (in the natural numbers) of F1 and r′i = ri − 1 mod pi.
While the F connective can be obtained from the U connective, we present

it here for completeness sake. Suppose we have a representation of Iδ1 = (F,G).
Then there are three cases: either G 6= ∅, and in this case a representation
for Iδ1 is for example (∅, {(1, 0)}), or G = ∅; if it is the latter case, if F 6=
∅ then a representation for IFδ1 would be ({0, 1, . . . ,max(F )}, ∅), and (∅, ∅),
otherwise.

We will finally extend the result to consider the U connective. The proof
relies on computing the representation of Iδ1Uδ2 from a suitable finite domain,
which captures all the information required. We motivate the proof with an
extremely simple example:

Example 2. Suppose that we are given representations for Iδ1 = (∅, {(3, 3), (2, 1)})
and Iδ2 = (∅, {(3, 3), (2, 1)}), so δ1 is true at the indexes given by 3k + 3
and 2k + 1, while δ2 is true at the indexes 6k + 2 and also at the excep-
tional index 1 as depicted on Figure 2. Now let T = lcm(3, 2, 6) = 6 and
K = max{∅ ∪ {1} ∪ {3, 1, 2}} = 3 so that the pattern of δ1 and δ2 repeats with
period T = 6 after the index K = 3 (as can be seen in the Figure).

We now wish to capture at which indexes is δ1Uδ2 satisfied. In this case
a representation (F,G) for Iδ1Uδ2 would take F = {1, 2}, as both exceptional
indexes have δ2 as label. To build G we analyse the truth values of δ1 and of δ2
in the first sequence of T = 6 indexes after K = 3. This sequence will repeat
because:

• its period is a multiple of all the periods involved (all arithmetic progres-
sions will repeat with this period, some more than once),

• the indexes considered are large enough to make sure all arithmetical
progressions are represented (since they all start at most at K),

• the indexes considered are large enough to make sure that none of the
exceptional indexes are represented (since they appear only until K).

So, to identify G, we can just consider the labelling from i = K+1 = 4 until
i = K + T = 3 + 6 = 9. It is clear that, in this range, δ1Uδ2 holds at indexes
5, 6, 7, 8, so we can consider G = {(6, 5), (6, 6), (6, 7), (6, 8)}.

We start by showing that the labeling function used in the example is (even-
tually) periodic with period T , given by the least common multiple of all the
periods of the arithmetical progressions, after an initial segment of irregulari-
ties with size at most K, given by the maximum of all the residues from the
arithmetical progressions and the exceptional zeroes.
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δ1
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δ1
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δ1

3 + 5

δ2

3 + 6

δ1

δ1

9 + 1 9 + 2

δ1

9 + 3

δ1

9 + 4

δ1

9 + 5

δ2

9 + 6

δ1

δ1

...

Figure 2: a labeling of each index assuming that the arithmetical progressions
for δ1 are 2k + 1 and 3k + 3 and the arithmetical progression for δ2 is 6k + 2.
Furthermore, index 1 is labeled with δ2 as Iδ2 has an exceptional zero. Note
how any possible irregularities are discarded by setting K as large as necessary
to consider all the exceptional zeroes and the starting point of all arithmetical
progressions; note further that all arithmetical progressions repeat with period
6.

Lemma 2. Let δ1, δ2 ∈ EPLTL. Given a Markov chain (M,µ), let Iδi be the
satisfaction sets of δi and suppose that there exist representations (Fi, Gi) for
them. Then f : N → P{δ1, δ2} defined by δi ∈ f(x) iff x ∈ Iδi is eventually
periodic.

Proof. Assume that G1 = {(p1, r1), . . . , (pn, rn)}, G2 = {(q1, s1), . . . , (qm, sm)}.
LetK = max(F1∪F2∪{r1, . . . , rn}∪{s1, . . . , sm}), T = lcm(p1, . . . pn, q1, . . . qm).

Then for all natural numbers n > K, we need to prove that f(n+T ) = f(n).
Suppose that δ1 ∈ f(n); then n must be of the form pik+ri, since n > K. Then
n+T = pik + ri +T = qi

T
pi

k + ri, which since pi|T , implies that δ1 ∈ f(n+T ).
The same argument can be applied to δ2.

Consider the following algorithm to compute a representation for IδUδ2 given
representations for Iδ1 and Iδ2 , and the function defined as above:

Lemma 3. Let δ1, δ2 ∈ EPLTL. Assume that (F1, G1 = {(p1, r1), . . . (pn, rn)})
is a representation for Iδ1 and (F2, G2 = {(q1, s1), . . . (qn, sn)}) is a representa-
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Algorithm 1: UntilRepresentation computes a representation for the
satisfaction set of a Until formula

Input: Representations (F1, G1 = {(p1, r1), . . . , (pn, rn)}), (F2, G2 =
{(q1, s1), . . . , (qn, sn)}) for Iδ1 , Iδ2

Output: A representation for Iδ1Uδ2
T ← lcm(p1, . . . , pn, q1, . . . , qn);
K ← max({r1, . . . , rn} ∪ {s1, . . . , sn} ∪ F1 ∪ F2);
L← {(0, f(0)), . . . (T +K, f(T +K))} (as in Lemma 2) ;
foreach (i, f(i)) ∈ L do

if δ2 ∈ f(i) then
if i ≤ K then

F ← F ∪ {i};
else

G← G ∪ {(T, i)};
end

else if δ1 ∈ f(i) then
j ← Search for the least j s.t. (j, f(j)) ∈ L, j ≥ i, δ2 ∈ f(j);
if Search succeeds then

if δ1 ∈ f(k) for every i ≤ k < j then
if i ≤ K then

F ← F ∪ {i};
else
G← G ∪ {(T, i)};

end

end

else
j ←
Search for the least j s.t. (j, f(j)) ∈ L, j ≥ K + 1, δ2 ∈ f(j);
if Search succeeds then

if δ1 ∈ f(k) for every k ∈ {i, . . . , T +K,K + 1, . . . , j − 1}
then

G← G ∪ {(T, i)};
end

end

end

end

end
Return (F,G);
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tion for Iδ2 . Then (F,G = (T, a1), . . . (T, ao)) computed used using Algorithm
1 is a representation for Iδ1,Uδ2 .

Proof. We note that Algorithm 1 halts for any input. We start by showing that
if n ∈ N is represented in (F,G) then n ∈ Iδ1Uδ2 .

Suppose that n ∈ F . Then either δ2 ∈ f(n) or δ1 ∈ f(n) and there exists
n ≤ m ≤ T + K s.t δ2 ∈ f(m). These are the only possible conditions in 1
where n could have been added to F .

• if δ2 ∈ f(n), by the definition of f in Lemma 2, we know that n ∈ Iδ2 ,
and as such n ∈ Iδ1Uδ2 .

• if δ1 ∈ f(n) and n ≤ m ≤ T + K s.t δ2 ∈ f(m), we also know that all
indexes l with n ≤ l < m are such that δ1 ∈ f(l). Therefore, by the
definition of f in Lemma 2 we obtain that n ∈ Iδ1 , l ∈ Iδ1 and m ∈ Iδ2 ;
as such n ∈ Iδ1Uδ2 .

Now suppose that n = Tk + a1, that is the pair (T, a1) was added to G; in
any of the three possible commands where we might have added (T, a1), we are
guaranteed that K < a1 ≤ T +K.

• suppose that δ2 ∈ f(a1). Then, we automatically know that δ2 ∈ f(a1 +
Tk), as f is periodic after K, with period T . But if δ2 ∈ f(a1) then
a1 ∈ Iδ2 , a1 + Tk ∈ Iδ2 and therefore n ∈ Iδ1Uδ2 .

• otherwise suppose that δ1 ∈ f(a1) and that there exists an index m s.t
a1 ≤ m ≤ T + K and δ2 ∈ f(m). Again, we are assured that for any
indexes l between a1 and m, all of them are such that δ1 ∈ f(l). Therefore
δ1 ∈ f(a1 + Tk), δ1 ∈ f(l + Tk), for a1 ≤ l < m, and δ2 ∈ f(m+ Tk); so
we can conclude that in fact n ∈ Iδ1Uδ2 .

• finally, the remaining possibility is the following: δ1 ∈ f(a1), and there
exists m ∈ {K + 1, . . . , a1 − 1} such that δ2 ∈ f(m); furthermore, we also
know that δ1 ∈ f(l) for any l ∈ {a1, . . . T + K} ∪ {K + 1, . . . ,m − 1}.
But then, δ1 ∈ f(a1), . . . , δ1 ∈ f(T + K), δ1 ∈ f(T + K + 1), . . . δ1 ∈
f(T +K +m− 1) and δ2 ∈ f(T +K +m); by using the periodicity of f ,
we obtain that in fact a1 + Tk ∈ Iδ1Uδ2 .

Suppose that n ∈ Iδ1Uδ2 . We show that n is represented in (F,G). If
n ∈ Iδ1Uδ2 , then there exists m ∈ Iδ2 , with m ≥ n and for all n ≤ k < m,
k ∈ Iδ1 . Then, we know that δ1 ∈ f(k), with n ≤ k < m and δ2 ∈ f(m).
Assuming that n > K, we can use the periodicity of f to guarantee that there
exists n′ s. t. K < n′ ≤ T +K,δ1 ∈ f(n′). The same argument can be applied
to the index m, obtaining m′ ∈ {K + 1, . . . , T + K}, δ2 ∈ f(m′). Afterwards
we will always denote l′ as the index obtained by the use of the periodicity of f
applied to l in the range between {K + 1, . . . T +K}.

Suppose that m′ = n′ + l, l ≥ 0. Then, consider the indexes n + 1, . . . , n +
l − 1; using the periodicity of f we obtain that their versions over the indexes
{K + 1, . . . , T + K}, (n + 1)′, . . . , (n + l − 1)′ are such that all of them belong

13



to Iδ1 ; we conclude that then n′ ∈ IδUδ2 and our algorithm would have added
to G the pair (T, n′), which represents n. However, it is possible that although
m ≥ n, their version over {K, . . . , T +K} may verify n′ > m′. This case is only
possible because there will exist an index k between n and m such that k −K
mod T = 0; in this case following a similar argument as above we can conclude
that n′, . . . , k′ ∈ Iδ1 and k′ + 1 . . .m′ − 1 ∈ Iδ1 ; using the fact that m′ ∈ Iδ2 we
get that n′ ∈ Iδ1Uδ2 . In this case the final condition of Algorithm 1 is fulfilled
and so we in fact have added to G the pair (T, n′), which represents n.

Theorem 1. Let δ be an EPLTL formula, and (M,µ) a Markov chain. Assume
that for any subterm ti = 0 of δ, there exists a representation of Z(µTM iti)
which is (Fi, Gi). Then there exists (F,G) a representation for Iδ.

Proof. The proof follows from using structural induction. If δ ≡ (ti = 0),
then by hypothesis we already have a representation for Iδ. So, for each of the
connectives, we need to show that, assuming that the connectives’ subformulae
have representations (and therefore are unions of finite sets and arithmetical
progressions), the satisfaction set for the connective will also be the union of a
finite set and arithmetical progressions. Since the proofs for all connectives are
constructive, we can obtain a representation for each of them. Using Proposition
1, it remains to prove the case of the U connective. With the Algorithm 1, we
obtain that we can construct a representation for any EPLTL formulae.

Corollary 1. The verification problem of EPLTL formulae in Markov chains is
equireducible to the Skolem problem.

Remark 4. The focus of this work is on decidability. While extracting the run-
ning time complexity of the procedures for each connective is straightforward,
we can not make claims about the complexity class in which the verification
problem lies relative to the Skolem problem.

4 Approximate Skolem Problem and verification
of EPLTL formulae

As the Skolem problem is not known to be decidable, using it to verify EPLTL
seems to be a doomed enterprise for the time being. However, in most appli-
cations, we are willing to accept results carrying a small error, at least to deal
with finite precision representations. We intend on using the closure results for
representations of EPLTL formulae for approximate model checking of Markov
chains. We will need a small adjustment to the syntax and semantics of EPLTL
in order to cope with error bounds.

Definition 6. For any ε ∈ Q, the well formed formulae in ε-approximate EPLTLε
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over the propositional symbols Λ are given below in Backus-Naur notation:

β := p 8 (β ∧ β) 8 (¬β) (basic formulae)

t := r 8 (t+ t) 8 r
∫
β (rational terms)

δε := ∼ δε 8 δε ∩ δε 8 Xδε 8 δεUδε︸ ︷︷ ︸
temporal formulae

8 (t = t)ε︸ ︷︷ ︸
comparison formulae

(formulae)

where p ∈ Λ and r ∈ Q.

For an EPLTL formula δ andε ∈ Q, we define the syntactic translation δε of
δ in the expected way. The denotation of terms is as in Definition 3 and the
satisfaction relation is as expected:

Definition 7. The satisfaction relation 
ε between a Markov chain M, an
instant i, and a EPLTLε formula δε is defined inductively:

• M, i 
ε (t1 = t2)ε iff |[[t1]]M,i − [[t2]]M,i| < ε,

• M, i 
ε (δε1 ∩ δε2) iff M, i 
ε δε1 and M, i 
ε δε2,

• M, i 
ε (∼ δ) iff M, i 6
ε δ,

• M, i 
ε (Xδε) iff M, i+ 1 
ε δε,

• M, i 
ε (δε1Uδ
ε
2) iff there exists j ≥ i such thatM, j 
ε δε2 andM, k 
ε δε1,

for all i ≤ k < j.

In this section our main goal is to prove the following result:

Theorem 2. For any δ ∈ EPLTL and Markov chain M, there exists a com-
putable error margin d(δ,M) such that for all ε ∈]0; d[∩Q we can decide whether
M 
ε δε.

In order to do so we will first prove the following result:

Theorem 3. For any Markov chain M = (M,µ), and any rational vector y,
there exists a computable error margin d such that for all ε ∈]0; d[∩Q we can
decide whether there exists i ∈ N such that −ε < µTM iy < ε.

Given a rational term t and a Markov chain M = (M,µ), we will be inter-
ested in characterizing the set {i ∈ N : −ε < µTM it < ε} for a suitable ε. In
fact, this set will be the union of a finite set and a finite number of arithmetical
progressions. However, unlike in the Skolem problem, we can actually compute
a representation for this set (for suitable ε ∈ Q). Therefore, using the results
already proven in last section about the temporal and propositional connectives,
it will follow that the index set of δε will also be the union of a finite set and a
finite number of arithmetical progressions.
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We will first show how to characterize the set {i ∈ N : −ε < µTM it < ε},
for a suitable precision ε. Note first that, using Jordan decomposition:

µTMnt = µT (SDS−1)nt∗

= µTSDnS−1t∗

=
∑
j

pj(n)λnj

The polynomials pj(n) have degree bounded by the size of the matrix. Notice
that these polynomials will, in general, be complex and that the eigenvalues
may also be complex; however one needs to remember that, in the end, the sum
must still be a rational value.

Perron-Frobënius Theorem applied to irreducible stochastic matrices allows
us to state the following:

• All eigenvalues verify |λj | ≤ 1;

• There exists at least one eigenvalue j such that λj = 1;

• Other eigenvalues of absolute value 1 are all the roots of 1 for some degree.

In general, our stochastic matrix M is not necessarily irreducible; however,
if we rewrite it using permutation matrices, we can obtain a matrix in upper-
triangular block form such that:

• PMP−1 =


B1 ... ... ...
0 B2 ... ...
0 0 ... ...
0 0 0 Bn


• Each matrix Bi is either stochastic and irreducible, or substochastic and

irreducible.

The spectrum of M is the union of the spectra of each component Bi; there-
fore applying Perron Frobënius for each Bi, we conclude that the spectrum of
M can be divided in several sets of all roots of unity for some degrees (which
have absolute value 1), and all other eigenvalues (which have absolute value less
than 1).

Then, we can expand the summation as follows:
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µTMnt =
∑
j

pj(n)λnj

=
∑

{j:|λj |=1}

pj(n)λnj +
∑

{j:|λj |<1}

pj(n)λnj

=
∑

{j:|λj |=1}

pj(n)rnj e
iθjn +

∑
{j:|λj |<1}

pj(n)rnj e
iθjn

=
∑

{j:|λj |=1}

pj(n)e
2πi

pj
qj
n

︸ ︷︷ ︸
P (n)

+
∑

{j:|λj |<1}

pj(n)rnj e
iθjn

︸ ︷︷ ︸
D(n)

.

Lemma 4. Let M = (M,µ) be a Markov chain, t the vector associated with
EPLTL term t (as in Remark 3). Then P (n), and D(n), defined as above are
such that:

• P (n) is periodic,

• |D(n)| ≤ q(n)Rn, for some 0 ≤ R < 1 and polynomial q(n), such that
q(n)Rn is monotonically decreasing after some m ∈ N.

• P (n), D(n) ∈ R.

Proof. We start by showing that |D(n)| ≤ q(n)Rn, for some 0 ≤ R < 1 and
polynomial q(n):

|D(n)| = |
∑

{j:|λj |<1}

pj(n)rnj e
iθjn|

≤
∑

{j:|λj |<1}

|pj(n)|rnj

≤ q(n)Rn.

With, for instance q(n) = c(nd + 1), for d = max deg(pj(n)) and sufficiently
large c > 0, and R ∈]0; 1[∩Q chosen s.t. rj < R; therefore not only we can
compute m s.t. q(n)RN is monotonically decreasing but also lim |D(n)| = 0.

In order to prove the other two assertions, let T be the least common multiple
of all the denominators of the roots of unity in P (n). Furthermore, let Ps(k)
and Ds(k) with s ∈ {0, 1, . . . , T − 1} be defined as:

Ps(k) = P (s+ Tk), Ds(k) = D(s+ Tk), k ∈ N.

The first thing to note is that for each s ∈ {0, 1, . . . , T − 1}, Ps(k) is a
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complex polynomial on k:

Ps(k) =
∑

{j:|λj |=1}

pj(s+ Tk)e
2πi

pj
qj

(s+Tk)
,

=
∑

{j:|λj |=1}

pj(s+ Tk)e
2πi

pj
qj
s
e

2πi
pj
qj
Tk
,

=
∑

{j:|λj |=1}

pj(s+ Tk)e
2πi

pj
qj
s
,

=
∑

{j:|λj |=1}

pj(s+ Tk)e
2πi

pj
qj
s
.

Note that pj(s + Tk) are complex polynomials on k, e
2πi

pj
qj
s

are complex
constants, and therefore Ps(k) is a complex polynomial on k, too. So, in fact
Ps(k) =

∑
ajk

j + i
∑
bjk

j for some real coefficients aj , bj . Now, for k ∈ N, the
imaginary part of Ps(k),

∑
bjk

j , is a real polynomial on k that is either constant
or tends towards ±∞. However, we know that limDs(k) = 0 and so both
lim Re(Ds(k)) = 0 and lim Im(Ds(k)) = 0. Therefore, if lim Im(Ps(k)) = ±∞,
then µTMs+Tkt = Re(Ps(k)) + iIm(Ps(k)) +Ds(k) would have to be complex,
which is impossible.

Suppose now that Im(Ps(k)) = c, with c 6= 0. The same reasoning follows
since Im(Ds(k)) would need to be −c in order for µTMs+Tkt to be a rational
value, which clearly is impossible because lim Im(Ds(k)) = 0. Therefore Ps(k)
is a real polynomial on k. This also entails that Ds(k) has to be real (algebraic)
valued.

We will now prove that Ps(k) is in fact constant. So far we have shown that
Ps(k) is a real sequence. Suppose Ps(k) is not a constant; then lim |Ps(k)| =∞.
Naturally, this implies that lim |Ps(k) + Ds(k)| = ∞, since lim |Ds(k)| = 0.
Note, however, that |µTMnt| = |(µtMn).t)| ≤ L||t||1, with L the size of the
matrix, because (µTMn) is a probabilistic vector. This implies that Ps(k) is
bounded and therefore, being a polynomial, has to be constant;

This argument holds for each s and as such, the whole sequence P (n) has
to be periodic.

We now show that we can characterize the set {n ∈ N : −ε < µTMnt < ε}:

Theorem 4. There exists d, dependent on the Markov chain M = (M,µ), and
term t, such that, for all ε ∈]0, d[ we can compute a representation (F,G) for
{n ∈ N : −ε < µTMnt < ε}.

Proof. Consider P (n) and D(n) as computed above. We are interested in char-
acterizing the set {n ∈ N : −ε < P (n) + D(n) < ε}. Recalling that P (n)
is periodic with a certain period T (computed in Lemma 4), we will consider
Ps(k) = P (s + Tk) and Ds(k) = D(s + Tk), for s ∈ {0, . . . , T − 1}. We will
also compute q(n) and R to be such that |D(n)| < q(n)Rn (as in Lemma 4).
Moreover, we know that q(n)Rn is decreasing after some index m.
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Set d = min
s∈{0,...,T−1}

{|Ps(0)| : Ps(0) 6= 0}; for any ε ∈]0; d[ and for any

residue class s, there are two possibilities: either Ps(0) = 0, (in which case
Ps(0) = Ps(k) ∈] − ε, ε[, for all k), or Ps(0) = Ps(k) 6∈] − ε, ε[ for any k. Now,
we will collect the indexes such that {k ∈ N : −ε < Ps(k) +Ds(k) < ε} for each
residue class s.

Suppose that the residue class of s does not lie within ]− ε, ε[. We note that
then for almost all k, Ps(k) +Ds(k) 6∈]− ε, ε[, since limPs(k) +Ds(k) = Ps(0);
so, it is a simple matter of collecting all the indexes in this class of residues
that fall into ]− ε, ε[ until m or q(s+ Tk)Rs+Tk < |Ps(0)− ε|, whichever comes
later. In this case, the indexes so collected are added to the finite part of the
representation F , and we are guaranteed that no more exceptional zeroes my
occur in this residue class.

Suppose that the residue class of s lies within ]−ε, ε[, or equivalently Ps(0) =
0. Then, we know that, after m, when q(s + Tk)Rs+Tk < ε, then all the
subsequent indexes ( i > k) will lie inside ]− ε, ε[. In this case, we compute this
index k and add the arithmetical progression (T, Tk + s) to the arithmetical
part of the representation, G. Furthermore, from 0 to k we collect the indexes i
that still lie inside ]−ε, ε[ and add Ti+s to the finite part of the representation,
F .

Remark 5 (Characterizing the set {n ∈ N : −ε < P (n) +D(n)}). While our
syntax of EPLTL does not allow inequalities, we could extend it so that (t1 < t2)ε

would semantically mean [[t1 − t2]] < ε, and (t1 > t2)ε would semantically mean
[[t1−t2]] > −ε. The proof of Theorem 4 can be adapted for these cases. Without
loss of generality we sketch the case for t > −ε: we consider the same d; if Ps(0)
falls into the interval ] − ε; +∞[ we know that almost always Ps(k) + Ds(k)
will belong to that interval. Therefore we would need to collect the exceptional
indexes that may appear up to the point after m, where q(s + Tk)Rs+Tk <
|Ps(0)− ε|, adding the arithmetical progression afterwards. Otherwise, if Ps(0)
falls in ] − ∞,−ε], we note that we are guaranteed that Ps(0) 6= −ε and we
just need to compute Ps(k) +Ds(k) up to the point where we are certain that
the remaining sequence will be in ] − ∞,−ε], which which will happen when
q(s+ Tk)Rs+Tk < ε.

With this result, we can now use the results about the characterizations of
satisfaction sets from preceding section to verify EPLTLε formulae. One must
take into account that in the case of multiples comparison terms ti = 0, the
choice of ε must be smaller than the minimum of all d computed in Theorem 4.

Theorem 5. Given a Markov chain (M,µ), and formula δ ∈ EPLTL, there
exists d > 0, such that for all ε ∈]0, d[∩Q we can decide (M,µ) 
ε δε.

Remark 6. The focus of this work is on decidability. However, we make some
comments on the computational complexity of the procedure presented for the
approximate Skolem problem. The algorithm may be divided in two parts: (i)
finding d = min

s∈{0,...,T−1}
{|Ps(0)| : Ps(0) 6= 0} from M,µ and t and, (ii) given ε,

collecting the indexes such that {k ∈ N : −ε < P (n) + D(n) < ε}. In order
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to compute d, we need obtain a Jordan decomposition of M (which allows us
to rewrite the problem in terms of P (n) +D(n)), find the eigenvalues that are
roots of unity, compute the least common multiple of their denominators, T and,
finally, evaluate P (n) from 0 to T − 1, obtaining Ps(0). All these operations are
of well known complexity [6].

The analysis of the relation between d and ε is more interesting. For each
s ∈ {0, . . . , T − 1}, we need to explicitly compute Ps(k) +Ds(k) up to a certain
index to account for the possibility of exceptional zeroes. For each residue
class s ∈ {0, . . . , T − 1} we either have to compute Ps(k) + Ds(k) up to q(s +
Tk)Rs+Tk < |Ps(0)− ε| or q(s+ Tk)Rs+Tk < ε. For the sake of simplifying the
analysis, let us suppose that the procedure, for each s, naively checks all the
indexes until both q(s + Tk)Rs+Tk < |d − ε| and q(s + Tk)Rs+Tk < ε. This
clearly requires at least as many checks as the proposed method.

Now the question becomes how many checks do we have to make until
q(k)Rk < min{|d − ε|, ε}. It is clear that the procedure becomes harder when
m = 1

min{|d−ε|,ε} increases. Let N(m) = minn∈N q(n)Rn < 1
m = min{|d − ε|, ε}

be the number of exceptional indexes that we need to check. We will show that
N(m) ∈ O(logm) by establishing that lim supm→∞N(m) < k logm for some k.
Consider the function f(m) = q(k logm)Rk logm. We will show, that for some k,
lim f(m) < 1

m . Since, for all m, N(m) is the first value such that q(n)Rn ≤ 1
m ,

after some m, N(m) ≤ k logm.
So, it remains to show that lim f(m) < 1

m . f(m) = q(k logm)Rk logm =
q(k logm) 1

m
log 1

Rk
. Since the degree of q is fixed and R < 1, we can choose

k large enough to guarantee that 1

m
log 1

Rk
decreases faster than mq(k logm).

Therefore, N(m) ∈ O(logm), that is, the number of exceptional indexes that
have to be checked varies logarithmically with the inverse of the distance to the
bounds of the interval.

5 Conclusions and Future Work

In this work we have shown the connection between the Skolem problem and the
verification problem for temporal properties on probabilistic dynamical systems
induced by Markov chains. Since significant advances on the decidability (or
lack thereof) of the Skolem problem seem unlikely in the near future [18], we
turned our attention towards approximate versions of these problems. In this
context, we have presented procedures to decide the problems. While the focus
of this work was on decidability, a natural question is to wonder about the
complexity of the approximate problems. We have made some comments on
the running time of the presented algorithms but have not investigated lower
complexity bounds for the decision problems or the reduction of the verification
problem to the Skolem problem.

Another natural progression for this work would be an implementation of
the verification algorithm for the approximate version of the problem. This
approach ties to the complexity analysis since, in this work, we were more
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concerned with clarity of exposition of the procedures rather than efficiency.
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