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Abstract. The theory of abstract algebraic logic aims at drawing a
strong bridge between logic and universal algebra, namely by generaliz-
ing the well known connection between classical propositional logic and
Boolean algebras. Despite of its successfulness, the current scope of appli-
cation of the theory is rather limited. Namely, logics with a many-sorted
language simply fall out from its scope. Herein, we propose a way to
extend the existing theory in order to deal also with many-sorted logics,
by capitalizing on the theory of many-sorted equational logic. Besides
showing that a number of relevant concepts and results extend to this
generalized setting, we also analyze in detail the examples of first-order
logic and the paraconsistent logic C; of da Costa.

1 Introduction

The general theory of abstract algebraic logic (AAL from now on) was
first introduced in [1]. It aims at providing a strong bridge between logic
and universal algebra, namely by generalizing the so-called Lindenbaum-
Tarski method, which led to the well known connection between classical
propositional logic and Boolean algebras. Within AAL, one explores the
relationship between a given logic and a suitable algebraic theory, in
a way that enables one to use algebraic tools to study the metalogical
properties of the logic being algebraized, namely with respect to ax-
iomatizability, definability, the deduction theorem, or interpolation [9].
Nevertheless, AAL has only been developed (as happened, until recently,
also with much of the research in universal algebra) for the single-sorted
case. This means that the theory applies essentially only to propositional-
based logics, and that logics over many-sorted languages simply fall out
of its scope. It goes without saying that rich logics, with many-sorted
languages, are essential to specify and reason about complex systems, as
also argued and justified by the theory of combined logics [17,19].

Herein, we propose a way to extend the scope of applicability of AAL
by generalizing to the many-sorted case several of the key concepts and
results of the current theory, including several alternative characteriza-
tion results, namely those involving the Leibniz operator and maps of
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logics. The generalization we propose assumes that the language of a
logic is built from a many-sorted signature, with a distinguished sort for
formulas. The algebraic counterpart of such logics will then be obtained
via a strong representation over a suitable many-sorted algebraic theory,
thus extending the notion of single-sorted algebraization of current AAL.
Terms of other sorts may exist, though, but they do not correspond to
formulas. Of course, in a logic, one reasons only about formulas, and
only indirectly about terms of other sorts. Hence, we consider that the
sort of formulas is the only visible sort, and we will also aim at a direct
application of the theory of hidden algebra, as developed for instance
in [18], to explore possible behavioral characterizations of the algebraic
counterpart of a given many-sorted algebraizable logic.

We explore the new concepts by analyzing the example of first-order
logic in a many-sorted context, and comparing with its previous unsorted
study [1,2]. We will also see how to apply our many-sorted approach in
order to provide a new algebraic perspective to certain logics which are
not algebraizable in current AAL. Namely, we will establish the many-
sorted algebraization of the paraconsistent logic C; of da Costa [8], whose
single-sorted non-algebraizability is well known [16,13].

The paper is organized as follows. In section 2 we will introduce a num-
ber of necessary preliminary notions and notations. In section 3 we will
introduce the essential concepts and results of current AAL, and present
some of its limitations by means of examples. Then, in section 4, we will
present our generalized notion of many-sorted algebraizable logic and a
detailed analysis of the examples in the generalized setting. We will also
show that some relevant concepts and results of AAL smoothly extend
to the many-sorted setting. Finally, section 5 draws some conclusions,
and points to several topics of future research.

2 Preliminaries

In this section we introduce the preliminary notions and notations that
we will need in the rest of the paper, namely concerning logic and algebra.

2.1 Logics and maps

We will adopt the Tarskian notion of logic. A logic is a pair £ = (L, ),
where L is a set of formulas and FC 2% x L is a consequence relation
satisfying the following conditions, for every I'U® U {¢} C L:

Reflexivity: if ¢ € I' then I' - ¢;
Cut: if I' - ¢ for all p € @, and @ - 9 then I' F ¢,
Weakening: if I't ¢ and I' C @ then @ .

We will consider only these three conditions. However, Tarski also con-
sidered a finitariness condition (see [21]):

Finitariness: if I' - ¢ then I'" F ¢ for some finite I" C I'.



In the sequel if I'® C L, we shall write I' - & whenever I' - ¢ for
all ¢ € &. We say that ¢ and 1 are interderivable, which is denoted by
@ I ¢, if ¢ -1 and ¥ F . In the same way, given [, ® C L we say
that I" and @ are interderivable, if I' = ® and @ - I'. The theorems of L
are the formulas ¢ such that O - . A theory of L, or briefly a L-theory,
is a set I' of formulas such that if I" - ¢ then ¢ € I'. Given a set I', we
can consider the set I'", the smallest theory containing I". The set of all
theories of £ is denoted by The. It is easy to see that (The, C) forms a
complete partial order.

We will need to use a rather strong notion of map of logics. Let £ = (L, )
and £ = (L',}F') be two logics. A map 6 from £ to L' is a function
0 : L — 2~ such that, if I - ¢ then (Uyer 0(7)) F 0(¢). The map 6
is said to be conservative when I" = ¢ iff (U, 0(7)) F (). A strong
representation of £ in £’ is a pair (,7) of conservative maps 6§ : £ — L’
and 7 : £ — L such that:

i) For all ¢ € L we have that ¢ 4F 7[0(¢)];

ii) For all ¢’ € L' we have that ¢ =" 0[7(¢")].

Note that the cases where 0(p) is a singleton set for every ¢ € L, or
is a finite set for every ¢ € L, are usual particular cases of the above
definition of map. For the sake of notation we will use 0[I'] = U, o 0(7).
Hence, a map 6 is such that if I" F ¢ then 0[] F 0(¢). Analogously, it is
conservative when I' - ¢ iff 0[] F 0(p). Note also that, because of the
symmetry of the definition of strong representation, we also have a strong
representation (7,6) of £ in £. The existence of a strong representation
of £ in £’ intuitively means that the consequence relation of £ can be
represented in £’, and vice-versa, such that they are, in some precise
sense, inverse of each other. Actually, § and 7 induce an isomorphism of
the complete partial orders of theories of £ and £’. It is not difficult to
see that, if we assume the conservativeness of 6 and consider any function
7: L' — 2% that satisfies ii), then we can conclude that 7 is in fact a
conservative map from £’ to £ that also satisfies ).

2.2 Algebra

Recall that a many-sorted signature is a pair X' = (S,0) where S is
a set (of sorts) and O = {Ouws}wes*,ses is an indexed family of sets.
For simplicity, we write f : s1...s, — s for an element f of Os,. s,s-
As usual, we denote by T=(X) the S-indexed family of carrier sets of
the free X-algebra Ts(X) with generators taken from a sorted family
X = {X,}ses of variable sets. Often, we will need to write terms over a
given finite set of variables ¢t € Tx(x1 : S1,...,%n : Sn). For simplicity,
we will denote such a term by ¢(z1 : s1,...,%n : Sn). Moreover, if T' is a
set whose elements are all terms of this form, we will denote this fact by
writing T(x1 : S1,...,%n : Sn). Fixed X, we will use ¢1 & ¢2 to represent
an equation (t1,t2) between YX-terms ¢1 and t2 of the same sort. If both
terms are of sort s, we will dub ¢; = t2 an s-equation. The set of all X-
equations will be written as Fqx. Moreover, we will denote conditional
equations by t1 &~ u1 A+ Aty & up — t ~ u. A set © whose elements
are all equations over terms of the form t(x1 : s1,...,%n : Sn), will also



be dubbed ©(z1 : $1,...,Zn : Sn). A substitution 0 = {os : X, —
T5(X)s}ses is an indexed family of functions. As usual, o(t) denotes
the term obtained by uniformly applying o to each variable in t. Given
t(x1 : S1,-..,%n @ Sp) and terms t1 € To(X)sy,...,tn € Tu(X)s,, we
will write t(t1,...,tn) to denote the term o(t) where o is a substitution
such that o, (z1) = t1,...,0s, (Tn) = tn. Extending everything to sets
of terms, given T'(z1 : S1,...,Tn : Sp) and U € T (X)s; X+ XT5(X)s,,
we will use T[U] =U,,  ,yev Tt 5tn).

Given a Y-algebra A, we will use As; to denote its carrier set of sort
s. As usual, given an equation t1 ~ t2 of sort s, we write A IF ¢ = t2
to denote the fact A is a model of, or satisfies, the equation. The same
applies to conditional equations. Given a class K of XY-algebras, we define
the consequence relation EX as follows: © EX t; ~ to when, for every
A € K, if AlFu = uz for every u; = uz € O then also Al t; =~ ta.
We may omit the superscript and simply write Fx if K is the class of all
Y-algebras. We will use Eqn’s to refer to the logic (Eqs,F%).

From now on we will assume that all signatures have a distinguished sort
¢, for formulas. Moreover, we will assume that X = {&; : ¢ € N} and will
simply write & instead of & : ¢. Given a specification (X, &) where @ is
a set of Y-equations, we define the induced set of formulas L 5 ¢ to be the
carrier set of sort ¢ of the initial model Lx & = Tx(X),, of &. When
& = (), we will simply write Ls. Moreover, we will use BEqn’s to refer
to the logic (qu,lng,w), where hgﬁbhv is the behavioral consequence
relation defined for instance as in [18,10], by considering ¢ to be the
unique visible sort and adopting a suitable set of visible contexts.

3 Limitations of the current theory of AAL

In this section, we intend to illustrate some of the limitations of the
current theory of AAL. For that purpose, we begin by briefly presenting
the essential notions and results of the theory. Still, it is not our aim
to survey AAL, but rather to focus on what will be relevant in the rest
of the paper. A recent comprehensive survey of AAL is [9], where the
proofs (or pointers to the proofs) of the results we will mention can be
found.

3.1 Concepts and results of unsorted AAL

The original formulation of AAL in [1] considered only finitary logics.
Currently, the finitariness condition has been dropped [9]. Still, the ob-
jects of study of current AAL are logics whose formulas have some addi-
tional algebraic structure, namely their set of formulas is freely obtained
from a propositional (single-sorted) signature.

Definition 1 (Structural single-sorted logic).
A structural single-sorted logic is a pair £ = (X, F), where X is a single-
sorted signature and (Ls,F) is a logic that also satisfies:

Structurality: if I' - ¢ then o[I'] F o(¢) for every substitution o.



Clearly, ¢ must be the unique sort of Y. Finally, we can introduce the
main notion of AAL.

Definition 2 (Single-sorted algebraizable logic).
A structural single-sorted logic £ = (X,F) is algebraizable if there exists
a class K of Y-algebras, a set ©(£) of Y-equations, and a set E(&1,&2)
of L-formulas such that the following conditions hold:

— for every I'U{p} C Ly, I' - ¢ iff O[] EX O(y);
— for every AU {p ~ ¢} C Eqs, AFE ¢ = ¢ iff E[A]F E(p,v);
— &4 E[O()] and &1 = & FEE O[E(6,£)).

The set O of equations is called the set of defining equations, E is called
the set of equivalential formulas, and K is called an equivalent algebraic
semantics for £. The notion of algebraizable logic intuitively means that
the consequence relation of £ can be captured by the equational conse-
quence relation F%, and vice-versa, in a logically inverse way. When a
logic is algebraizable and both © and E are finite, we say the logic is
finitely algebraizable. Other variants of the notion of algebraizability and
their relationships are illustrated in Fig. 1. Note however that, in this
paper, we will not explore them.

In [1] Blok and Pigozzi proved interesting results concerning the unique-
ness and axiomatization of an equivalent algebraic semantics of a given
finitary and finitely algebraizable logic. They proved that a class of al-
gebras K is an equivalent algebraic semantics of a finitary finitely alge-
braizable logic if and only if the quasivariety generated by K is also an
equivalent algebraic semantics. In terms of uniqueness they showed that
there is a unique quasivariety equivalent to a given finitary finitely alge-
braizable logic. The axiomatization of this quasivariety can be directly
built from an axiomatization of the logic being algebraized, as stated in
the following result.

Theorem 1. Let £ = (X, F) be a (finitary) structural single-sorted logic
obtained from a deductive system formed by a set of axioms Ax and a
set of inference rules R. Assume that L is finitely algebraizable with @
and E. Then, the equivalent quasivariety semantics is axiomatized by the
following equations and conditional-equations:

— O(p) for each v € Ax;

O[E(&,8)];
O(Wo) A ... NO(Yn) — O(Y) for each rule w[’wi% € R;

O[E(&1,62)] — &1 = &2.

There are several interesting and useful alternative characterizations of
algebraizability. The most useful, namely to prove negative results, is
perhaps the characterization that explores the properties of the so-called
Leibniz operator. A congruence = in a Y-algebra A is said to be compat-
ible with a subset F' of Ay if whenever a € F and a = b then b € F. In
this case, F' is a union of equivalence classes of =. We will use Cong, to
denote the set of all congruences of a X-algebra A. Recall that Cong,
equipped with inclusion also constitutes a complete partial order.
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Fig. 1. A view of the Leibniz hierarchy.

Definition 3 (Leibniz operator).

Let £ = (X,F) be a structural single-sorted logic. The Leibniz operator
on the formula algebra, {2 : Th, — Congy, is such that, for each theory
I' of L, 2(I') is the largest congruence of Lx compatible with I".

The denomination of the hierarchy considered in Fig. 1 is well justified by
the fact that each of the classes of logics mentioned can be characterized
by inspection of the properties of the corresponding Leibniz operator.
Concerning algebraizability, we have the following result.

Theorem 2. A structural single-sorted logic £ = (X,}) is algebraizable
iff £2 is monotone, injective, and commutes with inverse substitutions.

Another enlightening characterization of algebraization can be expressed
using maps of logics [6].

Theorem 3. A structural single-sorted logic £ = (X, ) is algebraizable
iff there exists a class K of X-algebras and a strong representation (6, 1)
of L in Eqn¥ such that both 6 and T commute with substitutions.

Note that the fact that both maps commute with substitution is essential
to guarantee that each can be given uniformly, respectively, by a set ©
of one-variable equations, and a set E of two-variable formulas.

3.2 Examples, good and bad

The theory of AAL is fruitful in positive and interesting examples. We
will begin by introducing the two most known and simple examples.

Ezample 1 (Classical and Intuitionistic Propositional Logics).

The main paradigm of AAL is the well establish connection between
classical propositional logic (CPL) and the variety of Boolean algebras.
This was really the starting point to the idea of connecting logic with
algebra, which evolved trying to generalize this connection to other logics.
Other important example is intuitionistic propositional logic (IPL). Its



algebraization gives rise to the class of Heyting algebras. It is interesting
to note that, in contrast to Boolean algebras, which were defined before
the tools of abstract algebraic logic were first applied to generate them
from CPL, Heyting algebras seem to be the first algebras of logic that
were identified by applying this theory to a given axiomatization of IPL.

Even considering the enormous success of this theory, not only in the
generality of its results, but also in the large amount of examples, we can
point out some limitations. From our point of view, one major limitation
of the existing theory is its inability to correctly deal with logics with
a many-sorted language. Let us, first of all, discuss the paradigmatic
example of first-order classical logic (FOL).

Ezample 2 (First-Order Classical Logic).

Research on the algebraization of FOL goes back to the seminal work
initiated by Tarski in the 1940s, and published in collaboration with
Henkin and Monk in [11]. In [1], Blok and Pigozzi present an single-sorted
algebraization of FFOL in the terms we have just introduced. Their idea
was to massage the first-order language into a propositional language and
then present a structural propositional deductive system PR, introduced
by Németi, for first-order logic over this propositional language. It is then
proved that PR is algebraizable. Moreover, it is proved that the variety
equivalent to PR is the variety of cylindric algebras.

Despite the success of the example of FOL within AAL, we can point
out some drawbacks. The first one is related with the fact that the first-
order language they start from differs in several important respects from
standard FFOL. This is due to the fact that, since the theory only applies
to single-sorted logics, the atomic formulas of FFOL have to be repre-
sented, within the propositional language, as propositional variables. So,
in order to preserve structurality, one has to constrain the language.
Another important drawback is the fact that, given the many-sorted
character of first-order logic, where we have at least syntactic categories
for terms and formulas, and possibly also for variables, it would be de-
sirable to have an algebraic counterpart that reflects this many-sorted
character. This is clearly not the case with cylindric algebras.

One of our motivations is precisely to extend the theory of AAL to
cope with logics that, like first-order logic, have a many-sorted language.
This will allow us to, given an algebraizable many-sorted logic, reflect its
many-sorted character in its corresponding algebraic counterpart.

But it is not only at the purely many-sorted level that the limitations of
current AAL arise. Even at the propositional level, there are interesting
logics that fall out of the scope of the theory. It is the case of certain
so-called non-truth-functional logics, such as the paraconsistent systems
of da Costa [8]. The major problem with these logics is that they lack
congruence for some connective(s). Roughly speaking, a logic is said to
be paraconsistent if its consequence relation is not ezxplosive [5]. We say
that a logic £ = (X,}) is an explosive logic with respect to a negation
connective — if, for all formulas ¢ and ), it is true that {¢, 7} F 9.

Ezample 3 (Paraconsistent Logic C1 of da Costa,).
It was proved, first by Mortensen [16], and after by Lewin, Mikenberg



and Schwarze [13] that C1 is not algebraizable in current AAL. So, we
can say that Ci is a example of a logic whose non-algebraizability is well
studied. Nevertheless, it is rather strange that a relatively well-behaved
logic fails to have an algebraic counterpart. We will briefly introduce C;.
The language of C; is generated by the unisorted signature X' with sort
¢ and composed of the following operations:

—t,f:—> ¢, —:d—pand A,V,D: ¢? — ¢.
The consequence relation of C; can be given by the structural deductive
system composed of the following axioms:

& D (&D&)

(1D (€22 &3)) D ((€1 2 &2) D (&1 D &3))
(61N€) D&

(61 NE2) D&

&1 D (&2 D (&1AE))

&1 D (&1VE)

— & D (&1VE)

— (&1D8&)D((&2D&) D ((&1VE)DE))
- =& D&

- & Vv-&

— & D (& D (=61 D¢&2))

= ((TANE) D (&1 NE)°

(T AE) D (& VE)

(T NE3) D (&1 D &)°

t=(& D&)

f= (& A (& A=&))

and the rule of modus ponens:

—&1,60 D8 FE

where ¢° is an abbreviation of —=(p A (—p)) and ¢ = 1) is an abbreviation
of (e DY) (P D).

Despite of its innocent aspect, C; is a non-truth-functional logic, namely
it lacks congruence for its paraconsistent negation connective. In general,
it may happen that ¢ =+ ¢ but —¢ s#-1). This phenomenon leaves the
non-truth-functional logics, and in particular Ci, outside of the existing
theory, since congruence is a key ingredient for the algebraization process.
Still, Ci has other peculiarities. Although it is defined as a logic weaker
that CPL, it happens that a classical negation ~ can be defined in C;
by using the abbreviation ~ ¢ = ¢° A —p. Exploring this fact, da Costa
himself introduced in [7] a so-called class of Curry algebraic structures as
a possible algebraic counterpart of C;. In fact, nowadays, these algebraic
structures are known as da Costa algebras [4]. However, their precise
nature remains unknown, given the non-algebraizability results reported
above.

One of the objectives of this paper is to point out a way to use our
many-sorted approach to give a possible connection between C; and the
algebras of da Costa.



4 Generalizing algebraization

In this section we will propose a novel many-sorted extension of the
notion of algebraization, where the major generalizations will happen at
the syntactic level. The new notion is then illustrated with the help of
examples, and some of its essential results are extended to the many-
sorted setting.

4.1 The many-sorted generalization

Our initial aim is to extend the range of applicability of AAL. Therefore,
we need to introduce a suitable notion of structural many-sorted logic.
First of all, we will assume that the formulas of the logic are built from a
many-sorted signature Y. It is usual to assume that the syntax, namely
of a logic, is defined by a free construction over the given signature Y. In
the previous section the set of formulas was precisely T’s;, as inforced by
the terminology introduced in section 2 when the formulas are built from
a specification (X, ®) with & = (. However, it is not unusual that certain
syntactic abbreviations are assumed. For instance, in CPL one may as-
sume that all classical connectives are primitive, or else, for instance, that
negation and implication are primitive and the other connectives appear
as abbreviations. In such a scenario, it makes all the sense to assume that
these syntactic abbreviations correspond to equations over the syntax,
thus making @ # (). Of course, by doing this one may be contributing
to blurring the essential distinction between syntax and semantics. Still,
as we will see, the development applies unrestrictedly. Hence, in general,
the syntax of the logic will be specified by a pair (X, ®), which justifies
the general definition of Lx 4. Note that given a substitution o over X,
it is easy to see that o is well behaved with respect to the congruence
=¢ induced by @ on Lx. Namely, given t1,t2 € Lx if t1 =¢ t2 then
o(t1) =s o(t2). Hence, it makes sense to write o(p) for any formula
¢ € Lx.a. We will use [t]l¢ to denote the formula corresponding to the
equivalence class of t € Ly, under =¢.

Definition 4 (Structural many-sorted logic).

A structural many-sorted logic is a tuple £ = (X, &, ) where (X, D) is a
many-sorted specification and (Lx #,F) is a logic that also satisfies:
Structurality: if I' - ¢ then o[I'] F o(y) for every substitution o.

It should be clear that, in the particular case of a single-sorted signature
with @ = (), this notion coincides precisely with the notion of structural
single-sorted logic used in the previous section. Note also that, given a
structural many-sorted logic £ = (X, ®,+), we can consider the following
induced consequence relation F2C P(Ls) x Lx defined by T F2 w iff
[T]e b [u]e. It is easy to see that there exists a strong representation of
L into (Ls,F%). In particular, the theories Th® of this induced logic are
isomorphic to Th.. When convenient, this induced consequence relation
will allow us to work over Ly, thus avoiding the explicit reference to
quotients and equivalence classes. We can now introduce our new notion
of many-sorted algebraization. The key idea is to replace the role of
single-sorted equational logic in current AAL by many-sorted equational
logic.



Definition 5. (Many-sorted algebraizable logic)
A structural many-sorted logic £ = (X, ®,F) is algebraizable if there
exists a class K of (X, ®)-models, a set O(£) of ¢-equations and a set
E(&1,&2) of ¢-terms such that the following conditions hold:

i) for every T U {u} C Ls, T % u iff O[T] X O(u);

ii) for every set AU {t; =~ t2} of ¢-equations, A EX t; ~ ¢5 iff E[A] FE

E(tl, tz);

iii) €42 E[O(¢)]] and & = & HEE O[E(&1,&2)].

As before, © is called the set of defining equations, E the set of equiv-
alential formulas, and K is called an equivalent algebraic semantics for
L. Again, it should be clear that in the case of a single-sorted signature
with @ = () this definition coincides with the notion of algebraizable logic
of current AAL.

4.2 Examples

Before we proceed, let us illustrate the new notion, namely by revisiting
the examples of FOL and C;.

Ezample 4 (First-order classical logic revisited).

In example 2, we have already discussed the problems with the single-
sorted algebraization of FOL developed in [1]. With our many-sorted
framework we can now handle first-order logic as a two-sorted logic, with
a sort for terms and a sort for formulas. This perspective seems to be
much more convenient, and we no longer need to view atomic FOL for-
mulas as propositional variables. Working out the example, whose details
we omit, we manage to algebraize FFOL having as an equivalent algebraic
semantics the class of two-sorted cylindric algebras, whose restriction to
the sort ¢ is a plain old cylindric algebra, but which corresponds to a reg-
ular first-order interpretation structure on the sort of terms. In the new
many-sorted context it is also straightforward to algebraize many-sorted
FOL.

Ezample 5 (Cy revisited).
In example 3, we made clear that the single-sorted theory of AAL has
some unexpected limitations, even in the case of propositional-based log-
ics. We will now revisit C; and its algebraization in the many-sorted
setting. Actually, in this new perspective, the way in which a logic is
presented and, in particular, the way its language is specified, is very
relevant in the algebraization process. The trick for C; will be to present
it as a two-sorted logic, as suggested in [3]. Namely we will consider the
two-sorted syntactic specification (X, ¢) such that:

— X has two sorts, h and ¢, and operations t,f:— h, =,~: h — h and
AV, D h? — h,aswellas o: h — ¢, and t,f:— ¢, ~: ¢ — ¢ and
AV, D9 — o

— @ includes the following equations:

~xx=z® Az
o(t) = t o(~ z) = ~ o(x) o(x ANy) = o(z) A
o(f) ~ f oz Vy) = o(x) Vo(y) oz D y) = o(z) D o(y)



The idea is to take all the primitive syntax of C; to the sort h, including
the classical negation connective ~ definable as an abbreviation, and to
have an observation operation o into sort ¢, where all the connectives are
again available, with the exception of the non-truth-functional paracon-
sistent negation —. The top equation aims precisely at internalizing the
definition of ~. The other 6 equations simply express the truth-functional
(homomorphic) nature of the corresponding connectives. It is not diffi-
cult to see that Lx 4 is isomorphic to the set of Ci-formulas. With this
two-sorted perspective, it can now be shown that, taking ©(¢) = { = t}
as the set of defining equations and E(&1,&2) = {&1 = &} as the set of
equivalential formulas, C; is algebraizable in our generalized sense, and
that the resulting algebraic counterpart is precisely the two-sorted quasi-
variety K¢, proposed in [3]. We do not dwell into the details here, but we
can say that the corresponding two-sorted algebras are Boolean on sort
¢. Actually, the conditional equational specification of K¢, only needs to
use ¢-equations, which leaves little to be said about what happens with
sort h. It is certainly very interesting to understand what is the impact
of the K¢, specification over h-terms, but that is something that we can
only do behaviorally, by assuming that h is a hidden-sort. If we restrict
our attention to contexts that do not involve the paraconsistent nega-
tion, we can show that every algebra A € K¢, behaviorally satisfies all
the conditions in the definition of da Costa algebras. On the other hand,
given any da Costa algebra, we can canonically extend it to a two-sorted
algebra in Ke¢,. In this way, we manage to discover the connection of
da Costa algebras with the algebraization of C1, which had never been
found.

4.3 Many-sorted AAL

In order to further support our generalization of the notion of algebraiz-
able logic, we will now show that we can also extend other notions and
results of AAL. We begin by defining a many-sorted version of the Leib-
niz operator.

Definition 6 (Many-sorted Leibniz operator).

Let £ = (¥, ®,F) be a structural many-sorted logic. The many-sorted
Leibniz operator on the term algebra, 2 : Th? — CongLs, is such that,
for each T € ThE, 2(T) is the largest congruence of Ls containing &
and compatible with T'.

Note that, given T € Th%, since & C 2(T), we have that 2(T) can be
seen as a congruence on Lx /. As we will see, also in the many-sorted
setting, the Leibniz operator will play an important role. In fact, we
are be able to generalize the characterization theorem of single-sorted
algebraizable logic we gave in section 3.1.

Theorem 4. A structural many-sorted logic L = (X, ®,F) is algebraiz-
able iff 2 is monotone, injective, and commutes with inverse substitu-
tions.



Proof. This proof uses the same methodology as the proof of the single-
sorted result. So, we will just give a sketch of the proof focusing on the
important methodological steps. First assume that £ is algebraizable,
with K, ©(€) and E(&1,&2). Using ©(€) and its properties we can define
the function 2k : ThE — Congus;, such that, for every sort s, (t1,t2) €
(2x (T))s iff for every ¢-term u(z : s) we have that O[T]FSu(t1) =~ u(t2).
Using the properties of K, ©(§) and E(&1,&2) it is easy to prove that
25 (T) is the largest congruence containing ¢ that is compatible with T
that is, 2k = (2. The fact that 2k is injective, monotone and commutes
with inverse substitutions also follows easily from the properties of ©(¢)
and E(€1, §2)

On the other direction, suppose that {2 is injective, monotone and com-
mutes with inverse substitutions. Consider the class of algebras K =
{Ts/pp T € ThE}. Tt is clear that K is a class of (X, ®)-models.
The fact that {2 is monotone and commutes with inverse substitutions
implies, according to [12], that {2 is also surjective. Hence, {2 is indeed
a bijection. Our objective is to prove that L is algebraizable with K an
equivalent algebraic semantics. We still have to find the sets of defining
equations and equivalence formulas. Let T = {fl}F%. Let o be the sub-
stitution over X such that o4(§) = & for every &, and it is the identity
in the other sorts. If we take ©® = o[£2(T")4] it can be shown, using the
fact that {2 commutes with inverse substitutions, that ©® = (&) is a
set of ¢-equations and T' % v iff O[T] EX O(u). Now let us construct
the set of equivalence formulas. Take now o to be the substitution such
that 04(&2) = &2 and 04(€) = & for every & # &2, and it is the identity
in the other sorts. Take E = o[Q27 ' ({&; = 52}':12()]. It can be proved that
E = E(&,&) is a set of ¢-terms and that O[E(&1,62)] HEX &1 ~ L.
The algebraizability of £ follows straightforwardly from these facts. 0O

We can also extend the characterization of algebraization using maps of
logics, namely a strong representation between the given many-sorted
logic and many-sorted equational logic.

Theorem 5. A structural many-sorted logic L = (X, P,F) is algebraiz-
able iff there exists a class K of (X, ®)-models and a strong representa-
tion (0,7) of (Ls,FZ) in Eqn¥, such that 0 is given by a set O(€) of
¢-equations and T by a set E(&1,&2) of ¢-terms.

Proof. The result follows from the observation that conditions i), ii), and
iii) of the definition of many-sorted algebraizable logic are equivalent to
the fact that (6, 7) is a strong representation. O

When a structural many-sorted logic £ is algebraizable, we can some-
times provide a specification of its algebraic counterpart given a deduc-
tive system for L.

Theorem 6. Let L = (X, D,k) be a structural many-sorted logic ob-
tained from a deductive system formed by a set Ax of axioms and a set
R of inference rules. Assume that L is finitely algebraizable with © and
E. Then, the equivalent quasivariety semantics is axiomatized by the fol-
lowing equations and conditional-equations:



1) D;
ii) O(p) for each [ple € Ax;
iii) O[E(E,£)];
w) O(tho) A ... ANO(Yn) — O) for each W €ER;
v) OE(61,&2)] — & =~ L.

Proof. Let K be the quasivariety defined by i)-v). We will prove that
K is the equivalent algebraic semantics of £. First note that the fact
that K satisfies ¢) is equivalent to the fact that K is a class of (¥, )-
models. It is easy to prove that equation #i7) and conditional equation v)
are jointly equivalent to & ~ & =E=5 O[E(&1, )] which is one-half of
condition iii) in the definition of many-sorted algebraizable logic. It can
also be verified that condition i) of the definition of algebraizable logic is
equivalent to the above equations i7) and v). It now remains to say that,
as it is well known in the single-sorted case, this is enough to guarantee
the algebraizability of £. The uniqueness of the equivalent quasivariety
in this case is straightforward. a

Note that, due to the inclusion of the equations in @, items i¢) and iv) are
independent of the particular choice of representatives of the equivalence
classes.
In a many-sorted logic we can only reason about formulas. But, following
the spirit of hidden equational logic, and considering the sort of formulas
as the only visible sort, we might think of behaviorally reasoning about
the other sorts. This possibility was particularly useful in example 5. It
is well known that behavioral reasoning can be a complicated issue, since
it involves reasoning about all possible experiments we can perform on
a hidden term. There are, nevertheless, some nice approaches to tackle
this problem [10, 18]. Here, we identify a very particular case that occurs
when the behavioral reasoning associated with a class K of algebras is
specifiable, in the sense that all the behaviorally valid equations can be
derived, in standard equational logic, from some set of (possibly hidden)
equations. We will show that, when L is expressive enough and it is
finitely algebraizable, the behavioral reasoning (over the hole signature)
associated with an equivalent algebraic semantics for £ is specifiable. A
structural many-sorted logic £ = (X, ®,I) is said to be observationally
equivalential if there exists a sorted set E = {Es(z1 : s,22 : $)}ses of
¢-terms such that, for every s € S and z,y,z € X:

- 2 Ey(z, z);

— Ei(z,y) FZ Es(y, x);
Eu(z,y), Es(y, 2) FZ Bs(x,2);
— for each operation o € Os,...s,,s and z1,y1 € X1,...,Zn,Yn € Xn
{Es; (x1,11) -, Es,, (Tn,yn)} FE Fs(o(z1, ..., 20),041, -, yn));
E4(61,82),61 7 &
Each Fs is called the set of equivalential terms of sort s. If, for each s € S,
the set Ej is finite, then £ is called finitely observationally equivalential.

Theorem 7. Let L = (X, P, F) be a finitely algebraizable, finitary, and
structural many-sorted logic, and K be an equivalent algebraic seman-
tics for L. If L is finitely observationally equivalential then lzg,bhv is
specifiable.



Proof. Since £ is finitary and finitely algebraizable, EX is specifiable.
Let E = {Es}scs the S-indexed set of equivalential formulas. Consider
the sorted set ¥ = {¥,}scs such that ¥ = O[E;], where O(¢) is the
(finite) set of defining equations. Then, it is easy to prove that ¥ forms
a finite set of equivalential formulas for EX. Then, using theorem 5.2.21.
in [14], B 4, is specifiable. |

Note that this theorem does not apply to Ci, in examples 3 and 5, since
C; is not observationally equivalential. In fact, in the case of C1, we had
to consider that the contexts were build from a subsignature to be able
to behaviorally characterize its algebraic counterpart.

5 Conclusions and further work

In this paper, we have proposed a generalization of the notion of alge-
braizable logic that encompasses also many-sorted logics. The key in-
gredient of the generalization was to replace the role of single-sorted
equational logic of traditional AAL by many-sorted equational logic. To
support our approach we proved, in this more general setting, extended
versions of several important results of AAL, including characterizations
using the Leibniz operator, as well as maps of logics. We illustrated
the approach by reanalyzing the examples of first-order logic and of the
paraconsistent logic C1 in a many-sorted context. In particular, for Ci,
we managed to characterize the precise role of da Costa algebras.
Being a first attempt at this generalization, there is much to be done,
and there are many more interesting results of AAL to generalize. We
also aim at investigating a many-sorted version of the Leibniz hierar-
chy, including also protoalgebraization, weak-algebraization, and related
work, such as k-deductive systems. Many further examples are also to
be tried. In this front, our ultimate aim is to understand the relationship
between orthomodular lattices as used in the Birkhoff and Von Neumann
tradition of quantum logic and the algebraic counterpart of exogenous
quantum logic [15]. An important open question is whether and how our
approach can be integrated with the work on the algebraization of logics
as institutions reported in [20]. Another interesting line of future work
is to study the impact of our proposal with respect to the way a logic is
represented within many-sorted equational logic in the context of logic
combination, namely in the lines of [17].

In any case, this seems to be an area which is very fit for application of
the theory many-sorted algebras, including hidden-sorts and behavioral
reasoning, as developed within the formal methods community over the
last decade.
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