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Abstract. We introduce and study a new approach to the theory of abstract algebraic

logic (AAL) that explores the use of many-sorted behavioral logic in the role traditionally

played by unsorted equational logic. Our aim is to extend the range of applicability of

AAL towards providing a meaningful algebraic counterpart also to logics with a many-

sorted language, and possibly including non-truth-functional connectives. The proposed

behavioral approach covers logics which are not algebraizable according to the standard

approach, while also bringing a new algebraic perspective to logics which are algebraiz-

able using the standard tools of AAL. Furthermore, we pave the way towards a robust

behavioral theory of AAL, namely by providing a behavioral version of the Leibniz op-

erator which allows us to generalize the traditional Leibniz hierarchy, as well as several

well-known characterization results. A number of meaningful examples will be used to

illustrate the novelties and advantages of the approach.
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1. Introduction

The general theory of abstract algebraic logic (AAL, from now on) was first
introduced in [3] with the aim of extending the so-called Lindenbaum-Tarski
method, as used for instance to establish the relationship between classical
propositional logic and Boolean algebras, to the systematic study of the
connection between a given logic and a suitable equational theory. This
connection enables one to use the powerful tools of universal algebra to
study the metalogical properties of the logic being algebraized, namely with
respect to its axiomatizability, definability aspects, the deduction theorem,
or interpolation properties [11, 13]. Despite of its success, the scope of
applicability of the standard tools of AAL is relatively limited. Logics with
a many-sorted language, even if well behaved, are good examples of logics
that fall out of their scope. It goes without saying that rich logics, with
many-sorted languages, are essential to specify and reason about complex
systems, as also argued and justified by the theory of combined logics [40].
However, even in the case of propositional based (single-sorted) logics, many
interesting examples simply fall out of the scope of the standard tools of
AAL. With the proliferation of logical systems, with applications ranging
from computer science, to mathematics and philosophy, the examples of non-
algebraizable logics that, therefore, lack from a meaningful and insightful
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algebraic counterpart are expected to become more and more common. This
is the case, for example, of certain non-truth-functional logics [2]. The notion
of a (non-)truth-functional logic is relatively imprecise, and may sometimes
be confused with self-extensionality or the Fregean property. We do not wish
to dwell here on the exact best meaning of the notion. Instead, it will suit
our purposes to dub non-truth-functional those logics that can be seen as
extensions (by adding connectives and rules) of algebraizable logics, but in
which some of the new connectives do not satisfy the congruence property
with respect to the equivalence of their algebraizable fragment.

Although AAL can associate a class of algebras to every logic, the con-
nection between a non-algebraizable logic and the corresponding class of
algebras is, of course, not as strong as if it were algebraizable and may not
be very interesting. This phenomenon is well known and may happen for
several reasons, and in different degrees, depending on whether the Leibniz
operator will lack the properties of injectivity, monotonicity, or commutation
with inverse substitutions. The particular issue of non-injectivity, staying
within the realm of protoalgebraic and equivalential logics, has been care-
fully studied in [11, 13, 12]. Moreover, in [20] the authors restrict the models
of the protoalgebraic logic at hand by considering just the matrices with a
so-called Leibniz filter, therefore obtaining a weakly algebraizable logic. Al-
though this is a very interesting approach, the resulting logic is, of course,
different from the original one. Our aim in this paper is precisely to pro-
pose and study an extension of the tools of AAL that may encompass some
of these less orthodox logics while still associating to them meaningful and
insightful algebraic counterparts. Therefore, contrarily to what is done in
[20], we do not want, at all, to change the logic we start from. Our strategy
is rather to change the algebraic perspective. This is achieved by consider-
ing behavioral many-sorted logic, rather than plain old unsorted equational
logic, as the main working tool.

The motivation for our use of the term behavioral emerges from com-
puter science, namely from the algebraic approach to the specification and
verification of complex (namely, object oriented) systems, where abstract
data types and object classes are defined by the properties of their associ-
ated operations. Algebras are considered as abstract machines where the
programs are to be run. Such systems constitute a challenge for traditional
algebraic methods, since they very often provide mechanisms to encapsulate
internal data in order to make the updating of programs easier and, the in-
ternal data protected. Consequently, the data should naturally be split into
two categories: visible data which can be directly accessed, and hidden data
that can only be accessed indirectly by analyzing the meaning (output) of
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programs with visible output, called experiments. The role of experiments
is to access the relevant information encapsulated in a state. Since one can-
not access the hidden data, it is not possible to reason directly about the
equality of two hidden values. Hence, equational logic needs to be replaced
by behavioral equational logic (sometimes called hidden equational logic)
based on the notion of behavioral equivalence. Two values are said to be-
haviorally equivalent if they cannot be distinguished by the set of available
experiments (as introduced by Reichel in [34]). This restriction induces the
notion of Γ-behavioral equivalence (cf. [21]), where Γ is a subset of the set
of original operations. It can be shown that the Γ-behavioral equivalence is
the largest Γ-congruence whose visible part is the identity relation. Notably,
the possibility of having a restricted set of experiments also accommodates
the existence of non-congruent operations [37]. This feature of behavioral
logic will play a fundamental role in our development, since it allows us to
cope also with non-truth-functionality. Note that such a setting arises quite
naturally if the language of a logic is built from a many-sorted signature
with a designated sort φ for formulas. The corresponding free many-sorted
algebra will have a set of terms of each sort, but only those terms of sort φ
will correspond to formulas of the logic. Therefore, in the logic itself, one can
only observe the behavior of terms of other sorts by their indirect influence
on the truth-values of the formulas where they appear.

In more concrete terms, we will introduce and study an extension of the
standard theory of AAL obtained by using many-sorted behavioral logic in
the role traditionally played by unsorted equational logic. Necessarily, we
will not only show that our approach is a generalization of the standard
approach, but we shall also present a number of meaningful examples em-
phasizing the importance of this generalization. Namely, we will see that
logics that were not algebraizable in the standard sense may admit a neat
and meaningful behavioral algebraization, such as the paraconsistent logic
C1 of da Costa [16] (see Section 3.3.4). With our approach we can iso-
late and algebraizable part of a logic and moreover, based on the algebraic
counterpart of this fragment, build up a meaningful and insightful algebraic
counterpart for the whole logic. This can be useful even in the cases where
the extension of an algebraizable logic produces an algebraizable logic. In
those cases, our approach may provide a different perspective which can lead
to a better insight on the logic itself and its algebraic properties. This will
be illustrated by a behavioral analysis of Nelson’s logic N of constructive
negation [31] (see Section 3.3.6). On the other hand, we will also show that
behavioral algebraization is not trivial, by providing meaningful necessary
conditions. Furthermore, using these behavioral techniques, we also propose
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behavioral versions of several of the key notions and results of AAL, includ-
ing the notions of equivalential and protoalgebraic logic, as well as some of
their alternative characterization results, namely those involving the Leibniz
operator. The behavioral version of the Leibniz operator that we propose is
particularly appealing since it relies precisely on equality under all available
experiments. A comparison of the resulting behavioral hierarchy with the
standard Leibniz hierarchy will also be provided.

In Section 2 we present the necessary preliminary notions and nota-
tion, including many-sorted behavioral logic. In Section 3 we introduce the
novel notion of behaviorally algebraizable logic along with some necessary
conditions for behavioral algebraization. The class of algebras canonically
associated with a behaviorally algebraizable logic is also introduced. Section
3 ends with some examples supporting the ideas discussed above. Then, in
Section 4, we generalize a number of standard notions and results of AAL to
the behavioral setting, most notably those involving the Leibniz operator.
Finally, Section 5 draws some conclusions, and points to several topics for
further research.

2. Basic notions

In this section we will introduce some basic notions and fix some notation
for the remainder of the paper.

2.1. Many-sorted logics

First of all let us fix the notion of logic we will work with. We will adopt a
Tarskian notion of logic [42].

Definition 1. (Logic)
A logic is a pair L = 〈L,`〉, where L is a set of formulas and `⊆ P(L)× L
is a consequence relation satisfying, for every T1 ∪ T2 ∪ {ϕ} ⊆ L: if ϕ ∈ T1

then T1 ` ϕ (reflexivity); if T1 ` ϕ for all ϕ ∈ T2, and T2 ` ψ then T1 ` ψ
(cut); and if T1 ` ϕ and T1 ⊆ T2 then T2 ` ϕ (weakening).

We will consider only these three conditions. However, Tarski considered
an additional property (see [44]): if T1 ` ϕ then T ′ ` ϕ for some finite
T ′ ⊆ T1 (finitariness). In the sequel if T1, T2 ⊆ L, we will write T1 ` T2

whenever T1 ` ϕ for all ϕ ∈ T2. We say that ϕ and ψ are interderivable,
which is denoted by ϕ a` ψ, if ϕ ` ψ and ψ ` ϕ. Given T1, T2 ⊆ L we say
that T1 and T2 are interderivable, if T1 ` T2 and T2 ` T1. The theorems of L
are the formulas ϕ such that ∅ ` ϕ. A theory of L, or a L-theory, is a set T
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of formulas such that if T ` ϕ then ϕ ∈ T . Given a set T , we can consider
the set T`, the smallest theory containing T . The set of all L-theories is
denoted by ThL. Clearly 〈ThL,⊆〉 forms a complete partial order.

The standard tools of AAL study the logics whose language can be
built from a (propositional) unsorted signature and further satisfy the usual
structurality condition. In our many-sorted setting we will focus our atten-
tion on a wider class of logics: those whose language can be built from a
richer many-sorted signature and further satisfy a structurality condition.
A many-sorted signature is a pair Σ = 〈S, F 〉 where S is a set (of sorts)
and F = {Fws}w∈S∗,s∈S is an indexed family of sets (of operations). For
simplicity, we write f : s1 . . . sn → s ∈ F for an element f of Fs1...sns. As
usual, we denote by TΣ(X) = {TΣ,s(X)}s∈S the S-indexed family of carrier
sets of the free Σ-algebra TΣ(X) with generators taken from a sorted family
X = (Xs)s∈S of variable sets. We will denote by x:s the fact that x ∈ Xs.
Often, we will need terms t ∈ TΣ(x1 : s1, . . . , xn : sn) over a finite set of
variables. For simplicity, we will denote such a term by t(x1 :s1, . . . , xn :sn).
Moreover, if T is a set whose elements are all terms of this form, we will
write T (x1 :s1, . . . , xn :sn).

A substitution σ = {σs : Xs → TΣ,s(X)}s∈S is an indexed family
of functions. As usual, σ(t) denotes the term obtained by uniformly ap-
plying σ to each variable in t. Given t(x1 : s1, . . . , xn : sn) and terms
t1 ∈ TΣ,s1(X), . . . , tn ∈ TΣ,sn(X), we will write t(t1, . . . , tn) to denote the
term σ(t) where σ is a substitution such that σs1(x1) = t1, . . . , σsn(xn) = tn.
Extending everything to sets, given T (x1 :s1, . . . , xn :sn) and U ⊆ TΣ,s1(X)×
· · · × TΣ,sn(X), we will use T [U ] =

⋃
〈t1,...,tn〉∈U T (t1, . . . , tn). A derived op-

eration of type s1 . . . sn → s over Σ is a term in TΣ,s(x1 : s1, . . . , xn : sn)
for some n. We denote by DerΣ,s1...sns the set of all derived operations of
type s1 . . . sn → s over Σ. A (general many-sorted) subsignature of Σ is a
many-sorted signature Γ = 〈S, F ′〉 such that, for each w ∈ S∗, F ′

w ⊆ DerΣ,w.

From now on we will assume fixed a signature Σ = 〈S, F 〉 with a dis-
tinguished sort φ (the syntactic sort of formulas) and a S-sorted set X of
variables. Moreover, for the sake of notation, we will assume that Xφ =
{ξi | i ∈ N} and will simply write ξk instead of ξk :φ. Whenever Γ is a sub-
signature of Σ, we say that Σ is Γ-standard if, for every s ∈ S, there exists
a ground Γ-term of sort s, that is, a Γ-term of sort s without variables. We
define the induced set of formulas LΣ(X) to be the carrier set of sort φ of
the free algebra TΣ(X) with generators X.

We are now ready to introduce the class of logics that we will study in
our many-sorted behavioral approach.
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Definition 2. (Many-sorted logic)
A (structural) many-sorted logic is a tuple L = 〈Σ,`〉 where Σ is a many-
sorted signature and `⊆ P(LΣ(X))×LΣ(X), such that 〈LΣ(X),`〉 is a logic
that satisfies, for every T ∪{ϕ} ⊆ LΣ(X) and every substitution σ: if T ` ϕ
then σ[T ] ` σ(ϕ) (structurality).

An important remark to make here is that propositional-like logics ap-
pear as a particular case of many-sorted logics. They can be obtained by
taking φ to be the only sort, that is, considering a signature Σ = 〈S, F 〉
such that S = {φ}. So, we conclude that, at least from the point of view of
scope, our many-sorted tools generalize the standard tools of algebraization.
In fact, as we will see later, for the particular case of propositional logics,
our non-behavioral definitions and results coincide with the standard ones.

2.2. Many-sorted behavioral logic

Recall that our aim is to build a framework that is general enough to capture
not only many-sorted logics but also other non-algebraizable logics, such
as non-truth-functional logics. As we said before, behavioral reasoning in
many-sorted equational logic will play a key role. It is not our intention to
present the theory of many-sorted behavioral reasoning in full detail, but
rather to focus on the definitions and tools from behavioral logic that are
necessary for our exposition. Further details on this subject can be found,
for example, in [36].

We will use t1 ≈ t2 to represent an equation 〈t1, t2〉 between terms t1, t2 ∈
TΣ,s(X) of the same sort (we use the symbol ≈ to avoid confusion with the
usual symbol = for (metalevel) equality, as used in the definitions). In
this case we say that t1 ≈ t2 is an s-equation. The S-sorted set of all
Σ-equations will be written as EqΣ. We will denote quasi-equations by
(t1 ≈ u1) & . . . & (tn ≈ un) → (t ≈ u). A set Θ of equations with variables
in {x1 : s1, . . . , xn : sn} will be dubbed Θ(x1 : s1, . . . , xn : sn). Given a set
Θ of equations and s ∈ S, we denote by Θs the set of all s-equations in Θ.
The main distinction between many-sorted equational logic and many-sorted
behavioral logic is that in the latter the set of sorts is explicitly split in two:
the visible sorts and the hidden sorts. More precisely, a hidden many-sorted
signature is a tuple 〈〈S, F 〉, V 〉 where 〈S, F 〉 is a many-sorted signature and
V ⊆ S is the set of visible sorts. The subset H = S \ V will be dubbed
the set of hidden sorts. When there is no risk of confusion we will denote
a hidden many-sorted signature 〈Σ, V 〉 by Σ. A hidden subsignature of a
hidden signature 〈Σ, V 〉 is a hidden signature 〈Γ, V 〉 such that Γ is a many-



Behavioral Abstract Algebraic Logic 7

sorted subsignature of Σ. In the remainder of this section we will consider
fixed a hidden signature 〈Σ, V 〉.

Let us now focus on the fundamental notion of context. Given the intu-
itive nature of visible and hidden sorts, the role of experiments is to evaluate
the hidden data. We have argued that, in some cases, not all operations can
be used to build the experiments. This leads to following definition.

Definition 3. (Γ-context)
Given a hidden subsignature Γ of Σ, a Γ-context for sort s is a term
t(x :s, x1 :s1, . . . , xm :sm) ∈ TΓ(X), with a distinguished variable x of sort s
and parametric variables x1, . . . , xm of sorts s1, . . . , sm respectively. The set
of all Γ-contexts for sort s will be denoted by CΓ

Σ[x :s] (note that x ∈ CΓ
Σ[x :s]).

The Γ-contexts whose sort is visible will be dubbed Γ-experiments. The
set of Γ-experiments for sort s ∈ S will be denoted by EΓ

Σ[x : s]. When it is
important to refer the sort of the contexts or experiments then we will follow
the notation as used for terms: CΓ

Σ,s′ [x : s] denotes the set of Γ-contexts of
sort s′ for sort s, while EΓ

Σ,s′ [x :s] denotes the set of Γ-experiments of sort s′

for sort s. When Γ is clear from the context we just write context instead
of Γ-context. Given c ∈ CΓ

Σ,s′ [x : s] and t ∈ TΣ,s(X), we denote by c[t] the
term obtained from c by replacing every occurrence of x by t. Note that
the interesting contexts and experiments are those for hidden sorts, that is,
those with s ∈ H. Contexts of visible sort are allowed more for the sake of
symmetry, to make the presentation smoother.

Given a Σ-algebra A, a term t(x1 : s1, . . . , xn : sn) and 〈a1, . . . , an〉 ∈
As1 × . . .× Asn , then we denote by tA(a1, . . . , an) the value that t takes in
A when the variables x1, . . . , xn are interpreted by a1, . . . , an, respectively.
More algebraically, tA(a1, . . . , an) = h(t), where h ∈ Hom(TΣ(X),A) is
any assignment such that hsi(xi) = ai for all i ≤ n.

Definition 4. (Γ-behavioral equivalence)
Assume given a Σ-algebra A, a hidden subsignature Γ of Σ and a sort s ∈ S.
Then a, b ∈ As are Γ-behaviorally equivalent, in symbols a ≡Γ b, if for every
ε(x :s, x1 :s1, . . . , xn :sn) ∈ EΓ

Σ[x :s] and for all 〈a1, . . . , an〉 ∈ As1 × . . .×Asn ,
we have that εA(a, a1, . . . , an) = εA(b, a1, . . . , an).

Now that we have defined behavioral equivalence, we can talk about
behavioral satisfaction of an equation by a Σ-algebra. Let A be a Σ-algebra,
h an assignment over A and t1 ≈ t2 an equation of sort s ∈ S. We say that A
and h Γ-behaviorally satisfy the equation t1 ≈ t2, in symbols A, h |||− t1 ≈ t2
if h(t1) ≡Γ h(t2). We say that A behaviorally satisfies t1 ≈ t2, in symbols
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A |||− t1 ≈ t2, if A, h |||− t1 ≈ t2 for every assignment h over A. Given
a class K of Σ-algebras, the behavioral consequence over Σ associated with
K and Γ, |≡K,Γ

Σ ⊆ P(EqΣ) × EqΣ, is such that Θ |≡K,Γ
Σ t1 ≈ t2 if for every

A ∈ K and assignment h over A we have that A, h |||− t1 ≈ t2 whenever
A, h |||− u1 ≈ u2 for every u1 ≈ u2 ∈ Θ.

Let |≡K,Γ
Σ be the behavioral consequence associated with the class K of Σ-

algebras as defined above. Let Θ be a set of φ-equations with ξ distinguished
variable occurring in Θ. Then Θ is said a compatible set of equations if the
following holds: ξ1 ≈ ξ2,Θ(ξ1) |≡K,Γ

Σ Θ(ξ2). We will denote by CompK,Γ
Σ (Y )

the set of all compatible sets of equations for the consequence relation |≡K,Γ
Σ ,

whose variables are contained in Y ⊆ X.

3. Generalizing algebraization

In this section we propose our behavioral version of the standard notion of
algebraizable logic. In our approach, the role of unsorted equational logic
in the standard theory of algebraization will be played by many-sorted be-
havioral logic. We will not present here the standard concepts and results
of AAL. For that sake, we refer to [3, 11, 19]. Along with our proposal, we
will present some necessary conditions for a logic to be behaviorally alge-
braizable. These will be important to show that our generalized notion is
not as broad that it becomes trivial. We then turn our attention towards
understanding the classes of algebras that our behavioral theory naturally
associates to a given many-sorted logic. Results regarding uniqueness and
axiomatization of these classes of algebras are obtained. Some of these re-
sults are already set in the direction of developing a full-fledged theory of
behavioral tools in AAL, a path which we will further exploit in Section 4.
We conclude the section with the analysis of a number of meaningful ex-
amples, which will help to illustrate the capabilities of our approach. In
particular, we will see that two logics, C1 and S5, that are well known not
to be algebraizable according to the standard definition, are in fact behav-
iorally algebraizable in a meaningful way. We will also study the example of
Nelson’s logic N , to see that our approach can be useful even for studying
logics which are algebraizable in the standard sense.

3.1. Behavioral algebraization

Recall that our aim is to build a framework general enough to capture some
logics that fall out of the scope of the standard tools of AAL. With respect to
many-sortedness, some work has already been presented in [7]. Our aim here
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is to go further ahead and to capture also logics that are not algebraizable in
the standard sense (although they still seem to be sufficiently well behaved to
be studied in algebraic terms). This is the case, for example, of certain non-
truth-functional logics. The notion of a (non-)truth-functional semantics for
a logic as been considered by several authors, see for instance [2]. Still,
the notion of a (non-)truth-functional logic is relatively imprecise, and may
sometimes be confused with self-extensionality or the Fregean property. We
do not wish to dwell here on the exact best meaning of the notion of a
(non-)truth-functional logic. For what matters us, we will simply assume
that non-truth-functional logics are those logics, algebraizable or not, that
can be seen as extending some given algebraizable logic by some new rules
and some new connectives that do not satisfy the congruence property with
respect to the equivalence of their initial algebraizable fragment. Many-
sorted behavioral logic seems to be the correct tool for this enterprise since,
besides providing a rich many-sorted framework, it allows the isolation of
the fragment of the language that corresponds to the initial algebraizable
part of the logic. In its more general form, as introduced for instance in
[21], behavioral equivalence is an equivalence relation that is only required
to be compatible with respect to the operations in a given subsignature of
the original signature.

Consider given a many-sorted language generated from a many-sorted
signature Σ = 〈S, F 〉. We know that we have a distinguished sort φ of for-
mulas. In the many-sorted approach to AAL presented in [7] the theory was
developed by replacing the role of unsorted equational logic by many-sorted
behavioral logic over the same signature and taking the sort φ as the unique
visible sort. Despite the success of this generalization to cope with many-
sorted logics, a lot of non-algebraizable logics could still not be captured.
This is due to the fact that, since the sort φ is considered visible, we have
equational reasoning about formulas, which forces every connective to be
compatible with behavioral congruence. To allow for non-congruent connec-
tives, the sort φ must be a hidden sort too, so that one is forced to reason
behaviorally about formulas as well. This can be achieved by considering
behavioral logic over an extended signature. For that purpose, given a many-
sorted signature Σ = 〈S, F 〉 we define an extended signature Σo = 〈So, F o〉
such that So = S

⊎{v}, where v is to be considered the sort of observa-
tions of formulas. The indexed set of operations F o = {F o

ws}w∈(So)∗,s∈So

is such that F o
ws = Fws if ws ∈ S∗ and F o

φv = {o} and F o
ws = ∅ otherwise.

Intuitively, we are just extending the signature with a new sort v for the
observations that we can perform on formulas using operation o. The ex-
tended hidden signature obtained from Σ, that we will also denote by Σo,
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can then be defined as 〈Σo, {v}〉. The choice of v as the name for the new
sort is clear. It is intended to represent the only visible sort of the extended
hidden signature.

In what follows, given a signature Σ = 〈S, F 〉, a subsignature Γ of Σ and a
class K of Σo-algebras, we will use BhvK,Γ

Σ to refer to the logic 〈EqΣo , |≡K,Γ
Σ 〉,

where |≡K,Γ
Σ is the behavioral consequence relation over Σo associated with K

and Γ. Note that in this case, for each s ∈ S, EΓ
Σ[x :s] = {o(c) : c ∈ CΓ

Σ,φ[x :s]}
is the set of possible experiments of sort s. From BhvK,Γ

Σ we can define a
logic BEqnK,Γ

Σ = 〈EqΣ, ²K,Γ
Σ,bhv〉 where ²K,Γ

Σ,bhv is just the restriction of |≡K,Γ
Σ

to Σ. The set of theories of BEqnK,Γ
Σ will be denoted by ThK,Γ

Σ . We will use
often a property of this behavioral consequence: given t1 ≈ t2 ∈ EqΣ,s(X)
and c ∈ CΓ

Σ[x : s], we have that t1 ≈ t2 ²K,Γ
Σ,bhv c[t1] ≈ c[t2]. With this

construction we obtain an important ingredient of our approach: a logic for
reasoning behaviorally about equations over the original signature Σ.

First of all, it is important to note that the choice of Γ = Σ covers those
examples where there is no need to assume any non-congruent connective.
As we will show later, if we take Γ = Σ we get ordinary many-sorted al-
gebraization. For details about many-sorted algebraization we point to [7].
Furthermore, when φ is the only sort we get in the realm of the standard tools
of AAL. We now introduce the main notion of Γ-behaviorally algebraizable
logic.

Definition 5. (Γ-behaviorally algebraizable logic)
Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature of Σ. Then, L
is Γ-behaviorally algebraizable if there exists a class K of Σo-algebras, a set
Θ(ξ) ⊆ CompK,Γ

Σ ({ξ}) of φ-equations and a set ∆(ξ1, ξ2) ⊆ TΓ,φ({ξ1, ξ2}) of
formulas such that, for every T ∪{t} ⊆ LΣ(X) and for every set Φ∪{t1 ≈ t2}
of φ-equations,

i) T ` t iff Θ[T ] ²K,Γ
Σ,bhv Θ(t);

ii) Φ ²K,Γ
Σ,bhv t1 ≈ t2 iff ∆[Φ] ` ∆(t1, t2);

iii) ξ a` ∆[Θ(ξ)];

iv) ξ1 ≈ ξ2 =||=K,Γ
Σ,bhv Θ[∆(ξ1, ξ2)];

As expected, conditions i) and iv) jointly imply ii) and iii), and vice-
versa. Following the usual terminology and notation of AAL, Θ will be
called the set of Γ-defining equations, ∆ the set of Γ-equivalence formulas,
and K a Γ-behaviorally equivalent algebraic semantics for L. If the set of
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defining equations and of equivalence formulas are finite we will say that L
is finitely Γ-behaviorally algebraizable.

Note that these definitions are all parameterized by the choice of a sub-
signature Γ of Σ. A many-sorted logic L is said to be behaviorally alge-
braizable if there exists a subsignature Γ of Σ such that L is Γ-behaviorally
algebraizable.

Let L = 〈Σ,`〉 be a Γ-behaviorally algebraizable logic and let ∆(ξ1, ξ2)
be its set of equivalence formulas. We define the set CC∆[x :φ] ⊆ CΣ

Σ [x :φ]
by c ∈ CC∆[x : φ] iff for every ϕ, ψ ∈ LΣ(X), we have that ∆(ϕ,ψ) `
∆(c[ϕ], c[ψ]), and call it the set of congruent contexts for ∆.

Proposition 6. Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature
of Σ. Suppose that L is Γ-behaviorally algebraizable logic with Θ(ξ) a set
of defining equations, ∆(ξ1, ξ2) a set of equivalence formulas and K a Γ-
behaviorally equivalent algebraic semantics. Then CΓ,φ[x : φ] ⊆ CC∆[x : φ].
Moreover, every c ∈ CC∆[x :φ] is congruent with respect to ²K,Γ

Σ,bhv.

Proof. As we already remarked, for every c ∈ CΓ,φ[x : φ], we have that
ξ1 ≈ ξ2 ²K,Γ

Σ,bhv c[ξ1] ≈ c[ξ2]. By the properties of the equivalence set we have
that ∆(ξ1, ξ2) ` ∆(c[ξ1], c[ξ2]). So, CΓ,φ[x :φ] ⊆ CC∆[x :φ].

Now let c ∈ CC∆[x : φ]. So, we have ∆(ξ1, ξ2) ` ∆(c[ξ1], c[ξ2]). Using
properties i) and iv) of the set of defining equations we can conclude that
ξ1 ≈ ξ2 ²K,Γ

Σ,bhv c[ξ1] ≈ c[ξ2]. So, c is congruent with respect to ²K,Γ
Σ,bhv.

It is well know for behavioral logic [36] that, when a context is behav-
iorally congruent, we can always add it to the set of admissible contexts
without changing the behavioral consequence. Hence, although we can have
CΓ,φ ⊂ CC∆, the behavioral consequence is the same as if we had chosen the
whole CC∆ as the set of contexts.

It is natural to ask what are the limits of this new definition. We will
see later that this notion extends the standard one. Still, this is at least
as important as knowing whether the notion is so broad that everything
becomes behaviorally algebraizable with an appropriate choice of Γ. We
end this section by studying some necessary conditions for a logic to be
behaviorally algebraizable. This will help us to show that the limits of ap-
plicability of the notion are very reasonable but not as broad as it might
seem. In [32] Prucnal and Wrónski introduced the standard notion of equiv-
alential logic. Equivalence systems generalize the well known phenomenon
of classical propositional calculus where the equivalence of formulas can be
expressed by the equivalence symbol ↔. We extend this notion to the be-
havioral setting.
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Definition 7. (Γ-behaviorally equivalential logic)
Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature of Σ. Then, L
is Γ-behaviorally equivalential if there exists a set ∆(ξ1, ξ2) ⊆ TΓ,φ({ξ1, ξ2})
of formulas such that for every ϕ,ψ, δ, ϕ1, . . . , ϕn, ψ1, . . . , ψn ∈ LΣ(X):

(R) ` ∆(ϕ,ϕ);

(S) ∆(ϕ,ψ) ` ∆(ψ, ϕ);

(T) ∆(ϕ,ψ),∆(ψ, δ) ` ∆(ϕ, δ);

(MP) ∆(ϕ,ψ), ϕ ` ψ;

(RPΓ) ∆(ϕ1, ψ1), . . . ,∆(ϕn, ψn) ` ∆(c[ϕ1, . . . , ϕn], c[ψ1, . . . , ψn]) for every c :
φn → φ ∈ DerΓ,φ.

In this case, ∆ is called a Γ-behavioral equivalence set for L. Note that
the main difference between this behavioral version of equivalentiality and
the standard notion is that in the former the set ∆ is no longer assumed
to define a congruence, that is, an equivalence relation that is compatible
with all operations. Instead, it is only assumed to preserve the operations
of the subsignature Γ. Again, a many-sorted logic L is said to be behav-
iorally equivalential if there exists a subsignature Γ of Σ such that L is
Γ-behaviorally equivalential.

In the following proposition we present the first necessary condition for
behavioral algebraization. The result extends a well known standard result
of AAL.

Proposition 8. Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature
of Σ. If L is Γ-behaviorally algebraizable then it is Γ-behaviorally equivalen-
tial.

Proof. Suppose L is behaviorally algebraizable with Θ(ξ), ∆(ξ1, ξ2), Γ and
K. Using the properties of Θ(ξ) and ∆(ξ1, ξ2) it is easy to prove that
∆(ξ1, ξ2) satisfies (R), (S) and (T). For (MP), note that, since L is alge-
braizable, ∆(ϕ,ψ), ϕ ` ψ is equivalent to ϕ ≈ ψ, Θ(ϕ) ²K,Γ

Σ,bhv Θ(ψ). But the

last condition follows from the fact that Θ(ξ) ∈ CompK,Γ
Σ ({ξ}). Condition

(RPΓ) follows easily from the the fact that, given t1 ≈ t2 ∈ EqΣ,s(X) and
c ∈ CΓ

Σ[x :s], we have that t1 ≈ t2 ²K,Γ
Σ,bhv c[t1] ≈ c[t2].

From the notion of behaviorally equivalential logic we can isolate a much
simpler necessary condition for behavioral algebraization. A many-sorted
logic L = 〈Σ,`〉 has an equivalence set (of formulas) if there exists a set
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∆ ⊆ LΣ(ξ1, ξ2) of formulas that satisfies conditions (R), (S), (T) and (MP).
We have that, by Proposition 8, this is a necessary condition for a logic to be
behaviorally algebraizable. In some sense, to be behaviorally algebraizable,
a logic must be expressive enough to enable the definition of an equivalence
by means of a set of formulas in two variables. This is a natural requirement
since a logic that does not have an equivalence set cannot represent within
itself any kind of behavioral equivalence. So, it must fail to be behaviorally
algebraizable. One such example is the inf-sup fragment of classical propo-
sitional logic, where no equivalence set can be defined. This logic is a well
known example of a non-protoalgebraic logic.

We can give another necessary condition for a logic to be behaviorally
algebraizable. Although it is a weaker condition, it is an important one since
it is related precisely to protoalgebraicity. Recall that a characterization of
the standard notion of protoalgebraic logic can be given by the existence
of a set ∆(ξ1, ξ2, z) ⊆ LΣ(X) of formulas with two distinguished variables
of sort φ and possibly parametric variables z satisfying ` ∆(ξ, ξ, z) (reflex-
ivity) and ξ1, ∆(ξ1, ξ2, z) ` ξ2 (detachment). Below, we use the extension
of the standard definition of protoalgebraic logic to the many-sorted setting
introduced in [26].

Corollary 9. Let L = 〈Σ,`〉 be a many-sorted logic. If L is behaviorally
algebraizable then it is also protoalgebraic in the standard sense.

We can then conclude that our generalized notion of algebraizable logic
is not too broad since a behaviorally algebraizable logic necessarily belongs
to what is considered the largest class of logics amenable to the tools of
AAL.

3.2. Behaviorally equivalent algebraic semantics

We can now study the classes of algebras that are going to be canonically
associated with a given behaviorally algebraizable logic. Issues like unique-
ness and axiomatization of the algebraic counterpart are discussed. We end
the section by showing that under suitable conditions it is possible to define
operations in the new sort v that can be seen to represent the congruent op-
erations of sort φ, thus promoting to some extent the behavioral reasoning
to plain-old equational reasoning on the visible sort.

Recall that according to the usual definitions, a logic is algebraizable, or
equivalential, in an essentially unique way. This property derives from the
fact that the equivalence set of an algebraizable logic L represents within
L the relation of equality in the algebraic models of L. The distinctive
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feature of the equality relation is that it is a congruence relation, that is,
an equivalence relation preserved by all primitive operations. Hence, it
should be clear that we cannot expect this kind of uniqueness to hold in
our behavioral framework. In fact, there is no guarantee that a logic cannot
be behaviorally algebraizable with different (and possibly non-comparable)
equivalence sets, giving rise to different behavioral algebraizations. Since
uniqueness may fail, we study the relationship between existing equivalence
sets within the same logic.

Consider fixed a many-sorted logic L = 〈Σ,`〉. Given an equiva-
lence set ∆(ξ1, ξ2), we can define a binary relation C∆ over LΣ(X) as
follows: 〈ϕ,ψ〉 ∈ C∆ iff ` ∆(ϕ,ψ). Due to the properties in the defi-
nition of equivalence set, it is an easy task to verify that C∆ is indeed
an equivalence relation over TΣ(X). Let EqvL ⊆ EqvTΣ(X) be defined
by EqvL = {C∆ : ∆(ξ1, ξ2) is an equivalence set of L}. Intuitively, EqvL
can be seen as the set of equivalences over TΣ(X) that can be defined
by a set of formulas with two variables over the deductive consequence of
L. Clearly, inclusion defines a partial order on EqvL. We can see that
C∆1 ⊆ C∆2 iff ∆2(ξ1, ξ2) ` ∆1(ξ1, ξ2) and that, in particular, C∆1 = C∆2

iff ∆1(ξ1, ξ2) a` ∆2(ξ1, ξ2). More than a partially ordered set, we can prove
that 〈EqvL,⊆〉 forms a complete lattice. It is an easy task to verify that the
infimum of a set {C∆i : i ∈ I} is C∆ where ∆ =

⋃
i∈I ∆i.

We have hinted before on why we cannot aim at full uniqueness in terms
of the behavioral algebraization process, the main reason being that the
algebraization process is parameterized by the choice of the subsignature Γ.
Nevertheless, it is interesting to note that once Γ is fixed we can prove a
uniqueness result with the same flavor as the standard one proved in [3].

Theorem 10. Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsigna-
ture of Σ. Suppose that L is Γ-behaviorally algebraizable logic and let K
and K ′ be two Γ-behaviorally equivalent algebraic semantics for L such that
∆(ξ1, ξ2) and Θ(ξ) are equivalence formulas and defining equations for K,
and similarly ∆′(ξ1, ξ2) and Θ′(ξ) for K ′. Then we have that

i) ²K,Γ
Σ,bhv=²K′,Γ

Σ,bhv;
ii) ∆(ξ1, ξ2) a` ∆′(ξ1, ξ2);
iii) Θ(ξ) =||=K,Γ

Σ,bhv Θ′(ξ).

Proof. The proof follows as the proof given by Blok and Pigozzi in [3].

Theorem 10 allows us to conclude that, as in the standard case, given a Γ-
behaviorally algebraizable logic L we can consider the largest Γ-behaviorally
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equivalent algebraic semantics that we will denote by KΓ
L. However, in

our approach, KΓ
L is not the class of algebras that should be canonically

associated with L. Indeed, as we will see, it is a subclass of KΓ
L that will

allow us to generalize the standard results of AAL.
Consider now the particular case where a many-sorted logic L = 〈Σ,`〉

is finitary and finitely Γ-behaviorally algebraizable for some subsignature Γ
of Σ. An immediate consequence of the above theorem is that, if K and
K ′ are two Γ-behaviorally equivalent algebraic semantics for L, then K and
K ′ must Γ-behaviorally satisfy the same quasi-equations. Generalizing the
definition given in [35], we introduce here the notion of Γ-hidden quasivariety.
Remember that Σo is a hidden many-sorted signature with v its unique
visible sort. A class Q of Σo-algebras is a Γ-hidden quasivariety over Σo if it
is Γ-behaviorally definable by quasi-equations, in the sense that there exists
a set Φ of quasi-equations such that Q contains exactly the Σo-algebras that
Γ-behaviorally satisfy the quasi-equations of Φ. It is now clear that, if K
and K ′ are two Γ-behaviorally equivalent algebraic semantics for L, then
K and K ′ generate the same Γ-hidden quasivariety and that this Γ-hidden
quasivariety is also an Γ-behaviorally equivalent algebraic semantics for L.
So, we can talk about the equivalent Γ-hidden quasivariety semantics of a
finitary and finitely Γ-behaviorally algebraizable logic. It is interesting to
note that, similarly to what Blok and Pigozzi [3] did for finitary and finitely
algebraizable propositional logics, we can construct a basis for the quasi-
identities of the unique equivalent Γ-hidden quasivariety semantics given an
axiomatization of L.

Theorem 11. Let L = 〈Σ,`〉 be a finitary many-sorted logic presented by
a Hilbert-style deductive system composed of a set Ax of axioms and a set
Ir of inference rules and consider Γ a subsignature of Σ. Assume that L is
finitely Γ-behaviorally algebraizable with defining equation Θ(ξ) and equiva-
lence formulas ∆(ξ1, ξ2). Then the unique equivalent Γ-hidden quasivariety
semantics for L is Γ-behaviorally axiomatized by the following identities and
quasi-identities:

i) Θ(ϕ), for every theorem ϕ of L;

ii) Θ(∆(ξ, ξ));

iii) Θ(ψ1) ∧ . . . ∧Θ(ψn) → Θ(ϕ) for every 〈ψ1, . . . , ψn, ϕ〉 ∈ Ir;

iv) Θ(∆(ξ1, ξ2)) → ξ1 ≈ ξ2.

Proof. The proof is a straightforward generalization of the standard one
[3], changing equational with behavioral satisfiability.
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It might seem unnatural that, although the language of a many-sorted
logic L = 〈Σ,`〉 is over Σ, we associate to L a class of algebras over the
extended signature Σo. This is actually a key point of our approach since
it allows us to have behavioral reasoning over the whole Σ and in particular
over the formulas. Note that since L is over Σ we do not have full control
over the new sort v, in the sense that, given a Σo-algebra A, the set Av might
contain more information than what is needed for defining the consequence
²K,Γ

Σ,bhv. Thus, in some sense, the largest Γ-behaviorally equivalent algebraic
semantics of a Γ-behaviorally algebraizable logic L contains more algebras
than the ones we would like to canonically associate with L. We will see how
we can extract from the largest Γ-behaviorally equivalent algebraic semantics
the class of algebras we are interested in canonically associating with a logic.

First of all recall that in the construction of an extended signature Σo

from a many-sorted signature Σ, we just added a new sort v and an operation
o : φ → v. No operation was defined on the new sort v. We will now see
that, given a Σo-algebra, A it is possible, under some mild conditions, to
define connectives in the visible sort v.

Let A be a Σo-algebra such that oA is surjective and let f : φn → φ ∈
DerΣ,φ. Assume that A satisfies the quasi-equation

o(ξ1
1) ≈ o(ξ2

1)& . . .&o(ξ1
n) ≈ o(ξ2

n) → o(f(ξ1
1 , . . . , ξ

1
n)) ≈ o(f(ξ2

1 , . . . , ξ
2
n)).

This quasi-equation expresses the fact that fA behaves well with respect to
o. Then, we can define a n-ary operation fv : vn → v over A such that,
for every a1, . . . , an ∈ Aφ, fv

A(oA(a1), . . . , oA(an)) = oA(fA(a1, . . . , an)). It
is easy to see that this operation is well defined since we are assuming that
oA is surjective and A satisfies the above visible quasi-equation. In this case
we will say that f : φn → φ is a congruent connective on A.

Let Σ be a many-sorted signature and Γ a subsignature of Σ. Given an
Σo-algebra A we can consider the relation θΓ

A = (≡ Γ)φ over Aφ. Define
the Σo-algebra A∗ such that A∗

|Σ = A|Σ, and Av = {[a]θΓ
A

: a ∈ Aφ} and
oA∗(a) = [a]θΓ

A
. Given a class K of Σo-algebras we can do this construction

for every algebra in K obtaining K∗ = {A∗ : A ∈ K}.
Proposition 12. Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsig-
nature of Σ. Suppose that L is Γ-behaviorally algebraizable and K is a Γ-
behaviorally equivalent algebraic semantics for L. Then ²K,Γ

Σ,bhv=²K∗,Γ
Σ,bhv and,

as a consequence, K∗ is also a Γ-behaviorally equivalent algebraic semantics.

Proof. The result follows easily from the observation that, given a Σo-
algebra A, h an assignment over A and t1, t2 ∈ TΣ,s(X), we have that
A, h |||− t1 ≈ t2 iff A∗, h |||− t1 ≈ t2.
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Now let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature of Σ.
Suppose that L is Γ-behaviorally algebraizable and let KΓ

L be the largest
Γ-behaviorally equivalent algebraic semantics. We can apply the above ∗-
construction to KΓ

L and obtain a class (KΓ
L)∗ of Σo-algebras. By definition

of KΓ
L and by Proposition 12 we have that (KΓ

L)∗ is a subclass of KΓ
L. The

class (KΓ
L)∗ is the class of Σo-algebras we will canonically associate to L.

The following lemma asserts that the connectives of Γ are all congruent for
every algebra belonging to (KΓ

L)∗.

Lemma 13. Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature
of Σ. Suppose L is Γ-behaviorally algebraizable. Then, every operation f :
φn → φ ∈ Γ is congruent in every member of (KΓ

L)∗.

Proof. Recall that, for every c ∈ CΓ
Σ,φ[ξ], we have that ξ1 ≈ ξ2 ²K,Γ

Σ,bhv

c[t1] ≈ c[t2]. The result now follows from a easy induction and the fact that,
for every A ∈ (KΓ

L)∗, h an assignment over A and t1, t2 ∈ TΣ,φ(X), we have
that A, h |||− t1 ≈ t2 iff A, h ° o(t1) ≈ o(t2).

The above lemma implies that we can define, for every algebra A in
(KΓ

L)∗ and for every operation f : φn → φ in Γ, its visible counterpart
fo
A : An

v → Av on A. Thus, for every Σo-algebra in (KΓ
L)∗, we can consider,

without loss of generality, that it is endowed with the operations on the sort
v that arise in this fashion from congruent operations on the sort φ.

We end this section with a remark. Although the traditional tools of AAL
can always associate a class Alg(L) to a given propositional (unsorted) logic
L, the relation between Alg(L) and L is not always strong, nor interesting.
Of course, when L is algebraizable the connection between Alg(L) and L is
very strong. So, when a logic L is not algebraizable but it is behaviorally
algebraizable with respect to a class K of algebras, then K has a stronger
connection with L than Alg(L) has.

Still, we remark that, if a logic L = 〈Σ,`〉 is algebraizable, in the usual
way, with respect to a class K of algebras and if, for some subsignature Γ
of Σ, L is also Γ-behaviorally algebraizable with respect to a class K ′ of
algebras, then K and K ′ have a strong connection. Intuitively, K ′ can be
understood as K seen from a different perspective. Moreover, this different
perspective can help to shed some new light on the algebraic counterpart
of L. This is precisely the case of Nelson’s logic N , as we will see later on
in Subsection 3.3.6. We have decided not to include the full general result,
due to its length, but also to its simplicity. The proof is in the style of a
reflection between the classes K and K ′ by providing suitable back and forth
translations of algebras. Details can be found in [22].
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3.3. Examples

We now present some examples to support our approach. In the first exam-
ple, we show that our behavioral approach can indeed be seen as extending
both the standard and the many-sorted approaches to AAL. Then, we just
briefly analyze first-order logic FOL, stressing that our approach can be use-
ful to shed light on the essential distinction between terms and formulas. We
then exemplify the power of our approach by showing that it can be used,
directly, to study the algebraization of k-deductive systems. We also have
a look at the logics C1 and S5, whose non-algebraizability in the standard
sense is well known. We show that they are both behaviorally algebraizable
and provide a meaningful algebraic counterpart to each of them. Finally,
we study the example of Nelson’s constructive logic N with strong negation
and prove that, although the logic is algebraizable according to the standard
definition, its behavioral algebraization helps to give an extra insight on the
distinctive role Heyting algebras play in the standard algebraic counterpart
of N , the class of N -lattices.

3.3.1. Standard algebraization

In this example we prove that a logic algebraizable according to the standard
notion is also behaviorally algebraizable. Recall that the standard objects
of study of AAL are the structural propositional logics, that correspond in
our setting to single-sorted logics.

Let L = 〈Σ,`〉 be a structural propositional logic. As we already
observed, Σ will be considered as a single-sorted signature with φ the
unique sort. Let A be a Σ-algebra and consider A2 a Σo-algebra obtained
from A such that A2

v = A2
φ = Aφ and oA2(a) = a for every a ∈ Aφ

and fA2(a1, . . . , an) = fA(a1, . . . , an) for every connective f over Σ and
a1, . . . , an ∈ Aφ. Intuitively, by taking the visible sort of A2 to be a copy
of A and oA2 to be the identity function, we are aiming at a collapsing be-
tween behavioral satisfaction in A2 and equational satisfaction in A. Let
K be a class of Σ-algebras and consider the class K2 = {A2 : A ∈ K} of
Σo-algebras.

Proposition 14. Given a propositional signature Σ and a class K of Σ-

algebras, then ²K = ²K2,Σ
Σ,bhv.

Proof. The result follows from the easy to prove fact that, given a propo-
sitional signature Σ, a Σ-algebra A, an equation t1 ≈ t2 and an assignment
h : TΣo → A2, we have that A, h|Σ ° t1 ≈ t2 iff A2, h ±Σ

Σ t1 ≈ t2.
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It is now easy to prove that, if L is algebraizable according to the
standard notion, with K an equivalent algebraic semantics, then L is Σ-
behaviorally algebraizable with K2 a Σ-behaviorally equivalent algebraic
semantics.

Many-sorted algebraization, as introduced in [7], is just a particular case
of the behavioral approach, again obtained by taking Γ = Σ.

3.3.2. First-order logic

The language of first-order logic (FOL) is naturally two-sorted. There is
a clear syntactical distinction between terms and formulas. Having this in
mind it should be natural to consider a many-sorted framework to study
the algebraizability of first-order logic. We point to [7] for a many-sorted
approach to the algebraization of FOL and recall that, as explained in Ex-
ample 3.3.1, our behavioral approach is a generalization of this many-sorted
approach to algebraizability. The idea is simply to use our many-sorted
framework to handle first-order logic as a two-sorted logic, with a sort for
terms and a sort for formulas. This perspective seems to be much more
convenient, and we no longer need to view atomic FOL formulas as proposi-
tional variables, as in the standard algebraization of FOL [3]. Working out
the example, whose details can be found in [22], we manage to algebraize
FOL having as an equivalent algebraic semantics the class of two-sorted
cylindric algebras, whose restriction to the sort φ is a plain old cylindric al-
gebra, but which corresponds to a regular first-order interpretation structure
on the sort of terms. More than showing the details, the objective of this
example is to stress the potentiality of our approach in the algebraic treat-
ment of extensions of FOL, namely admitting more sorts and the existence
of non-congruent operations.

3.3.3. k-deductive systems

The higher dimensional systems, called k-deductive systems, constitute a
natural generalization of deductive systems that encompass several other
logical systems, namely equational and inequational logics. They were in-
troduced by Blok and Pigozzi in [4] (see also [13]) to provide a context to
deal with logics which are assertional and equational. The algebraic the-
ory of these higher dimensional systems, as in the deductive system setting,
is supported by properties of the Leibniz congruence. In this example we
show that our approach is general and expressive enough to capture the
framework of k-deductive systems directly, as a particular case. Our aim is
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to prove that a k-deductive system can be seen as a two-sorted logic and,
moreover, that if it is algebraizable according to the standard notion then
it is also behaviorally algebraizable. Therefore, we just need to work in a
many-sorted setting without extending the signature and taking Γ as the
whole signature. Example 3.3.1 shows that this is equivalent to working
with an extended signature, and moreover we gain in simplicity of notation.

Consider given a propositional signature P . In our many-sorted frame-
work, we show how we can present a k-deductive system over P as a
two-sorted logic. From P we can consider the two-sorted signature Σk

P =
〈{t, φ}, F 〉 such that Ftkφ = {p} (k-formulas), Fφnφ = {c : c ∈ Pn and n ∈ N}
(k-connectives) and Fφt = {pi : 1 ≤ i ≤ k} (projections).

Given a k-deductive system S = 〈P,`S〉 we can consider a many-sorted
logic LS = 〈Σk

P ,`〉 obtained from S in the follow way:

Φ ` p(ϕ1, . . . , ϕk) iff {〈ψ1, . . . , ψk〉 : p(ψ1, . . . , ψk) ∈ Φ} `S 〈ϕ1, . . . , ϕk〉.

Given a P -algebra A we can consider an induced Σk
P -algebra A∗

such that (A∗)t = A, (A∗)φ = Ak, pA∗(a1, . . . , ak) = 〈a1, . . . , ak〉 and
(pi)A∗(〈a1, . . . , ak〉) = ai, for every 1 ≤ i ≤ k.

Now given a class K of P -algebras, we can apply this construction to the
algebras of K and obtain the class K∗ = {A∗ : A ∈K} of Σk

P -algebras.
We now show how we can use our framework to reason about the alge-

braization of a k-deductive system. The representation of the algebraizabil-
ity of k-deductive systems in terms of our many-sorted framework does not
seem, at first sight, straightforward due to the fact that equational conse-
quence is defined over the propositional formulas, in the case of k-deductive
systems, while in our approach it is defined over tuples of propositional for-
mulas. The following lemma asserts that, nevertheless, the expressive power
is the same in both approaches. We omit the proof since it is an easy exercise.

Lemma 15. Let A be a P -algebra. Then we have that

A∗ ° p(ϕ1, . . . , ϕk) ≈ p(ψ1, . . . , ψk) iff A ° ϕi ≈ ψi for every 1 ≤ i ≤ k.
In particular we have A ° ϕ ≈ ψ iff A∗ ° p(ϕ, . . . , ϕ) ≈ p(ψ, . . . , ψ).

Before we prove the main result we need to fix some notation. First
of all, note that a φ-equation without φ-variables always has the form
p(t1, . . . , tk) ≈ p(ψ1, . . . , ψk). Given a set Φ of φ-equations without φ-
variables, we can consider, for each 1 ≤ i ≤ k, the set

Φi = {ϕi ≈ ψi : p(ϕ1, . . . , ϕi, . . . , ϕk) ≈ p(ψ1, . . . , ψi, . . . , ψk) ∈ Φ}.
Proposition 16. A k-deductive system S = 〈P,`S〉 is algebraizable with
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equivalent algebraic semantics K iff LS is Σk
P -behaviorally algebraizable with

Σk
P -behaviorally equivalent algebraic semantics K∗.

Proof. Suppose first that S is algebraizable and let K be an equivalent
algebraic semantics. Then, there exists a set Θ(x1 : t, . . . , xk : t) = Λ1 ≈
Λ2 of k-equations and a set ∆(x1 : t, x2 : t) of k-formulas such that T `S

〈ϕ1, . . . , ϕk〉 iff Θ[T ] ²K Θ(ϕ1, . . . , ϕk) and ϕ1 ≈ ϕ2 =||=K Θ[∆(ϕ1, ϕ2)].
Now take Λ3(ξ) = {p(λ(p1(ξ), . . . , pk(ξ)), . . . , λ(p1(ξ), . . . , pk(ξ))) : λ ∈

Λ1} and Λ4(ξ) = {p(λ(p1(ξ), . . . , pk(ξ)), . . . , λ(p1(ξ), . . . , pk(ξ))) : λ ∈ Λ2}.
Consider Θ∗(ξ) = Λ3(ξ) ≈ Λ4(ξ) and ∆∗(ξ1, ξ2) = ∆(p1(ξ1), p1(ξ2)) ∪

. . . ∪ ∆(pk(ξ1), pk(ξ2)). It is easy to check that LS is algebraizable with
Θ∗(ξ), ∆∗(ξ1, ξ2) and K∗.

Suppose now that LS is algebraizable with K∗ an equivalent algebraic
semantics. Then there exists a set Θ∗(ξ) of φ-equations and a set ∆∗(ξ1, ξ2) of
formulas such that T `S p(ϕ1, . . . , ϕk) iff Θ∗[T ] ²K∗ Θ∗(p(ϕ1, . . . , ϕk)) and
p(ϕ1, . . . , ϕk) ≈ p(ψ1, . . . , ψk) =||=K∗ Θ∗[∆∗(p(ϕ1, . . . , ϕk), p(ψ1, . . . , ψk))].

Now take Θ(x1, . . . , xk) = Θ∗
1(p(x1, . . . , xk))∪ . . .∪Θ∗

k(p(x1, . . . , xk)) and
∆(x1, x2) = ∆∗(p(x1, . . . , x1), p(x2, . . . , x2)). It is now straightforward to
prove that S is algebraizable with K an equivalent algebraic semantics.

3.3.4. da Costa’s paraconsistent logic C1

We now analyze the behavioral algebraization of the paraconsistent logic C1

of da Costa [16, 14]. This is one of the motivating examples of our approach
and it was inspired by the work in [6]. It was proved, first by Mortensen [30],
and later by Lewin, Mikenberg and Schwarze [25], that C1 is not algebraizable
according to the standard notion. So, we can say that C1 is an example of a
logic whose non-algebraizability is well studied.

Nevertheless, it is rather strange that a relatively well behaved logic fails
to have an interesting algebraic counterpart. The class Alg(C1) standardly
associated with C1 in AAL is not very interesting. Recall that the only
congruence in LΣC1 (X) compatible with the set of theorems of C1 is the
trivial congruence, as proved by Mortensen [30]. Therefore, no work has
been devoted to this class of algebras in the literature.

First of all let us introduce the logic C1 = 〈ΣC1 ,`C1〉. The single-sorted
signature of C1, ΣC1 = 〈{φ}, F 〉, is such that Fφ = {t, f}, Fφφ = {¬},
Fφφφ = {∧,∨,⇒} and Fws = ∅ otherwise. We can define an unary derived
connective ∼ over ΣC1 such that ∼ ξ = (ξ◦ ∧ (¬ξ)), where ϕ◦ is just an ab-
breviation of ¬(ϕ∧(¬ϕ)). This derived connective is intended to correspond
to classical negation. The fact that we can define classical negation within
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C1 is indeed an essential feature of its forthcoming behavioral algebraization.
The consequence relation of C1 can be defined in a Hilbert-style way from
the following axioms:

• ξ1 ⇒ (ξ2 ⇒ ξ1);

• (ξ1 ∧ ξ2)⇒ ξ1;

• (ξ1 ∧ ξ2)⇒ ξ2;

• ξ1 ⇒ (ξ2 ⇒ (ξ1 ∧ ξ2));

• ξ1 ⇒ (ξ1 ∨ ξ2);

• ξ2 ⇒ (ξ1 ∨ ξ2);

• ¬¬ξ1 ⇒ ξ1;

• ξ1 ∨ ¬ξ1;

• ξ◦1 ⇒ (ξ1 ⇒ (¬ξ1 ⇒ ξ2));

• (ξ◦1 ∧ ξ◦2)⇒ (ξ1 ∧ ξ2)◦;

• (ξ◦1 ∧ ξ◦2)⇒ (ξ1 ∨ ξ2)◦;

• (ξ◦1 ∧ ξ◦2)⇒ (ξ1 ⇒ ξ2)◦;

• t⇔ (ξ1 ⇒ ξ1);

• f⇔ (ξ◦1 ∧ (ξ1 ∧ ¬ξ1));

• (ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ1 ⇒ ξ3));

• (ξ1 ⇒ ξ3)⇒ ((ξ2 ⇒ ξ3)⇒ ((ξ1 ∨ ξ2)⇒ ξ3));

and the rule of inference:

• ξ1 ξ1⇒ξ2

ξ2

Although it is defined as a logic weaker than Classical Propositional
Logic (CPL), it happens that the defined connective ∼ indeed corresponds
to classical negation. Therefore, the fragment {∼,∧,∨,⇒, t, f} corresponds
to CPL. So, despite of its innocent aspect, C1 is a non-truth-functional logic,
namely it lacks congruence for its paraconsistent negation connective with
respect to the equivalence ⇔ that algebraizes the CPL fragment. In general,
it may happen that `C1 (ϕ⇔ ψ) but 0C1 (¬ϕ⇔¬ψ).

One of the objectives of this example is to behaviorally algebraizable C1

in order to provide it with a meaningful algebraic counterpart. Moreover, we
will see that the class of algebras that we canonically associate with C1 co-
incides with a class of algebras that already appeared in the literature. This
class is introduced in [6] as an algebraic semantics for C1, as an outgrowth
of related work in the area of combining of logics.

As we have pointed out several times before, behavioral algebraization
depends on the choice of the subsignature Γ. Since C1 can be seen as an
extension of CPL by a paraconsistent negation, the key idea of this example
is to leave paraconsistent negation out of the chosen subsignature, while still
including the classical negation. The signature Γ represents, therefore, the
algebraizable fragment of C1. So, consider the subsignature Γ = 〈{φ}, FΓ〉
of ΣC1 such that FΓ

φφ = {∼} and FΓ
ws = Fws for every ws 6= φφ. Note that,
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since paraconsistent negation ¬ is used in the definition of classical negation
∼, the subsignature Γ is not just the reduct of ΣC1 obtained by excluding ¬.

Let KC1 be a class of Σo-algebras that Γ-behaviorally satisfy the following
set of hidden equations:

i) ξ1 ⇒ (ξ2 ⇒ ξ1) ≈ t;

ii) (ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ1 ⇒ ξ3)) ≈ t;

iii) (ξ1 ∧ ξ2)⇒ ξ1 ≈ t;

iv) (ξ1 ∧ ξ2)⇒ ξ2 ≈ t;

v) ξ1 ⇒ (ξ2 ⇒ (ξ1 ∧ ξ2)) ≈ t;

vi) ξ1 ⇒ (ξ1 ∨ ξ2) ≈ t;

vii) ξ2 ⇒ (ξ1 ∨ ξ2) ≈ t;

viii) (ξ1 ⇒ ξ3)⇒ ((ξ2 ⇒ ξ3)⇒ ((ξ1 ∨ ξ2)⇒ ξ3)) ≈ t;

ix) ¬¬ξ1 ⇒ ξ1 ≈ t;

x) ξ1 ∨ ¬ξ1 ≈ t;

xi) (∼ ξ1)⇒ (¬ξ1) ≈ t;

xii) ξ◦1 ∧ (ξ1 ∧ ¬ξ1) ≈ f ;

xiii) (ξ◦1 ∧ ξ◦2)⇒ (ξ1 ∧ ξ2)◦ ≈ t;

xiv) (ξ◦1 ∧ ξ◦2)⇒ (ξ1 ∨ ξ2)◦ ≈ t;

xv) (ξ◦1 ∧ ξ◦2)⇒ (ξ1 ⇒ ξ2)◦ ≈ t;

and Γ-behaviorally satisfies the following hidden quasi-equations:

i) (ξ1 ≈ t) & ((ξ1 ⇒ ξ2) ≈ t) → (ξ2 ≈ t);

ii) ((ξ1 ⇒ ξ2) ≈ t) & ((ξ2 ⇒ ξ1) ≈ t) → (ξ1 ≈ ξ2).

We are interested here in the class K∗
C1 = {A∗ : A ∈ KC1}. Note that, by

Lemma 13, we have that K∗
C1 satisfies the following visible quasi-equations:

i) (o(ξ1) ≈ o(ξ2)) → (o(∼ ξ1) ≈ o(∼ ξ2));

ii) (o(ξ1) ≈ o(ξ2))&(o(ξ3) ≈ o(ξ4)) → (o(ξ1 ∨ ξ3) ≈ o(ξ2 ∨ ξ4));

iii) (o(ξ1) ≈ o(ξ2))&(o(ξ3) ≈ o(ξ4)) → (o(ξ1 ∧ ξ3) ≈ o(ξ2 ∧ ξ4));

iv) (o(ξ1) ≈ o(ξ2))&(o(ξ3) ≈ o(ξ4)) → (o(ξ1 ⇒ ξ3) ≈ o(ξ2 ⇒ ξ4)).
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Since K∗
C1 satisfies the above quasi-equations (i)-(iv), we can define ∼v:

v → v, ∨v : vv → v, ∧v : vv → v and ⇒v : vv → v over every member A ∈
K∗
C1 , respectively as ∼v

A (oA(a)) = oA(∼A a), oA(a) ∨v oA(b) = oA(a ∨A b),
oA(a) ∧v oA(b) = oA(a ∧A b) and oA(a)⇒v oA(b) = oA(a⇒A b). For ease
of notation consider the following abbreviations: o(f) = ⊥, o(t) = >,∼v=
−,∧v = u,∨v = t and ⇒v =A.

Due to the careful choice of the subsignature Γ, and since K∗
C1 satisfies

the above quasi-equations (i)-(iv), we can obtain the following useful lemma.

Lemma 17. Given A ∈ K∗
C1, an equation ϕ ≈ ψ and h an assignment then

A, h ±Γ ϕ ≈ ψ iff A, h ° o(ϕ) ≈ o(ψ).

Proof. The fact that A, h ±Γ ϕ ≈ ψ implies A, h ° o(ϕ) ≈ o(ψ) follows
from ξ ∈ CΓ

ΣC1 ,φ[ξ]. The other direction follows from an easy induction on the
structure of contexts, recalling that A satisfies the quasi-equations i)-iv).

The class K∗
C1 was proposed in [6] as a possible algebraic counterpart

of C1, but the connection between C1 and K∗
C1 was never established at the

light of the theory of algebraization. In fact, the authors introduced this
class of algebras over a richer signature that contained, a priori, the visible
connectives t,u,>,⊥,∼ and assumed that the visible part of every algebra
in this class is a Boolean algebra. It is interesting to note that, although
we define here the class K∗

C1 over a poorest signature, we are able to define
the same visible connectives as abbreviations and further prove the following
result.

Proposition 18. For every algebra A ∈ K∗
C1, 〈Av,tA,uA,>A,⊥A,−A〉 is

a Boolean algebra.

Proof. This result is a consequence of Lemma 17, the fact that C1 satisfies
the usual axioms for positive Boolean connectives and the fact that ∼ defines
classical negation within C1.

We are now in conditions to prove that C1 is behaviorally algebraizable
with respect to the subsignature Γ of ΣC1 introduced above.

Theorem 19. C1 is Γ-behaviorally algebraizable, with K∗
C1 a Γ-behaviorally

equivalent algebraic semantics with Θ(ξ) = {ξ ≈ t} a set of defining equa-
tions and ∆(ξ1, ξ2) = {ξ1 ⇒ ξ2, ξ2 ⇒ ξ1} a set of equivalence formulas.

Proof. First of all, note that Θ(ξ) ⊆ EqΓ,φ(ξ) and ∆(ξ1, ξ2) ⊆ TΓ,φ(ξ1,ξ2).
Now we have to prove that for every T ∪ {ϕ} ⊆ LΣ(X):
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i) T `C1 ϕ iff {γ ≈ t : γ ∈ T} ²KC1 ,Γ

Σ,bhv ϕ ≈ t;

ii) ξ1 ≈ ξ2 =||=KC1 ,Γ

Σ,bhv (ξ1 ≡ ξ2) ≈ t;

Recall that in the visible sorts, behavioral logic coincides with equational
logic. This fact, together with Lemma 17, guarantees that condition i) above
can be equivalently rewritten, for every T ∪ {ϕ} ⊆ LΣ(X), as:

i’) T `C1 ϕ iff {o(γ) ≈ > : γ ∈ T} ²K∗
C1

o(ϕ) ≈ >.

Note that we have now equational consequence instead of behavioral conse-
quence. The fact that this condition holds was already proved in [6].

Turning our attention to condition ii), and using Lemma 17, all we have
to prove is that o(ξ1) ≈ o(ξ2) ²KC1 o(ξ1 ≡ ξ2) ≈ > and that o(ξ1 ≡ ξ2) ≈
> ²KC1 o(ξ1) ≈ o(ξ2). Both conditions follow from the fact that, for every
Σo-algebra A ∈ K∗

C1 , 〈Av,tA,uA,>A,⊥A,−A〉 is a Boolean algebra.

3.3.5. Lewis’s modal logic S5

Various logics have appeared in the literature whose theorems coincide with
those of Lewis’s original system for S5. Here, we study a Carnap style
presentation of S5 which is well known not to be algebraizable according
to the standard definition [3]. Recall that S5 can be seen as an extension
of CPL with the modality ¤. So, although S5 is not algebraizable, we can
identify an algebraizable fragment of it, CPL. Therefore, using our approach
we can build up an algebraic semantics for S5 based on Boolean algebras,
the algebraic counterpart of CPL.

Let us start by introducing the logic S5 = 〈ΣS5,`S5〉 and then we show
that this logic is behaviorally algebraizable. The single-sorted signature
ΣS5 = 〈{φ}, F 〉 is such that Fφφ = {¬, ¤}, Fφφφ = {∧,∨,⇒} and Fws = ∅
otherwise. The possibility modality is obtained as usual as an abbreviation
♦ = ¬¤¬.

The consequence relation is obtained, in a Hilbert-style way, from the
following axioms:

• ¤ϕ for every ϕ classical tautology;

• ¤ξ ⇒ ξ;

• ¤(¤(ξ1 ⇒ ξ2)⇒ (¤ξ1 ⇒¤ξ2));

• ¤(¤ξ ⇒ ξ);

• ¤(♦ξ ⇒¤♦ξ);

and the inference rule:

• ξ1 ξ1⇒ξ2
ξ2

.
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Consider now the subsignature Γ = 〈{φ}, FΓ〉 of ΣS5 such that FΓ
φφ =

{¬} and FΓ
ws = Fws for every ws 6= φφ. Note that ¤ is outside of Γ.

We can now prove that S5 is Γ-behaviorally algebraizable. For the sake
of simplicity we use Theorem 40 that will be only presented in section 4.2.
This theorem gives a sufficient and easy to check condition for a logic to
be Γ-behaviorally algebraizable. It states that to prove that a given logic
L = 〈Σ,`〉 is Γ-behaviorally algebraizable it suffices to show that L is Γ-
behaviorally equivalential and the Γ-behavioral equivalence ∆(ξ1, ξ2) satisfies
also the so-called (G)-rule: ξ1, ξ2 ` ∆(ξ1, ξ2).

Theorem 20. S5 is Γ-behaviorally algebraizable.

Proof. Let ∆(ξ1, ξ2) = {ξ1 ⇒ ξ2, ξ2 ⇒ ξ1} be a set of formulas. Using well
known properties of S5 it can be easily proved that ∆ is a Γ-behavioral
equivalence. The fact that S5 satisfies the (G)-rule is also well known.

To study the algebraic counterpart our approach associates with S5 we
will use Theorem 11. This theorem gives an axiomatization of the largest
Γ-behaviorally equivalent algebraic semantics. Consider the class KS5 of
Σo

S5-algebras that Γ-behaviorally satisfy the following hidden equations:

• ¤ϕ ≈ t for every ϕ classical tautology;

• (¤ξ ⇒ ξ) ≈ t;

• (¤(¤(ξ1 ⇒ ξ2)⇒ (¤ξ1 ⇒¤ξ2))) ≈ t;

• (¤(¤ξ ⇒ ξ)) ≈ t;

• (¤(♦ξ ⇒¤♦ξ)) ≈ t;

and Γ-behaviorally satisfy the hidden quasi-equations:

• (ξ1 ≈ t) & ((ξ1 ⇒ ξ2) ≈ t) → (ξ2 ≈ t);

• ((ξ1 ⇒ ξ2) ≈ t) & ((ξ2 ⇒ ξ1) ≈ t) → (ξ1 ≈ ξ2).

Where t is an abbreviation of (ξ ⇒ ξ).
We are interested here in the class K∗

S5 = {A∗ : A ∈ KS5}. Note that, by
Lemma 13, we have that K∗

S5 satisfies the following visible quasi-equations:

i) (o(ξ1) ≈ o(ξ2)) → (o(¬ξ1) ≈ o(¬ξ2));

ii) (o(ξ1) ≈ o(ξ2))&(o(ξ3) ≈ o(ξ4)) → (o(ξ1 ∨ ξ3) ≈ o(ξ2 ∨ ξ4));

iii) (o(ξ1) ≈ o(ξ2))&(o(ξ3) ≈ o(ξ4)) → (o(ξ1 ∧ ξ3) ≈ o(ξ2 ∧ ξ4));

iv) (o(ξ1) ≈ o(ξ2))&(o(ξ3) ≈ o(ξ4)) → (o(ξ1 ⇒ ξ3) ≈ o(ξ2 ⇒ ξ4));
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Since K∗
S5 satisfies the above quasi-equations (i)-(iv), we can define ¬v :

v → v, ∨v : vv → v, ∧v : vv → v and ⇒v : vv → v over every member A ∈
K∗

S5, respectively as ¬v
A(oA(a)) = oA(¬Aa), oA(a) ∨v oA(b) = oA(a ∨A b),

oA(a) ∧v oA(b) = oA(a ∧A b) and oA(a)⇒v oA(b) = oA(a⇒A b). For ease
of notation consider the following abbreviations: o(f) = ⊥, o(t) = >,¬v =
−,∧v = u,∨v = t and ⇒v =A.

Due to the careful choice of the subsignature Γ, and since K∗
S5 satisfies

the above quasi-equations (i)-(iv), we can obtain the following useful lemma.

Lemma 21. Given A ∈ K∗
S5, an equation ϕ ≈ ψ and h an assignment then

A, h ±Γ ϕ ≈ ψ iff A, h ° o(ϕ) ≈ o(ψ).

Proof. The fact that A, h ±Γ ϕ ≈ ψ implies A, h ° o(ϕ) ≈ o(ψ) follows
from ξ ∈ CΓ

ΣC1 ,φ[ξ]. The other direction follows from an easy induction on the
structure of contexts, recalling that A satisfies the quasi-equations i)-iv).

Proposition 22. If A ∈ K∗
S5 then 〈Av,tA,uA,>A,⊥A,−A〉 is a Boolean

algebra.

Proof. This result is a consequence of Lemma 21 and the fact that S5
satisfies the usual axioms for Boolean connectives.

Note that the behaviorally equivalent algebraic semantics we have pro-
posed for S5 much resembles the standard class of Boolean algebras with
operations, the usual equivalent algebraic semantics of normal modal logics.

3.3.6. Constructive logic with strong negation

Constructive logic N with strong negation was formulated by Nelson [31] in
order to overcome some non-constructive properties of intuitionistic nega-
tion. The main criticism to intuitionistic negation is the fact that in In-
tuitionistic Propositional Logic (IPL), from the derivability of ¬(ϕ ∧ ψ), it
does not follow that at least one of the formulas ¬ϕ or ¬ψ is derivable in
IPL. Thus, in order to obtain a constructive logic with this property, IPL
was extended with an unary connective for strong negation satisfying the
desired property. We closely follow the notation of Kracht [24] and denote
by N the constructive logic with strong negation. It is well known that
N is algebraizable according to the standard notion and that its equivalent
algebraic semantics is the class of so-called N -lattices [43, 38] (also known
as Nelson algebras [41] or quasi-pseudo-Boolean algebras [33]). The variety
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of N -lattices has been extensively studied [33, 43, 38, 24]. One important
result is the characterization of N -lattices through Heyting algebras.

Herein, our goal is to show that our framework can be useful even when
applied to logics that are algebraizable in the standard sense. The change of
perspective can help to provide a better insight on the algebraic counterpart
of a logic. In more concrete terms, we show that N can be behaviorally
algebraized by choosing a subsignature Γ of the original signature. This
subsignature is obtained by excluding strong negation from the original sig-
nature, thus maintaining just the intuitionistic connectives. We then study
the behavioral algebraic counterpart of N and show that the characterization
of N -lattices through Heyting algebras emerges explicitly, thus reinforcing
the central role of Heyting algebras in the algebraic counterpart of N .

We start by presenting the language of N . It is obtained from a single-
sorted signature ΣN = 〈S, F 〉 such that S = {φ}, Fεφ = ∅, Fφφ = {¬,∼},
Fφ2φ = {→,∨,∧} and Fφnφ = ∅, for all n > 2. As usual, we can define
⊥ = (ϕ ∧ (¬ϕ)) and > = (ϕ → ϕ), where ϕ ∈ LΣM

(X) is some fixed
but arbitrary formula. The connective ∼ is intended to represent strong
negation and the remainder connectives are intended to represent the usual
intuitionistic connectives. We can define the intuitionistic equivalence as
usual as ξ1 ↔ ξ2 = (ξ1 → ξ2) ∧ (ξ2 → ξ1) and we can also define a strong
implication (ξ1 ⇒ ξ2) = (ξ1 → ξ2) ∧ (∼ ξ2 →∼ ξ1). The structural single-
sorted deductive system of N consists of the following axioms:

i) ξ1 → (ξ2 → ξ1);

ii) (ξ1 ∧ ξ2) → ξ1;

iii) (ξ1 ∧ ξ2) → ξ2;

iv) ξ1 → (ξ2 → (ξ1 ∧ ξ2));

v) ξ1 → (ξ1 ∨ ξ2);

vi) ξ2 → (ξ1 ∨ ξ2);

vii) ¬ξ1 → (ξ1 → ξ2);

viii) (ξ1 → (ξ2 → ξ3)) → ((ξ1 → ξ2) → (ξ1 → ξ3));

ix) (ξ1 → ξ3) → ((ξ2 → ξ3) → ((ξ1 ∨ ξ2) → ξ3));

x) (ξ1 → ξ2) → ((ξ1 → ¬ξ2) → ¬ξ1);

xi) ∼ (ξ1 → ξ2) ↔ (ξ1∧ ∼ ξ2);

xii) ∼ (ξ1 ∧ ξ2) ↔ (∼ ξ1∨ ∼ ξ2);

xiii) ∼ (ξ1 ∨ ξ2) ↔ (∼ ξ1∧ ∼ ξ2);

xiv) (∼ ¬ξ1) ↔ ξ1;

xv) (∼∼ ξ1) ↔ ξ1;

xvi) (∼ ξ1 ∨ ¬ξ1) ↔ ¬ξ1;

and the rule

(MP ) ξ1 ξ1→ξ2

ξ2
.
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Note that the axioms i) - x) are the usual axioms for IPL. Axioms xi) -
xvi) express the relation between strong negation and the other connectives.
It is well known that N is algebraizable [33]. However, it is not the intuition-
istic equivalence↔ that is used as the set of equivalence formulas in the stan-
dard algebraization of N . This is mainly due to the fact that↔ does not have
the congruence property with respect to strong negation. The equivalence
used to algebraize N is the strong equivalence (ξ1⇔ξ2) = (ξ1⇒ξ2)∧(ξ2⇒ξ1).

In what follows we describe the equivalent algebraic semantics of N , the
class of N -lattices. Let N be the class of all ΣN -algebras A such that:

• 〈A,∧A,∨A,>A,⊥A〉 is a bounded distributive lattice;

and it also satisfies the following equations:

• ξ1 → (ξ2 → ξ1) ≈ >;

• (ξ1 → (ξ2 → ξ3)) → ((ξ1 → ξ2) → (ξ1 → ξ3)) ≈ >;

• (ξ1 ∧ ξ2) → ξ1 ≈ >;

• (ξ1 ∧ ξ2) → ξ2 ≈ >;

• ξ1 → (ξ2 → (ξ1 ∧ ξ2)) ≈ >;

• ξ1 → (ξ1 ∨ ξ2) ≈ >;

• ξ2 → (ξ1 ∨ ξ2) ≈ >;

• (ξ1 → ξ3) → ((ξ2 → ξ3) → ((ξ1 ∨ ξ2) → ξ3)) ≈ >;

• (ξ1 → ξ2) → ((ξ1 → ¬ξ2) → ¬ξ1) ≈ >;

• ¬ξ1 → (ξ1 → ξ2) ≈ >;

• ∼ (ξ1 → ξ2) ↔ (ξ1∧ ∼ ξ2) ≈ >;

• ∼ (ξ1 ∧ ξ2) ↔ (∼ ξ1∨ ∼ ξ2) ≈ >;

• ∼ (ξ1 ∨ ξ2) ↔ (∼ ξ1∧ ∼ ξ2) ≈ >;

• (∼ ¬ξ1) ↔ ξ1 ≈ >;

• (∼∼ ξ1) ↔ ξ1 ≈ >;

• (∼ ξ1 ∨ ¬ξ1) ↔ ¬ξ1 ≈ >.

We briefly recall some important properties of N -lattices, namely with re-
spect to their connection with Heyting algebras. We just present the results
that are useful for our study. For the reader interested in a more detailed
study of N -lattices we point to [33, 43, 38]. In [43] Vakarelov introduces
a construction of N -lattices from Heyting algebras. The algebras obtained
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by this construction are called twist algebras. We now introduce the pre-
cise notion of twist algebra and present some interesting results connecting
N -lattices and twist algebras.

Let Γ = 〈S, F ′〉 be the subsignature of ΣN such that F ′
φφ = {¬} and

F ′
ws = Fws for every ws ∈ S∗ such that ws 6= φφ. Note that the subsignature

Γ is nothing but the intuitionistic reduct of the signature ΣN . Given a Γ-
algebra A, consider the set A./ = {〈a, b〉 : a, b ∈ A and a ∧A b = ⊥A}. We
can define a Σ-algebra A./ = 〈A./,∧A./ ,∨A./ ,→A./ ,¬A./ ,∼A./ ,⊥A./ ,>A./〉
over the set A./ by defining the operations as follows:

• 〈a1, b1〉 ∧A./ 〈a2, b2〉 = 〈a1 ∧A a2, b1 ∨A b2〉;
• 〈a1, b1〉 ∨A./ 〈a2, b2〉 = 〈a1 ∨A a2, b1 ∧A b2〉;
• 〈a1, b1〉 →A./ 〈a2, b2〉 = 〈a1 →A a2, a1 ∧A b2〉;
• ¬A./〈a, b〉 = 〈¬Aa, a〉;
• ∼A./ 〈a, b〉 = 〈b, a〉;
• >A./ = 〈>A,⊥A〉;
• ⊥A./ = 〈⊥A,>A〉.

The algebra A./ is called a full twist algebra over A. A twist algebra
is a subalgebra of a full twist algebra. The following Theorem is due to
Vakarelov [43].

Theorem 23. If A is a Heyting algebra then A./ is a N -lattice.

Given a N -lattice A we can consider the equivalence relation θA over A
defined as 〈a, b〉 ∈ θA iff (a ↔A b) = >A. It is well known that this equiv-
alence relation, that corresponds to intuitionistic equivalence in A, is not a
congruence relation, in general. This is due to the fact that the congruence
condition might fail for strong negation. Despite this fact, θA is compatible
with all the intuitionistic operations and is therefore a Γ-congruence. We
can then consider the Γ-algebra A./ = (A|Γ)/θ. Sendlewski [39] proves that
A./ is a Heyting algebra and that it is the least Heyting algebra that can
be obtained by factorization. It is usually called the Heyting algebra asso-
ciated with A or the untwist algebra of A. For more results concerning the
constructions (.)./ and (.)./ we point to [43, 39, 24].

We proceed by studying the Γ-behavioral algebraizability of N . Recall
that Γ is the subsignature of ΣN representing the intuitionistic reduct. In-
tuitively, we are taking the strong negation out of the original signature,
thus keeping just the intuitionistic connectives. Therefore, the intuitionistic
equivalence will play a key role in the Γ-behavioral algebraization of N .
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Theorem 24. N is Γ-behaviorally algebraizable.

Proof. Recall that Theorem 40 gives a sufficient condition for a logic to
be Γ-behaviorally algebraizable. In this proof we use ∆ = {(ξ1 ↔ ξ2)}. The
following conditions are all well-known to hold in IPL, and therefore in every
axiomatic extension of IPL, which is the case of N .

i) `N δ1∆δ1;

ii) δ1∆δ2 `N δ2∆δ1;

iii) δ1∆δ2, δ2∆δ3 `N δ1∆δ3;

iv) δ1∆δ2 `N (¬δ1)∆(¬δ2);

v) δ1∆δ2, δ3∆δ4 `N (δ1 → δ3)∆(δ2 → δ4);

vi) δ1∆δ2, δ3∆δ4 `N (δ1 ∧ δ3)∆(δ2 ∧ δ4);

vii) δ1∆δ2, δ3∆δ4 `N (δ1 ∨ δ3)∆(δ2 ∨ δ4);

viii) δ1, δ1∆δ2 `N δ2;

ix) δ1, δ2 `N δ1∆δ2.

Recall that, in this case, the set of defining equations can be defined as
Θ(ξ) = {ξ ≈ (ξ ↔ ξ)}.

We now describe the Γ-behaviorally equivalent algebraic semantics of N ,
the class KΓ

N . Recall that KΓ
N is a class of algebras over the extended two-

sorted signature Σo
N = 〈{φ, v}, F o〉 obtained from ΣN . This class KΓ

N can be
described using Theorem 11 together with the construction presented at the
end of Section 3.2. Although Σo

N does not have operations on the sort v, we
can define operations that correspond to the operations in Γ, in every algebra
of KΓ

N . In this particular case, we can define the operations ∧o,∨o,→o

,¬o,>o,⊥o on the sort v that correspond to the intuitionistic connectives.
For the sake of notation we denote them by u,t, A,−, 1, 0 respectively.
The class KΓ

N is constituted by all Σo
N -algebras B such that:

〈Bv,uB,tB, AB,−B, 1B, 0B〉 is a Heyting algebra

and B Γ-behaviorally satisfies the following axioms:

1) ∼ (ξ1 → ξ2) ≈ (ξ1∧ ∼ ξ2);



32 C. Caleiro, R. Gonçalves and M.Martins

2) ∼ (ξ1 ∧ ξ2) ≈ (∼ ξ1∨ ∼ ξ2);

3) ∼ (ξ1 ∨ ξ2) ≈ (∼ ξ1∧ ∼ ξ2);

4) (∼ ¬ξ1) ≈ ξ1;

5) (∼∼ ξ1) ≈ ξ1;

6) (∼ ξ1 ∨ ¬ξ1) ≈ ¬ξ1.

We have observed that, in some sense, the class of algebra KΓ
N explicitly

describes the well-known relation between N -lattices and Heyting algebras.
To be more specific, we prove that we can canonically define a N -lattice B./,
given B ∈ KΓ

N . We can also define, for every N -lattice A, a Σo
N -algebra A./

such that A./ ∈ KΓ
N . The abuse of notation when we write B./ and A./ is,

as we will see, well justified by the key role of the constructions (.)./ and
(.)./ in the definitions of B./ and A./, respectively.

Let B ∈ KΓ
N and recall that ≡Γ denotes the Γ-behavioral equivalence

over B. We can then define a ΣN -algebra

B./ = 〈B./,∧B./ ,∨B./ ,→B./ ,¬B./ ,∼B./ ,>B./ ,⊥B./〉

where
B./ = {〈[a]≡Γ , [∼B a]≡Γ〉 : a ∈ Bφ}

and such that the operations are defined as in the construction (.)./.

Theorem 25. Given B ∈ KΓ
N we have that B./ is a N -lattice.

Proof. Let h∗ : X → B./ be an assignment. Take h : X → Bφ such that
h(x) = a where h∗(x) = 〈[a]≡Γ , [∼B a]≡Γ〉. Using induction on the structure
of a formula, it is easy to prove that h∗(ϕ) = 〈[h(ϕ)]≡Γ , [∼B h(ϕ)]≡Γ〉, for
every formula ϕ. Since B ∈ KΓ

N we have that B |||− ϕ ≈ > for every
theorem ϕ of N . So, for every assignment h′ over Bφ, we can conclude
that [h′(ϕ)]≡Γ = >B. Therefore, given an axiom ϕ of N we have that
h∗(ϕ) = 〈[h(ϕ)]≡Γ , [∼B h(ϕ)]≡Γ〉 = 〈>B,⊥B〉, which is the unit.

All that remains to prove is that B./ = 〈B./,∧B./ ,∨B./ ,>B./ ,⊥B./〉 is a
bounded distributive lattice. This is matter of a direct verification.

Consider now given a N -lattice A. Recall that we can consider the
Γ-congruence θA over A defined as 〈a, b〉 ∈ θA iff (a ↔A b) = >A.

We can then consider the Σo
N -algebra A./ such that:

• (A./)v = (A|Γ)/θA ;
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• (A./)φ = A;

• oA./(a) = [a]θA for every a ∈ A.

Theorem 26. If A is a N -lattice then A./ ∈ KΓ
N .

Proof. First of all, note that it is well known that (A|Γ)/θA is a Heyting
algebra [43, 24].

From the definition of N -lattice we can conclude that [∼ (ξ1 → ξ2)]θA =
[(ξ1∧ ∼ ξ2)]θA , [∼ (ξ1 ∧ ξ2)]θA = [(∼ ξ1∨ ∼ ξ2)]θA , [∼ (ξ1 ∨ ξ2)]θA = [(∼
ξ1∧ ∼ ξ2)]θA , [(∼ ¬ξ1)]θA = [ξ1]θA , [(∼∼ ξ1)]θA = [ξ1]θA and [(∼ ξ1 ∨
¬ξ1)]θA = [¬ξ1]θA . Therefore, the result follows from the observation that,
by construction, θA is indeed ≡Γ, the Γ-behavioral equivalence on A./.

We end this example with some conclusions. The first one is that with
our approach we are able to make explicit the key role that Heyting algebras
play in the algebraic counterpart of N . The algebras obtained by behavioral
algebraization can be seen as N -lattices in a different perspective. Further-
more, our goal is not to provide an alternative to N -lattices, but only to
provide one more tool for the study of the system N and, in particular, to
the study of N -lattices.

Note that this example is just a first example of the application of our
behavioral theory to the study of algebraizable logics. Of course, due to the
large amount of research on N -lattices, we did not arrive at any novel major
result or conclusion. Nevertheless, in logics with less studied semantics, our
approach can help to unveil some interesting algebraic results and moreover
to shed some light on the relation between different equivalences in a given
logic, as it was the case of intuitionistic equivalence and strong equivalence.

4. Behavioral AAL

One of the goals of AAL is to discover general criteria for a class of algebras
(or for a class of mathematical objects closely related to algebra, such as
logical matrices) to be the algebraic counterpart of a logic, and to develop
the methods for obtaining it. Another important goal of AAL is a classifica-
tion of logics based on the properties of their algebraic counterparts. Ideally,
when it is known that a given logic belongs to a particular group in the clas-
sification, one will have general theorems providing important information
about its properties. Following these goals, we propose in this section a be-
havioral generalization of some of the standard notions and results of AAL.
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Figure 1. A view of the behavioral Leibniz hierarchy.

This is basically a systematic continuation of the effort that was already
started in the previous section.

We start by drawing a behavioral Leibniz hierarchy that generalizes part
of the standard Leibniz hierarchy. We then present an useful intrinsic charac-
terization of the notion of behaviorally algebraizable logic and, as corollary,
a sufficient condition.

4.1. The behavioral Leibniz hierarchy

Until now we have focused on generalizing the notion of algebraizable logic.
To further support our methodology, we now show how to extend other
standard notions and results of AAL to the behavioral setting. Recall that
one of the main tools of AAL is the Leibniz operator. It can be used to
draw the so-called Leibniz hierarchy, briefly depicted in Figure 1, which will
serve as a roadmap for the results of this section. It shows in a clear way
the relationship between the standard and the behavioral hierarchies (the
relations between behavioral classes are assumed to be drawn over the same
subsignature Γ).

First, we need to introduce the behavioral variant of the notion of Leibniz
operator. For the purpose, let us define the notion of Γ-congruence. Consider
given a signature Σ = 〈S, F 〉 and a subsignature Γ of Σ. A Γ-congruence
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over a Σ-algebra A is an equivalence relation θ over A such that:

if 〈a1, b1〉 ∈ θs1 , . . . , 〈an, bn〉 ∈ θsn and f : s1 . . . sn → s ∈ Γ,
then 〈fA(a1, . . . , an), fA(b1, . . . , bn)〉 ∈ θs.

We will denote the set of all Γ-congruences over a Σ-algebra A by
ConΣ

Γ (A). The difference between a Γ-congruence and a congruence over
A is that a Γ-congruence is assumed to satisfy the congruence property just
for contexts generated from the subsignature Γ. The contexts outside Γ do
not necessarily satisfy the congruence property. Easily, a congruence is just
a Σ-congruence in our setting, that is, we just have to take Γ = Σ.

A Γφ-congruence θ over a Σ-algebra A is a φ reduct of a Γ-congruence
over A, that is, an equivalence relation over Aφ that satisfies the condi-
tion that, if 〈a1, b1〉 ∈ θ, . . . , 〈an, bn〉 ∈ θ and f : φn → φ ∈ DerΓ,φnφ,
then 〈fA(a1, . . . , an), fA(b1, . . . , bn)〉 ∈ θ. The set of all Γφ-congruences of
A will be denoted by ConΣ

Γ,φ(A). In what follows, the importance of Γφ-
congruences reflects the distinguished role that the sort φ plays in our theory.

The next lemma is a generalization for Γ-congruences of a well known
[5, 29] result for congruences. Its proof much resembles the standard proof
and will thus be omitted.

Lemma 27. Given a signature Σ and a subsignature Γ of Σ, ConΣ
Γ (A) is a

complete sublattice of EqvΣ(A) the complete lattice of equivalences on A.

It is easy to see that ConΣ
Γ,φ(A) is a complete sublattice of EqvΣ|φ(A|φ).

The fact that every theory of ²K,Γ
Σ,bhv is a Γ-congruence over TΣ(X) is

an easy exercise and generalizes the well known relation between ²K and
ConΣ

Σ(TΣ(X)). A Γ-congruence θ over a Σ-algebra A is compatible with a
set Φ ⊆ Aφ if for every a1, a2 ∈ Aφ, if 〈a1, a2〉 ∈ θφ and a1 ∈ Φ then a2 ∈ Φ.

Recall that the Leibniz congruence is the largest congruence compatible
with a given L-theory. The following lemma asserts the existence of the
largest Γ-congruence over TΣ(X) compatible with a given L-theory T , thus
generalizing the standard existence result.

Lemma 28. Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature of
Σ. For each T ∈ ThL, there is a largest Γ-congruence compatible with T .

Proof. Let T ∈ ThL and consider the binary relation ΦT over TΣ(X)
defined, for every s ∈ S, as follows:

〈t1, t2〉 ∈ ΦT,s iff for every c(x :s, x1 :s1, . . . , xn :sn) ∈ CΓ
Σ,φ[x :s]

and every u1 ∈ TΣ,s1(X), . . . , un ∈ TΣ,sn(X) we have that
c[t1, u1, . . . , un] ∈ T iff c[t2, u1, . . . , un] ∈ T.
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It is now an easy exercise to prove that ΦT is indeed a Γ-congruence
compatible with T and moreover it is the largest one.

Now that we have proved that, given a L-theory T , the largest Γ-
congruence compatible with T exists, we can use this result to extend the
notion of Leibniz congruence to this behavioral setting. The Γ-behavioral
Leibniz congruence associated with a theory T is the largest Γ-congruence
compatible with T . The term Leibniz congruence was introduced in [3]
but the concept appears much early. The characterization of the Leibniz
Γ-congruence given in the proof of Lemma 28 justifies the use of the term
Leibniz. The famous Leibniz second order criterion says that two objects in
the universe of discourse are equal if they share all the properties that can be
expressed in the language of discourse. In our behavioral generalization, we
assume that the language of discourse includes only the contexts obtained
from a given subsignature.

Definition 29. (Behavioral Leibniz operator)
Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature of Σ. The
behavioral Leibniz operator on the term algebra,

Ωbhv
Γ : ThL → ConΣ

Γ (TΣ(X))

is such that, for each T ∈ ThL, Ωbhv
Γ (T ) is the largest Γ-congruence over

TΣ(X) compatible with T .

Note that, as before, this definition is parametrized by the choice of Γ.
The behavioral Leibniz operator plays a central role in our approach. As
we will see, some important classes of logics can be characterized by its
properties. These properties include monotonicity, injectivity and commu-
tation with inverse substitutions, where the last one means that given a
substitutions σ over Σ and a theory T ∈ ThL we have that Ωbhv

Γ (σ−1(T )) =
σ−1(Ωbhv

Γ (T )). Using the behavioral Leibniz operator we can define a behav-
ioral version of the notion of protoalgebraic logic. Consider given a subsig-
nature Γ of Σ.

Definition 30. (Γ-behaviorally protoalgebraic logic)
A many-sorted logic L = 〈Σ,`〉 is Γ-behaviorally protoalgebraic if for every
T ∈ ThL and ϕ,ψ ∈ LΣ(X)

if 〈ϕ, ψ〉 ∈ Ωbhv
Γ (T ) then T, ϕ ` ψ and T, ψ ` ϕ.
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We will now prove equivalent characterizations of the notion of behav-
iorally protoalgebraic logic. These equivalent characterizations are behav-
ioral versions of the standard results for protoalgebraic logics. Some of them
will be useful to show the interesting result that the standard and the be-
havioral notions of protoalgebraic logic coincide.

Consider given a many-sorted logic L = 〈Σ,`〉 and a subsignature Γ of
Σ. Now consider the set TL,Γ

ξ1,ξ2
= {ϕ ∈ LΓ(X) : ` σξ1→ξ2(ϕ)}, where σξ1→ξ2

is the substitution that sends ξ2 to ξ1, that is, σξ1→ξ2,φ(ξ2) = ξ1, and leaves
the remaining variables fixed. When the logic L is clear from the context,
we will write just TΓ

ξ1,ξ2
instead of TL,Γ

ξ1,ξ2
. The non-behavioral unsorted ana-

logue of this set was used by Herrmann in [23] as a fundamental tool in the
development of his theory. It is also an important tool in our framework
and, in particular, it can be used to give an alternative characterization of
the notion of behavioral protoalgebraizability. The following lemma asserts
some simple but very useful properties of TΓ

ξ1,ξ2
. The proof is omitted since

it is a straightforward generalization of the standard result [11].

Lemma 31.
Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature of Σ. Then,

i) if σ is a substitution over Γ such that σξ1→ξ2(σξ1) = σξ1→ξ2(σξ2) then
TΓ

ξ1,ξ2
is closed under σ, that is, σ[TΓ

ξ1,ξ2
] ⊆ TΓ

ξ1,ξ2
;

ii) 〈ξ1, ξ2〉 ∈ Ωbhv
Γ,φ((TΓ

ξ1,ξ2
)`);

iii) ∆(ξ1, ξ2) ⊆ LΓ(X) is a Γ-behavioral equivalence iff ∆ ⊆ TΓ
ξ1,ξ2

and
∆` = (TΓ

ξ1,ξ2
)`.

The following notion of behavioral protoequivalence system of formu-
las is the basis of a characterization of behavioral protoalgebraizability. It
generalizes the concept of (many-sorted) protoequivalence system given in
[27].

Definition 32. (Behavioral protoequivalence system)
Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature of Σ. A a set
∆(ξ1, ξ2, z) ⊆ LΓ(X) where z = 〈z1 : s1, z2 : s2, . . .〉 is a set of parametric
variables with sort different from φ and at most one variable of each sort is
said a Γ-protoequivalence system for L if it satisfies the following conditions:

(R) ` ∆(ξ, ξ, z);

(MP) ξ1, ∆(ξ1, ξ2, z) ` ξ2.
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The following theorem is a behavioral version of well known characteri-
zations of the standard notion of protoalgebraic logic [11].

Theorem 33. Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature
of Σ. Then, the following conditions are equivalent:

i) L is Γ-behaviorally protoalgebraic;

ii) Ωbhv
Γ,φ is monotone;

iii) ξ1, T
Γ
ξ1,ξ2

` ξ2;

iv) there exists a Γ-protoequivalence system for L.

Proof. i)⇒ ii): Assume L is Γ-behaviorally protoalgebraic. Let T1, T2 ⊆
ThL such that T1 ⊆ T2. We will prove that Ωbhv

Γ (T1) is compatible with
T2. For, let ϕ ∈ T2 and 〈ϕ,ψ〉 ∈ Ωbhv

Γ,φ(T1). Hence T1, ϕ a` ψ, T1 by Γ-
protoalgebraizability. Since T1 ⊆ T2 we have that T2, ϕ a` ψ, T2. So, since
ϕ ∈ T2 and T2 is a theory, we can conclude that ψ ∈ T2. Now that have
proved that Ωbhv

Γ (T1) is compatible with T2, we can conclude that Ωbhv
Γ,φ(T1) ⊆

Ωbhv
Γ,φ(T2) since Ωbhv

Γ (T2) is the largest Γ-congruence compatible with T2.
ii)⇒ iii): By Lemma 31 we have that 〈ξ1, ξ2〉 ∈ Ωbhv

Γ,φ((TΓ
ξ1,ξ2

)`). Since
Ωbhv

Γ,φ is monotone we have 〈ξ1, ξ2〉 ∈ Ωbhv
Γ,φ(({ξ1} ∪ TΓ

ξ1,ξ2
)`), and by compati-

bility we can conclude that ξ2 ∈ ({ξ1} ∪ TΓ
ξ1,ξ2

)`, that is, ξ1, T
Γ
ξ1,ξ2

` ξ2.
iii)⇒ iv): Take ∆ = σTΓ

ξ1,ξ2
where σ is a substitution such that σφ(ξ1) =

ξ1 and σφ(ξ) = ξ2 for every ξ 6= ξ1 and, for every s 6= φ, σs(x) = x0 for
every x ∈ Xs, where x0 is a fixed variable of sort s. So, the conditions over
the variables are verified. To verify (R) and (MP ) note first that, since σ is
a substitution over Γ and σξ1→ξ2(σξ1) = σξ1→ξ2(σξ2) we have, using Lemma
31, that σTΓ

ξ1,ξ2
⊆ TΓ

ξ1,ξ2
. So, (R) is satisfied. In turn, (MP ) follows from

from iii) and structurality.
iv)⇒ i): Suppose that there exists a Γ-protoequivalence set ∆(ξ1, ξ2, z)

for L. Let ϕ,ψ ∈ LΣ(X) and let T be a theory of L such that 〈ϕ,ψ〉 ∈
Ωbhv

Γ,φ(T ). So, for every δ(ξ1, ξ2) ∈ ∆, we have that 〈δ(ϕ, ψ), δ(ϕ,ϕ)〉 ∈
Ωbhv

Γ,φ(T ). So, by compatibility and using (R) we have that ∆(ϕ,ψ) ⊆ T .
So, using (MP ) we have that T, ϕ ` ψ. In the same way we have that
T, ψ ` ϕ. So T, ϕ a` ψ, T .

Note that, using condition iv) of the above theorem, we have that if a
logic is Γ-behaviorally equivalential then it is also Γ-behaviorally protoalge-
braic. More interestingly, condition iv) also allows us to conclude that if a



Behavioral Abstract Algebraic Logic 39

logic is behaviorally protoalgebraic then it is also protoalgebraic in the stan-
dard sense. This is an important fact since it means that all our behavioral
hierarchy is contained in the class of protoalgebraic logics, the class of logics
that is widely considered to be the largest class amenable to the tools of
AAL and standard matrix semantics.

After focusing on behavioral protoalgebraizability, we turn our attention
to other notions of the Leibniz hierarchy, such as weak algebraizability.

Definition 34. (Γ-behaviorally weakly algebraizable logic)
Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature of Σ. Then,
L is Γ-behaviorally weakly algebraizable if there exists a class K of Σo-
algebras, a set Θ(ξ, z) ⊆ CompK,Γ

Σ (X) of φ-equations and a set ∆(ξ1, ξ2, w) ⊆
TΓ,φ({ξ1, ξ2, w}) of formulas such that, for every T ∪ {t} ⊆ LΣ(X) and for
every set Φ ∪ {t1 ≈ t2} of φ-equations,

i) T ` t iff Θ[〈T 〉] ²K,Γ
Σ,bhv Θ(〈t〉);

ii) Φ ²K,Γ
Σ,bhv t1 ≈ t2 iff ∆[〈Φ〉] ` ∆(〈t1, t2〉);

iii) ξ a` ∆[〈Θ(〈ξ〉)〉];
iv) ξ1 ≈ ξ2 =||=K,Γ

Σ,bhv Θ[〈∆(〈ξ1, ξ2〉)〉];

The difference between the notion of Γ-behaviorally weakly algebraizable
logic and the notion of Γ-behaviorally algebraizable logic is the fact that, in
the former, both the equivalence set of formulas and the defining set of equa-
tions have parametric variables. We are able to generalize to our behavioral
setting the standard characterization of weakly algebraizable logics using the
Leibniz operator.

Theorem 35. Let L = 〈Σ,`〉 be a many-sorted signature and Γ a subsigna-
ture of Σ. Then L is Γ-behaviorally weakly algebraizable if Ωbhv

Γ,φ is monotone
and injective.

We will not present here the proof of this result since the techniques
involved are all contained in the proofs of Theorems 33 and 38. The reason
for presenting this notion here was to show that it is easy to obtain a (many-
sorted) behavioral version of the notion of weakly algebraizable logic, and
also that it is easy to generalize the well known characterization result using
the Leibniz operator. Nevertheless, it is not our intention to study this
notion in detail, for now.

In a previous section we have introduced the notion of behaviorally equiv-
alential logic. In the next proposition we group two interesting properties
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regarding behaviorally equivalential logics and the behavioral Leibniz opera-
tor. The first one generalizes the well known criterion for equivalentiality due
to Herrmann [23]. The second property generalizes the intimate connection
between an equivalence set and the Leibniz congruence.

Proposition 36. Let L = 〈Σ,`〉 a many-sorted logic and Γ a subsignature
of Σ. Let ∆(ξ1, ξ2) ⊆ LΓ({ξ1, ξ2}) a set of formulas. Then,

i) if ∆(ξ1, ξ2) is a Γ-behavioral equivalence set for L then, for every T ∈
ThL and ϕ,ψ ∈ LΣ(X), we have that 〈ϕ,ψ〉 ∈ Ωbhv

Γ,φ(T ) iff ∆(ϕ,ψ) ⊆ T.

ii) Herrmann’s Test: suppose L is Γ-behaviorally protoalgebraic. Then,
∆(ξ1, ξ2) is an Γ-behavioral equivalence set for L iff ∆(ξ1, ξ2) ⊆ TΓ

ξ1,ξ2

and it satisfies 〈ξ1, ξ2〉 ∈ Ωbhv
Γ,φ(∆(ξ1, ξ2)`);

Proof. i) First let 〈ϕ,ψ〉 ∈ Ωbhv
Γ,φ(T ). Then, by compatibility, we have that

∆(ϕ,ψ) ⊆ T iff ∆(ϕ, ϕ) ⊆ T . Since ∆ satisfies (R) we can conclude that
∆(ϕ,ψ) ⊆ T .

On the other direction, suppose that ∆(ϕ,ψ) ⊆ T . So, for every c ∈
CΓ

Σ,φ[ξ] we have that ∆(c[ϕ], c[ψ]) ⊆ T . So, using (MP) we can conclude that
c[ϕ] ∈ T iff c[ψ] ∈ T . So, we have that 〈ϕ,ψ〉 ∈ Ωbhv

Γ,φ(T ).
ii): Suppose first that ∆ is a Γ-behavioral equivalence for L. Since

` ∆(ξ1, ξ1) we have that ∆ ⊆ TΓ
ξ1,ξ2

. By Lemma 31 we have that

∆` = TΓ
ξ1,ξ2

`. Again by Lemma 31 we have that 〈ξ1, ξ2〉 ∈ Ωbhv
Γ,φ((TΓ

ξ1,ξ2
)`) =

Ωbhv
Γ,φ(∆(ξ1, ξ2)`). Now suppose that ∆(ξ1, ξ2) ⊆ TΓ

ξ1,ξ2
and 〈ξ1, ξ2〉 ∈

Ωbhv
Γ,φ(∆(ξ1, ξ2)`). Then ∆(ξ1, ξ2)` ⊆ (TΓ

ξ1,ξ2
)`. To prove the reverse in-

clusion, let ϕ ∈ TΓ
ξ1,ξ2

. By definition of TΓ
ξ1,ξ2

we have that ϕ(ξ1, ξ1).
So ϕ(ξ1, ξ1) ∈ ∆(ξ1, ξ2)`. Since 〈ξ1, ξ2〉 ∈ Ωbhv

Γ,φ(∆(ξ1, ξ2)`) we have by
compatibility that ϕ(ξ1, ξ2) ∈ ∆(ξ1, ξ2)` iff ϕ(ξ1, ξ1) ∈ ∆(ξ1, ξ2)`. So,
ϕ(ξ1, ξ2) ∈ ∆(ξ1, ξ2)`. So, we have that (TΓ

ξ1,ξ2
)` ⊆ ∆(ξ1, ξ2)` and we can

conclude that (TΓ
ξ1,ξ2

)` = ∆(ξ1, ξ2)`. By Lemma 31 we have that ∆ is a
Γ-behavioral equivalence.

We will now show that the notion of behavioral equivalentiality can also
be characterized by properties of the behavioral Leibniz operator. This result
also generalizes a well-known standard result.

Theorem 37. Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature
of Σ. Suppose L is Γ-standard, then the following are equivalent:

i) L is Γ-behaviorally equivalential;
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ii) Ωbhv
Γ,φ is monotone and commutes with inverse substitutions;

iii) Ωbhv
Γ,φ is monotone and σΩbhv

Γ,φ(T ) ⊆ Ωbhv
Γ,φ((σT )`), for all substitutions

and L-theories T .

Proof. i) ⇒ ii): Suppose that L is Γ-behaviorally equivalential and let
∆(ξ1, ξ2) be a equivalence set for L. As we already said, since L is Γ-
behaviorally equivalential, then it is Γ-behaviorally protoalgebraic. By The-
orem 33 we can conclude that Ωbhv

Γ,φ is monotone. To prove that Ωbhv
Γ,φ

commutes with inverse substitutions, consider given a T ∈ ThL and a
substitution σ. Now, we have the following sequence of equivalent sen-
tences: 〈t1, t2〉 ∈ σ−1Ωbhv

Γ,φ(T ) iff 〈σt1, σt2〉 ∈ Ωbhv
Γ,φ(T ) iff ∆(σt1, σt2) ⊆ T iff

σ∆(t1, t2) ⊆ T iff ∆(t1, t2) ⊆ σ−1T iff 〈t1, t2〉 ∈ Ωbhv
Γ,φ(σ−1T ).

ii) ⇒ iii): Let T ∈ ThL and let σ be a substitution over Σ. Let
T0 = (σT )`. It is obvious that T ⊆ σ‘−1T0 and hence Ωbhv

Γ,φ(T ) ⊆
Ωbhv

Γ,φ(σ−1T0). Since Ωbhv
Γ,φ commutes with inverse substitutions we have that

Ωbhv
Γ,φ(σ−1T0) = σ−1Ωbhv

Γ,φ(T0). Thus, Ωbhv
Γ,φ(T ) ⊆ σ−1Ωbhv

Γ,φ(T0). This yields
σΩbhv

Γ,φ(T ) ⊆ Ωbhv
Γ,φ((σT )`).

iii) ⇒ i): Suppose iii). By Proposition 36, L is equivalential provided
some ∆(ξ1, ξ2) ⊆ LΣ({xi1, ξ2}) satisfies ∆ ⊆ TΓ

ξ1,ξ2
and 〈ξ1, ξ2〉 ∈ Ωbhv

Γ ((∆)`.
Recall that since L is Γ-standard there exists a closed term over Γ for each
sort s ∈ S. Let σ be a substitution such that σφ(ξ1) = ξ1 and σφ(ξ)) = ξ2

for every ξ ∈ Xφ and, for every s ∈ S and every x ∈ Xs, σs(x) = ts
where ts is a closed term of sort s. Now take ∆(ξ1, ξ2) = σTΓ

ξ1,ξ2
. So,

∆ ⊆ LΓ({ξ1, ξ2}). Since σξ1→ξ2(σξ1) = σξ1→ξ2(σξ2) we have that, by Lemma
31 we have that ∆ = σTΓ

ξ1,ξ2
⊆ TΓ

ξ1,ξ2
. We know that 〈ξ1, ξ2〉 ∈ Ωbhv

Γ,φ((TΓ
ξ1,ξ2

)`)
by Lemma 31. So, 〈σξ1, σξ2〉 ∈ σΩbhv

Γ,φ((TΓ
ξ1,ξ2

)`). By hypothesis, 〈ξ1, ξ2〉 ∈
Ωbhv

Γ,φ((σTΓ
ξ1,ξ2

)`). So, 〈ξ1, ξ2〉 ∈ Ωbhv
Γ,φ((TΓ

ξ1,ξ2
)`). By Proposition 36 we have

that ∆ is an equivalence.

We will now go towards the main theorem of this section: the charac-
terization of behavioral algebraizability using properties of the behavioral
Leibniz operator. At this point it is important to recall that quotient alge-
bras are an essential ingredient of AAL. However, since we are now working
with Γ-congruences instead of congruences, we cannot perform quotients di-
rectly. This is where algebras over the extended signature Σo will play a key
role. We are able to construct from a given Γ-congruence θ over TΣ(X) a
congruence over To

Σ(Xo) that keeps the relevant information of the original
Γ-congruence. We can consider a relation θo = {θo

s}s∈So over To
Σ(Xo) such
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that θo
v = {〈o(ϕ), o(ψ)〉 : 〈ϕ,ψ〉 ∈ θφ}∪{〈t, t〉 : t ∈ TΣo,v(Xo)} and, for every

s 6= v, θo
s is the identity relation over TΣo,s(Xo). It is easy to verify that θo

is indeed a congruence on To
Σ(Xo).

We can now proceed to the characterization of behavioral algebraizability
using the behavioral Leibniz operator. The result generalizes the well know
standard result. In the proof, we will follow a methodology closely related
to the one used by Herrmann in [23]. The techniques used there are easier
to adapt to the behavioral setting than, for example, those used in the proof
given by Blok and Pigozzi [3].

Theorem 38. Let L = 〈Σ,`〉 be a Γ-standard many-sorted logic, where Γ
is a subsignature of Σ. Then, L is Γ-behaviorally algebraizable iff Ωbhv

Γ,φ is
injective, monotone and commutes with inverse substitutions.

Proof. First assume that L is Γ-behaviorally algebraizable and let ∆ and
Θ be the sets of equivalence formulas and of defining equations respectively.
So, it is equivalential, and therefore Ωbhv

Γ,φ is monotone and commutes with
inverse substitutions. To prove that it is also injective let T1, T2 such that
Ωbhv

Γ,φ(T1) = Ωbhv
Γ,φ(T2). Now consider the following sequence of equivalent

sentences: ϕ ∈ T1 iff ∆[Θ(ϕ)] ⊆ T1 iff Θ(ϕ) ⊆ Ωbhv
Γ,φ(T1) iff Θ(ϕ) ⊆ Ωbhv

Γ,φ(T2)
iff ∆[Θ(ϕ)] ⊆ T2 iff ϕ ∈ T2. So, T1 = T2, showing that Ωbhv

Γ,φ is injective.
Assume now that Ωbhv

Γ,φ is injective, monotone and commutes with inverse
substitutions. So, by Theorem 37 L is Γ-behaviorally equivalential. Let
∆(ξ1, ξ2) be an equivalence for L.

Take K = {TΣo(Xo)/
(Ωbhv

Γ
(T ))o

: T ∈ ThL} a class of Σo-algebras. Using

Lemma 36 and having in mind the definition of K, it an easy exercise to prove
that, for every set Φ of φ-equations and ϕ,ψ ∈ LΣ(X), we have Φ ²K,Γ

Σ,bhv

ϕ ≈ ψ iff ∆[Φ] ` ∆(t1, t2). Let us now prove that ξ a` ∆[Θ(ξ)] for some set
Θ(ξ) of φ-equations with just the variable ξ.

Let Tξ = {ξ}` and take a substitution σ such that σφ(ξ′) = ξ for every
ξ′ ∈ Xφ and, for every s ∈ S and s 6= φ, we have that σs(x) = ts where ts is a
closed term of sort s. Take Θ(ξ) = σΩbhv

Γ,φ(Tξ). So, Θ(ξ) ⊆ EqΣ({ξ}). Since
σ(∆(Ωbhv

Γ,φ(Tξ))) = ∆(σΩbhv
Γ,φ(Tξ)) = ∆(Θ(ξ)), it suffices to show that ξ a`

∆[Ωbhv
Γ,φ(Tξ)], or equivalently that Tξ = (∆[Ωbhv

Γ,φ(Tξ)])`. For that, consider the
following sequence of equivalent sentences: 〈ϕ,ψ〉 ∈ Ωbhv

Γ,φ((∆[Ωbhv
Γ,φ(Tξ)])`) iff

∆(ϕ,ψ) ⊆ (∆[Ωbhv
Γ,φ(Tξ)])` iff (∆[Ωbhv

Γ,φ(Tξ)]) ` ∆(ϕ,ψ) iff Ωbhv
Γ,φ(Tξ) ²K,Γ

Σ,bhv ϕ ≈
ψ iff 〈ϕ,ψ〉 ∈ Ωbhv

Γ,φ(Tξ).
So, Ωbhv

Γ,φ(Tξ) = Ωbhv
Γ ((∆[Ωbhv

Γ,φ(Tξ)])`). By injectivity of Ωbhv
Γ,φ we have that

Tξ = (∆[Ωbhv
Γ,φ(Tξ)])`.
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4.2. Intrinsic and sufficient characterizations

From the point of view of its definition, the notion of behaviorally algebraiz-
able logic may seem impure, since it depends on the a priori existence of
a behavioral equivalent algebraic semantics. The characterization of behav-
ioral algebraizability using the behavioral Leibniz operator already shows
that it is in fact an intrinsic property of a logic. We now provide a second
intrinsic characterization of behavioral algebraizability and, as a corollary,
we will be able to obtain a useful sufficient condition.

We have seen that a necessary condition for a many-sorted logic to be
Γ-behaviorally algebraizable is that it be Γ-behaviorally equivalential. The
following theorem shows that, by adding a natural assumption, we get a
necessary and sufficient condition for Γ-behavioral algebraizability.

Theorem 39. Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature of
Σ. Then we have that L is Γ-behaviorally algebraizable iff it is Γ-behaviorally
equivalential with equivalence set ∆(ξ1, ξ2) and there exists a set Θ(ξ) ⊆
EqΣ,φ({ξ}) of φ-equations such that ξ a` ∆[Θ(ξ)].

Proof. Suppose first that L is Γ-behaviorally algebraizable. Then, using
Proposition 8, we have that L is Γ-behaviorally equivalential. The existence
of the set Θ(ξ) of φ-equations such that ξ a` ∆[Θ(ξ)] is immediate from the
definition of behaviorally algebraizable.

On the other direction, suppose that L is Γ-behaviorally equivalential
and that there exists a set Θ(ξ) ⊆ EqΣ,φ(ξ) of φ-equations such that ξ a`
∆[Θ(ξ)]. For each theory T ∈ ThL we define a binary relation Ω∆(T ) over
TΣ,φ(X) such that (Ω∆(T )) = {〈ϕ1, ϕ2〉 : ∆(ϕ1, ϕ2) ⊆ T}. By Proposition
36 we have that Ω∆(T ) = Ωbhv

Γ,φ(T ) for every T ∈ ThL.
We will now prove that Ω∆ : ThL → Conφ(TΣ(X)) is monotone, injec-

tive and commutes with inverse substitutions.
Let T1, T2 ∈ ThL such that T1 ⊆ T2. Suppose that 〈ϕ1, ϕ2〉 ∈ Ω∆(T1).

Then ∆(ϕ1, ϕ2) ⊆ T1. Since T1 ⊆ T2 we have that ∆(ϕ1, ϕ2) ⊆ T2 and so
〈ϕ1, ϕ2〉 ∈ Ω∆(T2). Thus Ω∆ is monotone.

Suppose that Ω∆(T2) = Ω∆(T1) and let ϕ ∈ T1. Then, using the fact that
ϕ a` ∆[Θ(ϕ)], we have that ∆[Θ(ϕ)] ⊆ T1 and hence 〈δ(ϕ), ε(ϕ)〉 ∈ Ω∆(T1)
for every δ ≈ ε ∈ Θ. Thus 〈δ(ϕ), ε(ϕ)〉 ∈ Ω∆(T2) for every δ ≈ ε ∈ Θ and
so ∆[Θ(ϕ)] ⊆ T2 and ϕ ∈ T2 using the fact that ϕ a` ∆[Θ(ϕ)]. This shows
that T1 ⊆ T2, and by symmetry we have that T1 = T2. Thus Ω∆ is injective.

Let σ be a substitution over Σ. Then 〈ϕ1, ϕ2〉 ∈ (Ω∆(σ−1T )) iff
∆(ϕ1, ϕ2) ⊆ σ−1T iff σ∆(ϕ1, ϕ2) ⊆ T iff ∆(σϕ1, σϕ2) ⊆ T iff
〈σϕ1, σϕ2〉 ∈ (Ω∆(T )) iff 〈ϕ1, ϕ2〉 ∈ σ−1(Ω∆(T )). So Ω∆(σ−1T ) =
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σ−1Ω∆(T ), that is, Ω∆ commutes with inverse substitutions. Since Ω∆ =
Ωbhv

Γ,φ we can apply Theorem 38 to conclude that L is Γ-behaviorally alge-
braizable. Note that Theorem 38 has the assumption that L is Γ-standard.
This assumption is only used in the construction of the equivalence set ∆,
to guarantee that ∆ has no parametric variables of sorts different from φ. In
this case, since we are assuming the existence of a set ∆ with no parametric
variables, we do not need to assume that L is Γ-standard.

As a corollary, we can provide a useful sufficient condition for a logic
to be behaviorally algebraizable. The result extends a well-known standard
sufficient condition [3].

Corollary 40. Let L = 〈Σ,`〉 be a many-sorted logic and Γ a subsignature
of Σ. A sufficient condition for L to be Γ-behaviorally algebraizable is that it
is Γ-behaviorally equivalential with equivalence set ∆(ξ1, ξ2) satisfying also:

(G) ξ1, ξ2 ` ∆(ξ1, ξ2).

In this case ∆(ξ1, ξ2) and Θ(ξ) = {ξ ≈ e(ξ, ξ) : e ∈ ∆} are, respectively,
the equivalence formulas and defining equations for L.

Proof. Since ∆[Θ(ξ)] = ∆[ξ, ∆(ξ, ξ)], and using the (G) we have that
ξ, ∆(ξ, ξ) ` ∆[Θ(ξ)]. Thus ξ ` ∆[Θ(ξ)], since ∆(ξ, ξ) is a L-theorem. On
the other hand, ∆[Θ(ξ)] ` ξ is a consequence of (MP) and using again the
fact that ∆(ξ, ξ) is a L-theorem. Since all conditions of Theorem 39 hold,
we can conclude that L is Γ-behaviorally algebraizable.

5. Conclusions

We have proposed a novel extension of the theory of AAL, using many-
sorted behavioral logic instead of unsorted equational logic, with the aim of
broadening its range of applicability to richer and less orthodox logics. This
leap was not only motivated by concrete examples, but is also well supported
by the consistent development of behavioral logic, and by the fact that in a
logic we can only observe the behavior of terms or other syntactic entities
indirectly, through their influence on the logical value of the formulas where
they appear. Pursuing this path, we have obtained behavioral versions of
several of the standard key notions and results of AAL, including the Leibniz
operator and the resulting behavioral Leibniz hierarchy. We have shown
how behavioral algebraization indeed generalizes the standard notion, while
further encompassing in a natural way logics whose algebraization was not
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possible before. Still, we have proved that the behavioral approach remains
non-trivial, and actually within the range of protoalgebraizability.

Our results are encouraging in that they allow us to shed new light
over logics like C1, whose algebraization was not possible before. In fact,
there are in the literature other proposals of an algebraic counterpart for
C1, namely the class of so-called da Costa algebras proposed by da Costa
and later refined by Carnielli and de Alcantara [14, 16, 15, 10]. Still, the
precise connection between C1 and this class of algebraic structures was never
established by algebraic means. However, using the tools of behavioral logic,
it is possible to recover, in our behavioral approach, this class of structures.
A full treatment of these questions about C1, which falls clearly beyond
the scope of this paper, can be found in [22, 9]. Furthermore, even the
behavioral analysis of logics algebraizable in the standard sense seems to be
useful. In this case there exists a strong connection between the equivalent
algebraic semantics and the behavioral equivalent algebraic semantics, which
can help to shed some new light on the algebraic counterpart of the logic. For
instance, in the case of Nelson’s logic [31], behavioral algebraization helps to
understand better the connection between N -lattices and Heyting algebras.

Other interesting examples we have started studying are those in the
family of exogenous (global, probabilistic and quantum) logics stemming
from [28]. Indeed, in order to make the extended theory useful and assess its
merits in full, a comprehensive treatment of interesting examples is essential.
Important examples are those separating classes in the behavioral Leibniz
hierarchy, one of the main tasks for future work. But this paper raises many
other interesting questions, both technical and methodological.

With respect to the technical development, several issues should deserve
a closer look. For instance, behaviorally, we can no longer guarantee unique-
ness with respect to the possible distinct equivalences in a logic. We would
like to engage in an exhaustive study of the relationship between existing
possible equivalence sets for a given logic, and their impact on the distinct
behavioral algebraizations of the same logic that can be obtained using dis-
tinct and non-interderivable equivalences. Another topic that deserves fur-
ther analysis is the precise role of the parametric variables of the contexts.
On the methodological side, this paper is just a starting point towards a
full-blown behavioral theory of AAL. Such a development will need time and
effort to be consolidated. Still, it is possible to put forth a few directions
that should clearly be pursued. For example, the definition of behaviorally
equivalential logic presented here is syntactic, but we are convinced that
model theoretic characterizations (closure properties of the class of reduced
models), similar to the standard ones, could be established. The theory
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certainly needs many more semantic results, namely involving metalogical
properties of a given behaviorally algebraizable logic and algebraic properties
of the class of algebras associated with it. With respect to the connections to
matrix semantics, we have already obtained some important results, which
we postpone to a forthcoming paper. Namely, we were able to show that
a logic is behaviorally algebraizable with behaviorally equivalent algebraic
semantics K if and only if the behavioral Leibniz operator is an isomorphism
between the lattice of filters and the K-congruences. This result is very use-
ful when one wants to show that a logic is not behaviorally algebraizable.
We are also able to associate to a behaviorally algebraizable logic a class
Alg∗ which can be shown to coincide with K. Although promising, this
semantic generalization is not completely smooth since we are not able to
associate to a logic a class Mod∗ of reduced matrix models. This is due to
the fact that, since we are dealing with Γ-congruences, we cannot perform
quotients. The best we can do is to use the extended signature and algebras
over the extended signature to simulate the quotient. This mismatch clearly
leads to the exploration of more suitable alternatives, including the theory
of valuations [17], Avron’s non-deterministic matrices [1], or perhaps even
gaggles [18]. Some preliminary results on adopting a suitable algebraic ver-
sion of valuations for semantical considerations in the behavioral setting are
reported in [8]. In another direction, stemming from the worked examples
but aiming more at the core of AAL, our approach seems to be a useful
tool for studying in abstract terms the interplay between systems of equiva-
lence and the detachment deduction theorem, and therefore contributing to
a better understanding of the Fregean hierarchy.
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