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We propose and study a probabilistic logic over an algebraic basis, including equations
and domain restrictions. The logic combines aspects from classical logic and equational
logic with an exogenous approach to quantitative probabilistic reasoning. We present a
sound and weakly complete axiomatization for the logic, parameterized by an equational
specification of the algebraic basis coupled with the intended domain restrictions. We
show that the satisfiability problem for the logic is decidable, under the assumption that
its algebraic basis is given by means of a convergent rewriting system, and, additionally,
that the axiomatization of domain restrictions enjoys a suitable subterm property. For
this purpose, we provide a polynomial reduction to Satisfiability Modulo Theories. As a
consequence, we get that validity in the logic is also decidable. Furthermore, under the
assumption that the rewriting system that defines the equational basis underlying the
logic is also subterm convergent, we show that the resulting satisfiability problem is
NP-complete, and thus the validity problem is coNP-complete. We test the logic with
meaningful examples in information security, namely by verifying and estimating the
probability of the existence of offline guessing attacks to cryptographic protocols.

1. Introduction

The development of formal methods for the analysis of security protocols is a very active
research area. Obviously, ‘formal methods’ should be read as ‘logics’, but the situation
is more complicated. The problem is usually so intricate that suitable logics have not
been developed, and the reasoning is usually carried over in an underspecified metalogic,
often incorporating ingredients ranging from equational to probabilistic reasoning, from
communication and distribution, to temporal or epistemic reasoning (CKW11).

In this paper we present and study a probabilistic logic aimed at dealing with the
kind of reasoning used in the verification of security protocols, namely in the analysis
of so-called offline guessing attacks (Bau05) in a setting where the usual Dolev-Yao in-
truder (DY83) is extended with some cryptanalytic power (MC09; CBC13). Typically, an
attacker eavesdrops on the network and gets hold of a number of messages exchanged by
the parties. These messages are usually generated from random data and cyphered using
secret keys, but often are known to have strong algebraic relationships between them and
to comply with certain domain restrictions that may be crucial to the attacker analysis.
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Curie PIRSES-GA-2012-318986 project GeTFun: Generalizing Truth-Functionality.
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If the attacker tries to guess the secret keys (a realistic hypothesis in many scenarios,
including human-picked passwords, or protocols involving devices with limited computa-
tional power) and takes advantage of this knowledge, he may use these relationships to
validate his guesses.

The probabilistic logic over equations and domain restrictions (DEQPRL) is designed
as a global probabilistic logic built on top of a local equational base with domain con-
straints. These two layers are permeated by a quantification mechanism over possible
outcomes and a quantitative probability operator. Intuitively, we refer to algebraic terms
using names whose concrete values are gathered in a set of possible outcomes, which
in turn is endowed with a probability space. The local layer of the logic allows us to
reason about equational constraints and domain restrictions on individual outcomes. At
the global layer, we can state and reason about qualitative and quantitative properties
of the set of all possible outcomes. Not unexpectedly, the quantification we use can be
understood as a S5-like modality, which also explains why we do not need to consider
nested quantifiers. Arguably in the same lines, we will not consider nested probability
operators (Pea87). The logic extends the equation-based classical logic of (MC15) with
domain restrictions and probabilities. Our approach bears important similarities with
exogenous logics in the sense of (MSS05), and with probabilistic logics as developed, for
instance, in (FHM90). We provide a sound and weakly complete deductive system for
the logic, given a Horn-clause equational specification of the algebraic base and a finite
axiomatization for the domain restrictions. We also show that the satisfiability problem
for the logic is decidable, under the assumption that its algebraic basis is given by means
of a convergent rewriting system and, additionally, that the axiomatization of domain
restrictions enjoys a suitable subterm property. We do this by providing a satisfiability
algorithm for DEQPRL by means of a polynomial reduction to the Satisfiability Modulo
Theories with respect to the theory of quantifier-free linear arithmetic over the integers
and reals (QF_LIRA), whose correctness we prove. As a consequence, the validity problem
for the logic is also decidable under the same hypothesis. Under the assumption that the
rewriting system that defines the equational basis underlying the logic is also subterm
convergent, we also show that the resulting satisfiability problem is NP, and thus the
validity problem is coNP. DEQPRL is used to verify and estimate the probability of the
existence of offline guessing attacks to cryptographic protocols.

The paper is outlined as follows: in Section 2 we recall several useful notions of uni-
versal algebra and fix some notation on equational reasoning and domain restrictions; in
Section 3 we define our logic, its syntax and semantics, and provide a suitable deductive
system, whose soundness and (weak) completeness we prove, assuming that we are given
a clausal specification of the algebraic basis and a finite axiomatization for domain re-
strictions; Section 4 is dedicated to showing, by reduction to QF_LIRA, that satisfiability
and validity in our logic are decidable whenever the equational basis is given by means
of a convergent rewriting system and the axiomatization for domain restrictions enjoys a
suitable property; in Section 5 we explore meaningful examples, including an estimation
of the probability of offline guessing attacks to simple security protocols; finally, in Sec-
tion 6, we assess our contributions and discuss future work. Some details of the proofs of
our results are given in an Appendix. More details can be found in (Mor16).
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2. Preliminaries

In this section we present the technical setting necessary to develop our logic. We begin by
recalling some notions of universal algebra and then focus on the details of the semantic
structures underlying our logic.

2.1. Terms and equations

Let us consider F = {F,, } ,en a N-indexed family of countable sets F,, of function symbols
of arity n. Given a set of generators G, we define the set of terms over G, Tr(G), to be
the carrier of the free F-algebra T (G) with generators in G. Throughout the text we
drop the subscript F when it is clear from context. The set of subterms of a term ¢ € T'(G)
is defined as usual and will be denoted by subtrm(¢). Given sets G1, G2, a substitution
is a function o : G; —» T(G2) that can be easily extended to the set of terms over G,
g: T(Gl) d T(Gz)

Fix a countable set of variables X and dub algebraic terms the elements of T'(X). As
usual, vars(t) stands for the set of variables occurring in ¢ € T'(X). Given a F-algebra A
with carrier set A, an assignment is a function 7 : X - A, that is extended as usual to
the set of algebraic terms, []T : T(X) — A. The set of all assignments is denoted by AX.

We use t1 »~ ta to represent an equation between terms t¢1,t3 € T(G). The set of all
equations over G is denoted by Eq(G). A Horn clause over G is an expression of the form
(t1mty, ..., tpnt, =t~t'), with k>0 and tq,..., tg,t],..., t), € T(G). A Horn clause is
simply an equation when k = 0. We omit the enclosing parentheses when no ambiguities
arise. The interpretation of a Horn clause in an algebra A with respect to m € AX is
defined as usual by: A, 7 (t1 ~ 8], ...t » ¢, =t~ t") if whenever [¢;]% = [¢t;]% for each
1<i<kthen [t]f = [¢']5- An algebra A satisfies a Horn clause if it is satisfied by A along
with each 7 € AX. More generally, a Horn clause is satisfied in a class of algebras A if it
is satisfied in every A € A. Given a finite set of Horn clauses I', the clausal theory of T',
Th(T'), is the least set of clauses containing I" that is stable under reflexivity, symmetry,
transitivity and congruence and under application of substitutions. An equational theory
is simply a clausal theory where I' is composed by equations.

We are particularly interested in equational theories generated by convergent rewriting
systems. A rewriting system R is a finite set of rewrite rules [ - r, where [,r € T(X) and
vars(r) < vars(l). Given a rewriting system R and a set of generators G, the rewriting
relation - € T(G) x T(G) on T(G) is the smallest relation such that:

—if (I—>r)eRand 0: X - T(G) is a substitution then lo - ro
—if feF,, t1,...,tn,t; € T(G) and there exists i € {1,...,n} such that ¢; > t; then
f(tl,. -~7ti7~- ,tn) >R f(tl,...,tg,. 7tn)

We denote by —% the reflexive and transitive closure of —»g. R is confluent if, given
teT(G),t >3t and t > t” implies that there exists t* € T(G) such that ¢’ -} ¢t* and
t" —% t*. R is terminating if there exists no infinite rewriting sequence. R is convergent if
it is confluent and terminating. If a rewriting system is convergent then any ¢t € T'(G) has
a unique normal form (see (BN99)), i.e., there exists a term ¢} € T'(G) such that t -7 ¢]
and t| is irreducible. The equational theory generated by a convergent rewriting system
R is the relation »p € T(G) xT(G) such that ¢1 ~g to if and only if ¢1 | = t2 |, also said to
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be a convergent equational theory, and is known to always be decidable (see (BN99)). An
equational theory is said to be subterm convergent if each rule of the underlying rewriting
system rewrites to a strict subterm.

Example 2.1. The sum (xor) of single bits can be characterized considering a signature
F*°" with three function symbols: zero € F§*', suc € F5°, @ € F5*", and the equational theory
Th(I>°") where I = {zero @ = » x,suc(z) ® y ~» x ® suc(y), suc(suc(x)) ~ 2}. Obviously,
Zo with the usual interpretations for zero, successor and sum modulo 2 satisfies ™.
Furthermore, it must be clear that the rewriting system obtained by giving to each of the
equations a left-to-right orientation is convergent. However, it is not subterm convergent
due to the second equation. A

2.2. Domain restrictions

Let D denote a finite set of domain names. We use t € D (resp., t ¢ D) to represent the
fact that a term ¢t € T'(G) belongs (resp., does not belong) to a domain D € D. We dub the
expression ¢ € D (resp., t ¢ D) a positive (resp., negative) domain restriction. Further, we
use DRes(G) to denote the set of all positive domain restrictions over G. A domain clause
is an expression of the form (t; € Dy,...,tg, € Dy, = t1©D1,...,1;, © D} ), where the
right-hand side is a non-empty sequence of (positive or negative) domain restrictions, i.e.,
ky>0and ® €{e,¢}. When t] =... =t =tand ty,...,t, €subtrm(t), we say that the
domain clause satisfies the subterm property. Again, we omit the enclosing parentheses
when no ambiguities arise.

We define an algebraic domain interpretation as a pair (A, I*), where A is a F-algebra
and I* : D - 24 fixes an interpretation of domain names as subsets of A. Given an
assignment 7 € AX the interpretation of domain clauses is defined, as expected, by:
(A, I%),m Wk (t1 € Dy,... ty, € Dy, = t1®D],... t; @D;, ) if whenever [t;]7 € I*(D;)
for each 1 < 4 < ky then [[t;]}g@[A(D;-) for some 1 < j < ko. An algebraic domain
interpretation (A, I*) satisfies a domain clause if it is satisfied by (A,I*) along with
each 7 € AX. Moreover, a domain statement is satisfied in a class of algebraic domain
interpretations Z if it is satisfied by each (A, I*) € T.

Example 2.2. Let us extend Example 2.1 by introducing a couple of domain names,
D= {even,odd}, which are intended to obey some domain clauses:

N°'= {zeroeceven, (z€ even=> suc(x) € odd), (z€ odd = suc(z) € even), (z€ odd= x ¢ even)}.
Note that each domain clause in A**" satisfies the subterm property, as the behavior of
terms is conditioned by restrictions on their subterms. A
3. The logic

In this section we introduce the syntax and semantics of our logic. Then, we define a
deductive system for the logic, building upon given clausal specifications of the intended
class of algebraic domain interpretations. We conclude by showing soundness and com-
pleteness of the deductive system.

3.1. Syntax

The logic DEQPRL relies on fixing a signature F, a set of variables X, and a finite set D
of domain names. We also introduce a countable set of names N, distinct from algebraic
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variables. We dub elements of T'(N) as nominal terms, and let names(¢) stand for the
set of names that occur in ¢ € T'(IN). Whenever names(t) = @, the nominal term ¢ is said
to be a nameless term.

The local language of the logic, designed to express equational constraints and domain
restrictions, consists of the set Loc of local formulas defined by the following grammar:

Loc := Eq(IN) | DRes(N) | =Loc | Loc A Loc .
Additionally, we want to express global properties of local formulas, either by quan-
tification or by extracting probabilities. For the purpose, we need a term language Term
consisting of linear probabilistic terms with rational coefficients defined by the grammar:

Term == Q- Pr(Loc) +---+ Q- Pr(Loc) ,
which we use to define the set Prob of probabilistic statements as follows:
Prob := Term > Q .
Finally, the language of the logic consists of the following set Glob of global formulas:
Glob == VLoc | Prob | =Glob | Glob A Glob .

Both our local and global languages are to be interpreted classically: the former over
an equational base with domain restrictions, and the later over local formulas instead
of propositional variables. We abbreviate —(t; ~ t2) by t1 # to for any t1,to € T(N),
-(te D) by t¢ D for any t € T'(N), D € D, and also use the usual abbreviations: 11 V 19
abbr. —(=th1 A ~P2), Y1 = P abbr. —hy v ihe, ¥y < b abbr. (Y1 = 2) A (Y2 > 1),
where either 11,19 € Loc or 17,1, € Glob; given ¢ € Loc, ¢ abbreviates =V -¢; linear
probabilistic terms have the common abbreviations saying that ¢- (g1 - Pr(p1) + -+ ¢q¢ -
Pr(we)) abbr. (g-q1) - Pr(p1) + -+ (g-qe) - Pr(pe), —q-w abbr. (-q) - w, wy + wy abbr.
q1 - Pr(p1) + -+ qe - Pr(pe) + q1 - Pr(el) + - + q; - Pr(y}), whenever w; is of the form
q1-Pr(p1) +--+qe-Pr(pe) and ws is of the form qf - Pr(¢!) +--+¢q; - Pr(¢}); probabilistic
formulas result from the usual abbreviations wy > ws + ¢ abbr. w; —wy > ¢, w < g abbr.
—(w>q), w<qabbr. —w>—-¢, w>qabbr. —w < —q, w=qabbr. w<gArw>¢q, ¢ <w< g
abbr. w > g1 Aw < qo, where £ > 1, 1,...,90¢ € Loc, q,q1,q2,...,q0 € Q,w,wy,wy € Term.
We introduce a symbol for local true T abbreviating ¢ Vv —p for some ¢ € Loc and the local
false 1 representing —T. We abuse notation and denote the global true, YT, and global
false, V1, also by T and 1.

A literal is a global formula in YLocu—-VLocuProbu—-Prob. We say that a global formula
is in disjunctive normal form (DNF) if it is a disjunction of one or more conjunctions of
literals; it is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of lit-
erals. The language of the logic allows us to make qualitative and quantitative assertions
over local formulas. The universal quantification of a local formula expresses the validity
of the local formula in all possible situations, whereas a probabilistic statement measures
the probability of satisfying local formula(s). Boolean combinations are allowed in both
local and global layers. For instance, the formula (Pr(¢) < 2-Pr(¢y A—p)) A (V=1 > V=)
should be read as: the probability of ¢ does not exceed twice the probability of ¥ A —p
and, either ¢ holds in some situation or else ¢ never holds. Note that, contrarily to the
discussion carried out by Eijck and Schwarzentruber in (VES14), V¢ implies but is not
intended to be equivalent to Pr(p) = 1.
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Example 3.1. Let us go back to Example 2.2. Given a name n € N, we want to be able
to show that a statement like

Pr(n eeven) = Pr(suc(n) eodd) A V(zero# suc(zero))
is a theorem of the logic whose algebraic basis is axiomatized by I'**" and whose domain
restrictions are given by A" A

We extend the notion of subterm to global formulas in a standard way, and abuse
notation by denoting subtrm(¥) = Uyey subtrm(s)), for ¥ ¢ Glob. Similarly, we generalize
the notion of names occurring in a term to local and global formulas. The set of subfor-
mulas of either a local or a global formula 1) is defined in the usual way and is denoted by
subform (/). As usual, subform(¥) = Uyey subform(z)). Given a nominal term ¢y € T(N),
a set of names i = {n1,...,nx} S N such that names(to) €7 and ¢ = {t1,...,tx} € T(N),
[to]? is the nominal term obtained by replacing each occurrence of n; by t;, i € {1,...,k},
i.e., [to]} = o(to) where o is a substitution such that (n;) = ¢; for each 7. This notion is
easily extended to local formulas.

3.2. Semantics
Names can be thought of as being associated to values that are not made explicit, and
which are possibly sampled according to some probability distribution. We call outcome
to each possible concrete assignment of values to names. For this purpose, given a F-
algebra A with carrier set A, we define an outcome as a function p: N — A. The set of
all outcomes is denoted by AY. The interpretation of terms [-]; : Tr(N) — A is defined
as usual. Given an algebraic domain interpretation (A, I*), the satisfaction relation for
local formulas, IFoc, is defined inductively as follows:
— (A, IA),p IFloc t1 ® to iff [[tl]]g = [[tg]]g,
— (A, I%), p ik t € D iff [t]% € I*(D),
— (AJA)aP IFloc —¢ iff (A, IA)vp |)Lloo: '
— (A, T%), piioc 01 Ao iff (AL T%), piFioe 01 and (A, T%), p ijoc @o.

In order to interpret global formulas we need to fix an intended set of possible outcomes
for names and to endow it with a probability space, which is instrumental for evaluating
probabilistic statements.

Definition 3.1. A F-structure is a tuple (A, I*,P) where (A, I*) is an algebraic domain
interpretation, and P = (S, 47, ) is a probability space composed by:

— a non-empty set S ¢ AN of possible outcomes,

— a o-algebra &7 containing the sets of outcomes satisfying each local formula,

{8? | pelocyco, with S¢ ={peS| (A, T*),plFioc ¢},

— a probability measure p over o7.

Given a F-structure (A, P) with P = (S,.o7, i), the satisfaction relation for global
formulas, I+, is defined inductively as follows:
— (A, T4 P) - Yo iff (A, I*), pikic @ for every pe S,
— (A, T P) - qy - Pr(p1) + -+ q - Pr(w) 2 q iff q1-pu(S9) + -+ q - u(S9) 2 q,
— (A, TAP) - =0 iff (A, T* P) I 6,
— (A, T4 P) - 61 A Sy iff (A, T%,P) - 6; and (A, I,P) I 6,.
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As usual, given A ¢ Glob we write (A, I* | P) - A if (A, I*,P) I § for each § € A.

Our logic is parameterized by a choice of intended algebraic domain interpretations.

Definition 3.2. Given a class Z of algebraic domain interpretations, the semantic con-
sequence relation of our logic, £z € 2¢°° x Glob, is such that A =7 § whenever, for every
F-structure (A, I*,P) with (A, I*) € Z, if (A, I*,P) - A then (A, I P) - 6.

Example 3.2. Independence cannot in general be expressed in our logic, as its language
only allows for linear combinations of probabilistic terms. This could be achieved, how-
ever, without spoiling too much the nice properties of the logic, by considering coefficients
taken from real closed fields, not necessarily from @, in the lines of (FHM90; MSS05).
However, it would result in a double exponential complexity (Sho67), which we would
like to avoid. Even so, we can highlight some simple situations where one can charac-
terize, reason about, or at least approximate the probabilistic behavior of independent
formulas.

Verification of the independence of events is easily modeled within our logic: given a
F-structure (A, I* ), ¢, € Loc are independent if we can find a, 5 € Q such that 8 #0
and (A, I* ) P) - Pr(pAv) =a A Pr(y) =3 A Pr(yp) = 5+ More importantly, we can draw
some conclusions on the estimation of probabilities by knowing about the independence
of some formulas. If ¢ and ¢ are independent, we can model the expected probabilistic
behavior of both events with a finite set of properties, defined within the logic: for fixed
and appropriately chosen n,m € N, we can introduce n - m conditions
Ind?¥: Pr(p) =3 APr(¢) =2 >Pr(pay) =31 forie{l,...,n}, je{l,...,m}.

As an application, we analyze the simpler version of one-time pad encryption scheme
which consists of encrypting a secret bit by summing to it an uniformly generated key-bit.

Inspired in Examples 2.1 and 2.2, consider the signature F**" and denote by Zpser pser)
the class of algebraic domain interpretations satisfying the axiomatizations I'**" and A*°".
Consider a bit s, which will be kept secret as result of its encryption with a key-bit
k. The described properties on the estimation of probabilities for the conjunction of
independent events enable us to semantically infer that, under the hypothesis that k is
uniformly generated and that bits s and k are independent, Hyp = {Pr(k ~ zero) = %,
Pr(k ~ suc(zero)) = 1, Indg’é, V(s =~ zero v s ~ suc(zero)), V(k ~ zero v k »~ suc(zero))},
s @ k has uniform distribution:

1 1
Hyp ETpor, xory (Pr(s @ k ~ zero) = 3 APr(s @k ~suc(zero)) = 5) .

Note that we could generalize properties Ind%w estimating the probability for the
conjunction of independent event by squeezing its value. For a fixed n €N, ¢1,...,¢, € Q
such that ¢; <--- < ¢, =1, and independent events ¢, ¥ € Loc,

Indiyin: (g SPr(9) <ais A gjy SPr(Y) <455) = @iy @0 <Pr(9 AY) < iy - @
for i1,42,71,72 € {1,...,n}, would model the estimation of bounds of the probabilities for
the conjunction of independent events given bounds for the individual probabilities. A

3.3. Deductive system

In order to obtain a sound and complete deductive system for our logic, we require that
the class Z of intended interpretations is such that its algebras are axiomatized by a set I"
of Horn clauses and the corresponding interpretations for domain names are axiomatized
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by a finite set A of domain clauses of algebraic terms. We say that I" and A are compatible
if Zoray = {(A, I*) | A T and (A, I*) ir A} # @. Whenever I', A are not compatible, the
set of models is empty and the logic becomes trivial. The interesting cases are, obviously,
the ones where the equational theory and the set of domain restrictions are compatible.

N1 V(1 Ap2) < (Vo1 A Ve2)

Eql V(i w~t
al v(tw~t) N2 Vo -~V

Eq2 V(t1 mta > ta mt1)
Eq3 V(t1 ~ta A tomts -ty mts)
EQd V(t1 mt) Ao Atn m ], = F(t1,nstn) ® F(EL s t))) N4 V(1 < @2) = (Y1 « Vo)

Cl 61 — (62 = 61)

N3 -V — V=p if names(p) =@

EqC1 V((¢1 — (w2 = ¢3)) = ((p1 = 92) = (¥1 = ¢3)))

EqC2 V(p1 = (p2 = 1)) C2 (61 = (62 = 83)) = ((81 > d2) — (81 —~ d3))
EqC3 Y ((-p1 = ~p2) = (2 = ¢1)) C3 (201 = =02) > (62 > 61)
EqC4 V(1 — ((p1 = p2) = ¥2)) 91 6102

ca4 5

2

P1 Pr(p) >0
DEq V((t1 »ta Aty € D) > t2 €D) P2 Pr(¢1 A p2) + Pr(p1 A=p2) =Pr(e1) =0
Hwsgvwsq P3 V(¢1 = p2) = Pr(p2) 2 Pr(e1)

12w >q1 - w>qe,if q1>q2 P4 Pr(T) =1

13 g1 -Pr(p1) +++qe-Pr(ve) 2q < q1-Pr(p1)+-+qe-Pr(pe) +0-Pr(pes1) 2 g

14 ((q1-Pr(1)++qe-Pr(pe) 2 @) A(qy-Pr(p1)++qp-Pr(ve) 2 ")) — ((a1+4})-Pr(p1)++(ae+ap) Pr(ve) 2 a+q’)
15 g1 -Pr(p1) ++qe-Prpe) 2a— (a"-q1) -Pr(p1) +-+(a"- qe) - Pr(pe) 2 (¢ - q), for any ¢' >0

16 g1 - Pr(p1) + - +qe-Pr(pe) 2 q < qiy -Pr(piy )+ +qi, - Pr(vi,) 2 g, for any permutation (i1-i¢) of (1-+£)
D(A) V(o(s1) € D1 A...A0(sk;) €Dg,y) = (0(s1)@©Dy V... v O’(S;Cz)(@DLz)

E(T') V(o(s1)~»o(sh) A...Aa(sn) ma(s)) > a(t) ~a(t))

’

for t,t1,ta,t3, ... tn,ty, .. th € T(N), ©,91,92,93, ..., 00, 0es1 € Loc, 61,82,33 € Glob, o € T(N)™, w € Term,

’ ’ ’ ’ 7 ’ ’ ’ ’ A
4:9,q1,42, .90, q15 - 4 €Q, (51€D1, ..., 55, €Diey = 51@D} ..., 53, O Dy,) €A and (s1%5y, ..., sp 5], = sw~s) €T

Fig. 1: The deductive system Hr 4).

The deductive system Hr Ay consists of a number of axioms and a single inference
rule C4, modus ponens, as shown in Figure 1. The system combines the different dimen-
sions of this logic: axioms Eql-Eq4 incorporate standard equational reasoning, namely
reflexivity, symmetry, transitivity and congruence; EqC1-EqC4 and C1-C4 incorporate
classical reasoning for the local and global layers (just note that locally, modus ponens
becomes axiom EqC4); N1-N4 characterize the relationship between the local and global
layers across the universal quantifier; DEq represents syntactically the expected relation
between equations and domain restrictions; 11-16 incorporate properties of inequalities
between rational numbers; P1-P4 represent the standard properties of probabilities; ax-
ioms E(T") incorporate the clausal specification I', whereas axioms D(A) characterize the
constraints for domains given by A. We define, as usual, a deducibility relation l—(FF’ A
We drop the superscript F whenever it is clear from context.

Basic arithmetic properties, such as 0-Pr(¢) =0 or ¢1 - Pr(¢) + g2 - Pr(p) = (@1 + ¢2) -
Pr(¢), are deducible in Hp ), as well as some expected properties of the probabilistic
operator, namely V¢ — Pr(¢) = 1 or Y(p1 < ¢2) = Pr(¢1) = Pr(w2). The logic is an
extension of classical logic at both the local and global layers. Namely, it is easy to see
that the deduction metatheorem holds. Moreover, we can write any local or global formula
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in disjunctive normal form (DNF). The behavior of implication across the universal
quantifier can be deduced and takes the form of theorem:

N Fa) V(e = p2) = (Vo1 > Ve2)

Example 3.3. A standard example of an equational theory used in information secu-
rity for formalizing (part of) the capabilities of a so-called Dolev-Yao attacker (see, for
instance, (Bau05; AC06; ACO05)) consists in taking a signature FPY with {-}., {-}7! e FPY
representing symmetric encryption and decryption of a message with a key, {-[.,{-[7! €
FQDY representing asymmetric encryption of a message with a public key or decryption
with a private key, pub(-), prv(-) e FPY
pal, (-,-) € F2DY representing message pairing, and 7,75 € F?Y representing projections.

representing public and private keys for a princi-

The equational properties of these operations can be axiomatized by the subterm con-
vergent equational theory

oY= {{{zl}mz};i ~ T, ﬂﬂxll}pub(m)ﬂ;}v(m) ~xy, T (21, 22) ® 21, T2(21,T2) ¥ T2}

Considering a suitable set of domain names, for instance we may take

Dby = {sym _key, pub_key, prv_key, principals, plaintxt, ciphertxt, conc},

we can also impose some usual domain restrictions:

APY={(k € sym key, teplaintxt = {t} eciphertxt),(k € sym_key, t eciphertxt ={t}'eplaintxt),
(n € principals = pub(n) € pub_key), (n € principals = prv(n) € prv_key),
(teplaintxt, k epub_key = {|t[} x€ ciphertxt),(teciphertxt, keprv_key = {|t}} ;'€ plaintxt),
(t € plaintxt, ¢’ € plaintxt = (¢,t") € conc), (t € conc = t € plaintxt),

(t € conc = 1 (t) € plaintxt), (te conc = ma(t) € plaintxt) } .

The first domain restriction, for instance, is intended to mean that the encryption of a

plaintext with a symmetric key should always lead to a ciphertext. As a result, we can

deduce from our logic (see the proof in the Appendix) a bound for the probability of an
attack to the symmetric scheme:

Pr(k~ k") =q-Pr(k™ e sym_key) oy ovy V(K™ € sym key) — Pr({{m}r}pt »m) > g,
asserting that even assuming that a guess k* to the secret key k is indeed a symmetric

key, guessing its concrete value is not simpler than decrypting a message encrypted with
k. We can also deduce conditions to rule out the possibility of an attack, like

V(k € sym_key A m € plaintxt) (rov_aov) V({{m}y )5t ¢ plaintxt - k # k),

which states that whenever an attempt to guess the secret key k leads to a message outside
the scope of plaintexts, the value of k has certainly not been guessed correctly. A

3.4. Soundness and completeness

We now show that H ) is a sound and weakly complete proof system for the logic
based on the classe Zp a) of algebraic domain interpretations. In contrast to (MC15),
the introduction of probabilistic terms over the rationals carries the expected cost of
losing the strong version of completeness (see, for instance, (FHM90; MSS05)). Clearly,
our semantic consequence is not compact as we have that {w < % |ne N} Er,a w <0,
but At ayw <0 for any finite set A c {w < % |ne N}, which implies that our finitary
deductive system Hr 5y cannot aim at strong completeness.

Theorem 3.1. Hr y) is sound, that is, if A oy 0 then A g 4y 6.
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We omit the proof, as it is straightforward to check the soundness of each axiom and
deduction rule against our semantics. The proof of completeness can be found in the
Appendix.

Theorem 3.2. Hr y) is weakly complete, that is, if F oy d then = 4y 6.

4. Decidability and Complexity

In general, our logic cannot be expected to be decidable, as equational theories can easily
be undecidable (BN99). We show, however, that our logic is decidable if we require the
base equational theory to be convergent, and additionally the underlying domain clauses
to have the subterm property. With this purpose, our setup is, from now on, that I' is a
convergent equational theory and A is a set of domain clauses with the subterm property.

4.1. Satisfiability

We devote this subsection to the analysis of the satisfiability problem for DEQPRL
(SAT-DEgPrL). The SAT-DEqPrL problem consists in deciding the existence of a model
for a global formula.

We start by analyzing the CNFSAT-DEqPrL, the satisfiability problem for DEQPRL
in which the input formula is required to be in CNF. We provide a reduction of
CNFSAT-DEgPrL to Satisfiability Modulo Theories (SMT) (NOT06) and end up using a
Tseitin-like transformation to analyse SAT-DEqPrL.

Moving to the propositional context: To describe an algorithm that reduces
SAT-DEqPrL to SMT, we translate local formulas to the propositional context. For that,
let us consider a set of propositional symbols corresponding to equations between nomi-
nal terms Eq(N)P = {ps,~t, | t1,t2 € T(N)} and a set of propositional symbols for domain
restrictions DRes(N)P = {psp | t € T(IN),D € D}, and then define the translation of an
arbitrary local formula ¢ € Loc to a propositional formula prop,, inductively, by:
— if ¢ is of the form ¢; ~ {2, prop,, is precisely pt,«t,;
— if ¢ is of the form ¢ € D then prop,, is ptep;
—if ¢ is of the form -y, then prop,, is ~prop, ;
— if ¢ is of the form ¢y A o then prop,, is prop,,, A prop,.
We also extend this propositional notation to probabilistic formulas: given a probabilistic
formula ¢ of the form q; -Pr(p1) +--+qe-Pr(pg) x ¢ with x € {<,>,<, >}, propys represents
the probabilistic propositional formula g; - Pr(prop,,, ) + -+ q¢ - Pr(prop,, ) » q.
Furthermore, we must import the algebraic requirements underlying the equational
reasoning in the presence of domain restrictions to the propositional context. For this,
assume that we want to test the satisfiability of § € Glob and consider the set of relevant
nominal terms for 8, RelT? = subtrm({8} U AZ) U {t{| t € subtrm({6} U A%)}, where A% =
{o(t)~a(t') | (t = t')eR, 0 € subtrm(8)X} u {c(t)®D | (t@®D) € RHS, o e subtrm(5)*}
and RHS = {t@D7 | (t1 € Dy,...,tx, € Dy, = t@D]...,t@®D;, ) € A}. RelT® incorporates
the subterms of §, their normal forms with respect to the convergent rewriting system R
underlying I', and the equational theory and domain clauses instantiated on the subterms.
We achieve a sufficiently broad scope by defining the propositional symbols of in-
terest as those that represent either equations between terms in RelT® or domain
restrictions for such terms, which are gathered in the set B° = BE9 u BPRes where
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BEa = {ptlmg2 | t1,t0€ ReIT‘S} and BPRes = {pteD | te RelT%,D e D}. Both equational state-
ments and domain restrictions must obey some relations to be imposed on their repre-
sentatives. These restrictions are established in ®°, defined as follows:

?° ={pt~t | L€ RelTé}U{ptWQ = Ptonty | 11, t2€ ReIT‘S}u {(Ptynts APtymts ) >Ptysts | 11, t27t3€Re|T6}U
{(ptlmt’l A /\ptnmt;)_’pf(tl ..... tn N (] et | t1,t], ...,tn,t;,f(th o tn)l, f(tlla -~~7t:z)ie Re|T§}U
{(Ptlth A ptleD) — PtyeD ‘ t1,t2 € Re|T6,D € D} u (1)
(A Pognen; = V52 Po(y @D/ | o(RelT®) (t1€ Dy...., ti € Dy, =t@D}....t@D},) e A}.

We should emphasize that, since subtrm(§) has linear size on the length of § and the
equational theory is convergent, RelT® is well defined and has polynomial size on the
length of 0. Denoting |ReIT5| =k and |D| = z, ®° has at most k + k% + k3 + k2¢*2 + k2.
2 + A(ktmer . zdmazy olements, where a is the maximum arity of the function symbols
occurring in RelT?, |A| = X and tmaz, dmaz are the maximum number of terms and the
maximum number of domain names occurring in a constraint in A. Sometimes we drop
the superscript §, provided that it is clear from context.

The subterm property provides control over the set ®°, as long as it ensures that the
domain restrictions over a term in RelT is only conditioned by domain restrictions over
terms certainly in RelT. Thus, elements in ®° are the necessary to reason about the
domain restrictions that influence §.

CNFSAT-DEqgPrL problem: The CNFSAT-DEqPrL problem consists in deciding the ex-
istence of a model for a global formula § € Glob given in conjunctive normal form. We
analyze the CNFSAT-DEqPrL problem inspired on the developments for GenPSAT pre-
sented in (CCM16) and explore a polynomial reduction to Satisfiability Modulo Theories
with respect to the theory of quantifier-free linear arithmetic over the integers and reals
(QF_LIRA) (BDEKO7).

Assume that we are given a global formula § € Glob given in CNF. Since each con-
junct of § is a disjunction of literals in VLoc u -VLoc u Prob u —=Prob, we can rewrite
it as: AT (VY] v...v Vapl v Vel vV ﬂ\ﬂpij ve vy ¢1.), where, for each
r € {1,...,s;}, the probabilistic literal & is assumed to take the following form:
A1y - Pr(@) + o+ gy Pr(g i e0y) %3 Qe ), With el e {>,<}.

To address the need of witnesses for existential literals we need, at least, as many copies
of B’ as the number of existential formulas —VLoc occurring in d. In its description, &
counts with Y, k; literals of —=VLoc, so the final set of propositional symbols should
contain all the required copies: U;ﬁzlusiil{p[j”zl] |peB°}. When k=0, U?f;l{p[j”gl] |peB’}
represents the empty set. But, as we know, the probabilistic feature envisage a probability
distribution over the set of valuations. In this sense, we should not limit our valuations to
strictly represent witnesses for existential literals. Hence, we further need to consider an
extra copy of B°. Satisfying an element of the form V¢ imposes that ¢ must be verified
in all possible outcome, whereas satisfying a formula as -V requires that at least one
possible outcome satisfies —p. Therefore, our reduction to the propositional context must
carry this sensitivity. In this way, the satisfiability of those literals is tested using several
labeled copies of propositional variables (one copy for each literal of the form -VLoc plus
the original copy), as if they had embedded several valuations. The labels are extended
from the propositional variables to the propositional formulas as expected.
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Prompted by the inclusion of SAT in PSAT (FDB11) and GenPSAT (CCM16), the sat-
isfiability of propositional formulas (representing literals in VLoc) is tested by assigning to
it probability 1. Accordingly, and inspired on the GenPSAT normal forms (see (CCM16)),
we realize that the probabilistic (propositional) formulas to be tested should be atomic.
For this purpose, we shall replace the propositional formulas occurring inside probabilis-
tic (propositional) formulas by ghost propositional symbols. The existential literals are
not supposed to influence probabilities (they have their own witnesses), so we discard
them for a moment. Let us collect in &%oc all the appropriate local formulas, suggested by
6: &t = UL, ({1/1{, . ,z/)%j} VU {@(j1)s- - 'v‘/’(r,j,d)})’ and in ® the corresponding

propositional symbols: & = U7, ({pwj, e Py }u Uii1{p¢(,j NEE }) . Further-
1 nj T4,
more, for each 1 € &%, let the [0,1]-variable v, represent the probability of 1.
As we have already remarked, in order to obtain a correct translation into the proposi-

’ p“"(r,j,eb

tional context, we should impose the requirements collected in ®° (1). For this purpose,
all the considered copies of B® must verify those restrictions (with probability 1). And so,
we should keep a special propositional ghost symbol for this purpose, p,, and a variable
to represent its probability, a.

All these things considered, let B = B° U Uiz U];,j;l{p[j,’el] |peB’}uBu {ps} represent
the set of propositional symbols for our problem and denote by M the number of elements
of Bu{p,}, M < X7 (nj + 0% Zj)+1. For ease of notation, let v : tocu{¢p} - {1,..., M}

r=1%r
represent a bijection from the &foc coupled with the symbol ¢ to the set {1,..., M} such
that v(¢) = M. The inverse bijection v~! is such that v~ 1({1,..., M}) = & u {¢}.

Let H = [h;;] denote a (still unknown) matrix of size M x (M + 1) whose columns
represent the valuations over BB evaluated on each propositional (ghost) symbol of Gu{ps},
ie., hi = v (py—l(i)) for each 1<i< M and 1<k <M + 1. The (M + 1)-vector 7 = [my]
represents a probability distribution over {vi,...,vap41}. As we already mentioned, ay,
represents the probability of each 1 € &%oc and g represents the probability of P9,

To model all the possible valuations {v1,...,vpr41}, we consider M + 1 copies of B:
B* = UM ®p | p e B}. Given F c B, we denote by ) F the set {(Fp|p e F}.

The idea is to test the satisfiability of § through the assertion:
m j k; j z j
(prob) A7 (V2 (1) v Vi (VA @prop ) v vty (£ sy 000 ) )
subject to the additional assertions:
m kj’ 7 il j
(prop_pos) ANt ((k)%g - (/\j,:1 Aoy (8 propld 1 A (k)propwg )), for each ! e Stu;

UK
prop_prob) AM*L((F)y s (Bprop ), for each ¢, ; o) € Stoc;
k=1 P(r.d,s) P(r,5,s) Lp( 5Js )

. m k;j, . s
(prop_phi) /\{ﬁ{l ((k)% < Npews (/\j/:1 Ny (8) pl3" €1 A (k)¢))§
(prob_phi) ay =1;
vall ZJZH bik = a-1(4) ), for each i € {1,..., M};
k=1 (9
(val2) ((0<big <hiy)A(hig—1+mE <bip <mg)), forie {1,....,. M} and ke {1,..., M +1};
cons) (hip=1< Fyp ) foreachie{l,...,M}and ke{l,...,M+1};
v=1(1)
(sumsl) (Zi\ffl T = 1) .
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So far we have introduced O(M + M x (M + 1)) assertions, each of polynomial size
on the length of §, over a polynomial number of real, binary and propositional variables.
Because of this, the presented translation to QF_LIRA is polynomial.

We test the satisfiability of § by translating it into a QF_LIRA problem and then
solving the latter appropriately. The procedure is presented in Algorithm 1. The
procedure consists in initializing an empty QF_LIRA problem and then use the following
auxiliary procedures: assert introduces an assertion into the QF_LIRA problem; lira_solver
returns Sat or Unsat depending on whether the problem is satisfiable or not. When the
resulting QF_LIRA problem is satisfiable, we conclude that ¢ is also satisfiable.

Algorithm 1 CNFSAT-DEqPrL solver based on SMT - QF_LIRA
1: procedure CNFSATDEQPRL

2: input: CNF formula §: X (ij V...V ij,. v —|V<p{ V..V —N(pé v fj V... \/ng)

3: output: Sat or Unsat dependlng on whether 0 is satisfiable or not
4: assume: M := Z (nj + Z Gy+1
5: v: 620c U {gf)} - {1 M} s a bijection

6: declare: prop. variables: U M pBoy U U {Mpli T | pe B} U MG U {("”')p })
I 1[’_

binary varlables. hm, for i e {1,....,M}, ke{l,..., M+1}
[0, 1]-variables: cv,-1(;), Tk, bi, for 1e{l,...,. M}, ke{l,... M+1}
for j=1tom do

M+1 nj
10: assert( k/\l /\1 ((k)pwJ ( '/\1 z'/\ (k)prop[ “1 A (k)propwj))) > (prop-pos)
M+1 sj
. (k) < (k)
11: assert ( k/\l r/\l s/\1( P propcp(r,j,s))) > (prop_prob)
12: for i=1to M do
M+1
13: assert( ¥ bik = a1y > (vall)
k=1
14: for k=1to M +1 do
15: assert ((0 < by < hik) A (hig — 1+ g < b < ) > (val2)
16: assert (hik =1+ (k)pl,fl(i)) > (cons)
17: t X 7\7( l)vv Mﬂ(k) vv [Z% . wJ ; >(prob)
' asser j=1\s=1 Yi” 2=1\ k=1 prop r=1 s:lq(r’]’s)a%“j’s) r 49 pro
M+1 m k’ i’
18: assert| A (’“)p < A | A /\ (k) gla" '] A (K) g > (prop-phi)
k=1 Gedd \j/=10'=
19: assert (o = 1) > (prob_phi)
M+1
20: assert( > g = 1) > (sumsl)
k=1

21: return lira_solver() Dreturn Sat if the assertions are satisfiable, Unsat otherwise
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For the sake of illustration, we now use this algorithm to decide whether a global
formula is satisfiable or not.

Example 4.1. Recall Example 3.1 and consider the signature F*°", the equational theory
I*°* and the axiomatization A*°". Let us test the satisfiability of the CNF global formula:

2 2
Pr(n ~ zero) < 3 Pr(n € even) A ¥(n € even) A (ﬁPr(n ~ zero) < 3V —-Vsuc(n) € odd) ,

with n e N. We start by noting that RelT® = {n, zero,suc(n)} and defining ®°. Note also
that &%oc = {n ~zero,n eeven}, and consider the bijection v : &toc u{p} — {1,2,3} such
that v(n »~ zero) = 1, v(n € even) = 2, v(¢) = 3.
For the given formula, the assertion (prob) reads like
2 2 4 :
(anwzero < g 'Olneeven) A (Qpeeven = 1) A (a7wzero > § v k\—/1 (k)prOPEiLlc](n)EOdd) ’

which together with the remaining assertions carefully described in Algorithm 1 is un-
satisfiable. To check that, assume that it would have a solution (denoted by z* for each

variable z) and let us derive a contradiction.
Begin noting that by (vall), b,-1(neeven),r Tanges in the interval [0, 7] for each k e

{1,2,3}. Once o ceven = 1, then every by, -1 (sceven),r should coincide with 74 and, by (val2),
-1 (neeveny . = 1 for every k € {1,2,3}. Then, by (cons), (F)p, ceven holds. But, by (prop_pos)

this means that for each k, (k)propgi’,j\,]en A (}‘3)propneeven also holds.

Observing that (n € even — suc(n) € odd) € ®°, it follows that for each k,

3,1
(k)prop£uc(1L)eodd A (k)propsuc(n)eodd holds. (2)
Then, we have that (k)propgihlc](n)eo 4q does not hold for every k. On the other hand, since
O zero < %, there is no way for the last conjunct to hold and we conclude that the formula

is unsatisfiable. A

Now that we checked how to apply the procedure, let us state its correctness (see a
sketch of the proof in the Appendix and the details in (Mor16)).

Lemma 4.1. If T is a convergent equational theory and A is a set of domain clauses
with the subterm property, a global formula § € Glob in CNF is satisfiable iff Algorithm 1
returns Sat.

Tseitin-like transformation on DEqPrL: So far, we have described an algorithm
to decide the satisfiability of a global formulas in CNF. However, transforming a global
formula into CNF eventually leads to an explosion in the length of the formula. Luckily, we
have a Tseitin-like transformation for DEQPRL, which provides a method to transform
any global formula into an equisatisfiable CNF formula with linear size on the length of
the original formula, and allows us to take advantage of the CNFSAT-DEqPrL solver.
The idea is to introduce additional atoms V (n! ~ nd) for every non-atomic subformula
& of 8, ensure that ¥(nd ~nd ) < &’ and, in the end, additionally ensure that the former
formula is satisfied by imposing V(n‘f ~ ng) In this sense, given a global formula ¢ € Glob,
we consider the set of all subformulas of § that are not atoms, subform(d) ~ (VLocuProb),
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and fix a pair of new (and distinct) names for each of them. To ease notation, we denote
by GA(d") the atom corresponding to the subformula 6’ € (subform(d) \ (VLoc u Prob)).
Furthermore, we abuse notation and also denote an atom 4§’ € (subform(d)n(VLocuProb))
by GA(¢"). In short,
5 if 0" € (VLoc u Prob)
GA(d') = , /
(97) { V(n{ ~ny) otherwise

For each subformula ¢’ € (subform(d) \ (VLoc u Prob)), we define the additional con-
juncts tc(d") representing the equivalence GA(¢") < ¢’ in CNF according to the structure
of §":
te(=) = (GA(=¢) v GA(¥)) A (=GA(=¢) v ~GA(¢));
te(Yrz) = (GGA (Y1 A2 VGA(¢1) INGA (Y1 A2 MGA(12) ) A (GA(1h1 Atha ) v-GA(1h1 ) V-GA(¢2) );
te(th1vipa) = (GA (Y1 Veha )V-GA (1) )NGA(1h1 VP2 V= GA(1h2) N ~GA (Y1 Vb2 ) VGA(h1 ) VGA(¢2)).

We define the Tseitin-like transformation on DEQPRL simply as:

tt(8) = GA(d) A A tc(8').
6’€(subform(&)\(VLocuProb))

Notice that the obtained CNF formula has linear size on the length of §, since
subform(d) has linear size on the length of § and the transformation tc(-) increments
the length of the formula only by a constant. As a corollary of the previous construction
we have the following Lemma.

Lemma 4.2. Given ¢ € Glob, there exists an equisatisfiable formula ¢” € Glob in conjunc-
tive normal form whose length is linear on the length of 4.

Example 4.2. In the context of Example 3.3, for instance, we can use the Tseitin-like
transformation for DEQPRL to obtain an equisatisfiable formula in CNF for

(Y(k~ K") v Pr(k s k%) 2 a) = Pr({{n}i};! » ma(a,n)) 2 a,

for some 0 < a < 1, as follows: begin by rewriting the formula without the connective —,

introduced by aubbreviation,{s and then identify its non-atomic subformulas:
1

~(V(k k) VPr(k k) 2 a) v Pr({{n}i)y mma(an)) 2 a.

d2

The CNF formula equisatisfiable to ¢ is:

tt(0) = GA(0) Atc(d1) Atc(de) Ate(6),
where
te(61) = (GA(81) V=V (k = k*)) A(GA(81)V~Pr(k = k*) > @) A(<GA(81) V¥ (I » k) VPr({{n} }} =~ m2(a,n)) > @),
tc(82) = (GA(82) v GA(51)) A (~GA(32) v ~GA(61)),
te(8) = (GA(8) v ~GA(82)) A (GA(8) v ~Pr ({{n}x )5} ~ m2(a,n)) > @) A (<GAS) v Pr({{n}x )it ~ ma(asn)) > a).
A

SAT-DEqPrL problem: In general, we are looking for a procedure to decide SAT-DEqPrL.
Fortunately, the Tseitin-like transformation for DEQPRL and the CNFSAT-DEqPrL
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solver will greatly ease our task. Given a global formula ¢ € Glob, we seek out an eq-
uisatisfiable formula ¢’ in CNF and then use the CNFSAT-DEqPrL solver to decide about
the existence of a model for ¢" (and for 9).

Theorem 4.1. If T" is a convergent equational theory and A is a set of domain clauses
with the subterm property, then the SAT-DEqPrL problem is decidable.

Proof. Given 6 € Glob, we use the Tseitin-like transformation for DEQPRL to convert
0 into an equisatisfiable formula tt(d) in conjunctive normal form. Then, we run the
CNFSAT-DEqgPrL solver presented in Algorithm 1 on tt(4). If CNFSAT-DEqQPrL returns
Sat then tt(d) has a model, and so ¢ has a model; otherwise ¢ will be unsatisfiable. []

4.2. Validity

The decidability of the logic follows as an immediate corollary of the satisfiability result.

Theorem 4.2. If T" is a convergent equational theory and A is a set of domain clauses
with the subterm property, then the logic is decidable.

Proof. Since the deduction metatheorem holds, given a finite set A ¢ Glob and ¢ € Glob,
proving A Ay is equivalent to proving oy ((Ayea¥?) = ¢), so we proceed by
checking the validity problem. Given 0 € Glob, we decide whether  7y0 or W (p A)d by
testing the satisfiability of —=4: if —J is satisfiable, since the logic is sound, we conclude
that #(p a) 6; if =6 is not satisfiable, we use completeness to conclude that 4y d. [l

4.3. Complexity

The satisfiability result highlights a way of deciding SAT-DEqPrL by reduction to a
QF_LIRA solver, under the assumption that I' is a convergent equational theory and A is
a set of domain clauses with the subterm property. We will now analyse complexity of
the procedures previously obtained.

Complexity of CNFSAT-DEqPrL: As we already observed, the CNFSAT-DEqPrL solver
presented in Algorithm 1 exhibits a way to transform a global formula ¢ written in

CNF as A (w{v...vwg_ v V! V...\/—-V(pi,) into O(M + M x (M +1)) QF_LIRA
j=1 ! !

r=1"%r
length of 8, provided that I' is given by means of a convergent rewriting system and A is

assertions, where M = Z;»n:l (nj +kj+ PO Ej) + 1. Since ®° has polynomial size on the

a set of domain clauses with the subterm property, each assertion has polynomial size on
the length of é. So, Algorithm 1 exhibits a polynomial reduction from CNFSAT-DEqPrL
to QF_LIRA. The complexity result for the satisfiability problem CNFSAT-DEqPrL is
parametric and also depends on the complexity of determining normal forms for terms
with respect to the equational specification of the algebraic basis, which are fundamental
to obtain the set of relevant terms RelT®. The complexity of CNFSAT-DEqPrL is the same
as for QF_LIRA as long as the complexity of computing normal forms with respect to T’
(dub it the T'|-problem) is in P.

Corollary 4.1. Assuming that I' is a convergent equational theory whose I'}-problem
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is in P and A is a set of domain clauses with the subterm property, then the satisfia-
bility problem CNFSAT-DEqgPrL is in NP and the validity problem for DNF formulas in
DEQPRL is in coNP.

Note that when the rewriting system underlying the equational theory I' is subterm
convergent, the complexity class of the I' |-problem is in P. We should also remark that
SAT can obviously be modeled in DEQPRL, by assigning an atom V(n; » ny) composed
by two fresh names n1,no to each propositional symbol to be considered.

Corollary 4.2. If T" is a subterm theory and A is a set of domain clauses with the
subterm property, then CNFSAT-DEqPrL is NP-complete.

Complexity of SAT-DEqPrL: The complexity of the satisfiability problem is now im-
mediate from the complexity of CNFSAT-DEqPrL and by Lemma 4.2.

Corollary 4.3. Assuming that I' is a convergent equational theory whose I'}-problem is
in P and A is a set of domain clauses with the subterm property, then the satisfiability
problem SAT-DEQPrL is in NP and the validity problem for DEQPRL is in coNP.

Corollary 4.4. If the equational theory of I' is generated by a subterm convergent

rewriting system and A is a set of domain clauses with the subterm property, then the
SAT-DEqPrL problem is NP-complete.

5. Examples

Now we model some information security examples in DEQPRL and observe how impor-
tant are the implementation details on the estimation of probabilities of the existence of
attacks to cryptographic protocols.

5.1. Offline Guessing Attacks with some Cryptanalysis

Now we focus on the analysis of offline guessing attacks to cryptographic protocols-
(Bau05) in the context of DEQPRL. Actually, we may focus in a wider and more expres-
sive formulation where the attacker, besides all the algebraic knowledge he has about
the protocol and cryptographic primitives, is also endowed with some cryptanalytic ca-
pabilities. To analyze offline guessing one assumes that the attacker observed messages
named my, ..., my which were built as t1,...,t; € T(N), but the attacker cannot know
the concrete values of the random and secret names used to build them. Still, he can try
to mount an attack by guessing some secrets s1,...,s, € IN used by the parties executing
the protocol. The attack is successful if the attacker can distinguish whether his guesses
81,-..,8, are correct or not.

Definition 5.1. Let myq,...,my € T(N) represent the messages exchanged by the parties
executing a given cryptographic protocol, and I' denote the equational specification of the
underlying algebraic basis and A collects the domain restrictions on terms. The protocol
is susceptible to an offline guessing attack using cryptanalysis if there exists a recipe
¢ € Loc, with subtrm(y) € T({m1,...,mg,s7,...,s:}) such that:

V(my sty A Amy mty) Haeay Vo

and
V(imymti A Ampaty) ey V(ST RSIA-As, ~s, = ).
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Note that the recipe is a formula involving equations and domain restrictions and is
constructed exclusively from messages observed by the attacker and from guesses for the
secret values. The recipe should not be derivable in general, but should be valid under
the assumption that the attacker correctly guessed the secrets, proving to constitute a
reliable formula for the attacker to check whether he actually guessed the secrets.

This task is undecidable in general as the recipe may be arbitrarily complex, but for
subterm convergent rewriting systems the problem is decidable, as only a finite number
of ‘dangerous’ recipes need to be tested (AC05; AC06; Bau05).

The analysis of the existence of offline guessing attacks is even more interesting when
probabilities come into play, as the attacker will be able to narrow the set of possible
secrets. In these lines, under appropriate probabilistic conditions and applying axiom P3,
one should be able to estimate the probability of offline guessing attacks in DEQPRL.

Example 5.1. As an application, consider a protocol adapted from (CE04), where
a,b,ng,Pap € N: Lasb: ()

2.b->a:{natp,,
In the first step, some party named a sends a message to another party named b in order
to initiate some communication session. The message is a pair containing a’s name and
a random value (nonce) named n,, that a generated freshly, and which is intended to
distinguish this request from other, similar, past or future, requests. Upon reception of
the first message, b responds by ciphering n, with a secret password p,, shared with a.
When receiving the second message, a can decrypt it and recognize b’s response to his
request to initiate a session.

In this case, it is simple to observe that the secret shared password p,; is vulnerable
to an offline guessing attack. Suppose that the attacker observes the execution of the
protocol by parties a and b, and got hold of the two exchanged messages m; and mo.
He can now manipulate these messages, using his guess p, of p.», and come up with
the recipe {mq };3b ~ ma(my1). Indeed, only under the correct guess we can prove that the
decryption of mga with p?, coincides with the second projection of m,, that is, n,. We
can use our logic and, in particular, axioms E(I'®Y) that encode the equations in T'PY to
check that, indeed,

V(my =~ (a,nq) Ama ~ {ng}p,,) |7/‘(FDY7ADY) V({mg};gb ~ mo(mq)) and
¥ (ma ~ (a,n0) Ama % {na }p,, ) oy aovy V(05 ® Pap = {ma}ye ~ ma(mr)),

The existence of an offline guessing attack for this protocol led to an improvement of
the exchanged messages by concatenating a confounder ¢ with the nonce and encrypting
with the public key pub(b) afterwards, giving rise to Gong’s protocol (GLNS93):

L.a—b:{(na,¢)}pubes)
2.b—>a: {na}l)ab :

Gong’s protocol was proved to be secure against offline guessing (CE04; GLNS93), in the
sense that the probability of an attack is negligible. We will observe that such security
highly depends on the practical implementation of the protocol. This is one of the great
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achievements that we obtain with DEQPRL: we are able to cover some implementation
details formally within the logic and conclude how do they compromise security.

Let us extend the set of domain names D = DPY U {conf} and, further, assume that
the confounder ¢ is sampled uniformly from a set with M elements, and that the set of
symmetric keys from which pg is uniformly chosen has N elements. The estimation of
the probability of an offline guessing attack on the independent names p,; and ¢, with
guesses p, and c”, is given by:

Hyp (rov povy Pr(pay ~ pap A c”) < P"(ﬂ({mz};iba ) lpubey ¥ ma)

where the set of hypothesis consists of the uniform probabilities and independence of p¥,
and c¢*, of a record of the exchanged messages and of some cryptanalytic properties,
Hyp = {V(c* € conf) - Pr(c~ c*) = ﬁ, V(py, € sym_key) — Pr(pay ~ ply) = %, Ind};\;’f}’;*,
V(C* € conf), v(pr € sym*ke)/)v V(ml N {](nmci)[}pub(b) A Mo R {na}Pa,b)} .
According to the independence property for p’, and c*, the probability of guessing c
and pgp, and therefore the probability of success of an offline guessing attack is given by

1 - *
Hyp (oY, ADY) N M < Pr(ﬂ({mg}pzlb,c )ﬂpub(b) ~my) .

Often, symmetric keys are defined as being weak keys, meaning that they are chosen
from small sample spaces. In this sense, N is usually small. On the contrary, the commonly
called unguessable values are believed to be chosen from very big sets. However, in the
practical implementation of protocols it does not always happen, and we can model it
in our logic. Notice that if M is also a small number, the probability of an attack is not

1

negligible, as it is minimized by the non-negligible value & 7;. A

5.2. On the Implementation Details

The reduced range of values taken by some critical parameters in the concrete imple-
mentation of cryptographic protocols can seriously compromise their security. Recently
(see (ABD*15)) it was shown that some modern implementations of Diffie-Hellman key
exchange are vulnerable to attacks from adversaries with reasonable resources.

A Diffie-Hellman key exchange consists of a preliminary agreement of a large prime p
and a generator g by agents a and b, then both parties generate random integers x, and
xp. Once all the values are fixed, a sends the exponentiation of g with x, modulo p to b,
and b sends the exponentiation of g with its private key x; modulo p to a. At the end of
the protocol, a and b are sharing the secret (g**)**mod p = (¢**)**mod p. Computing
discrete logarithms remains the best known cryptanalytic attack to the security of Diffie-
Hellman. In general, discrete log computations for arbitrary primes are known to take
enough time to ensure that any session expires before the intruder carries out an attack,
but Logjam (ABD*15) presents a technique that uses number field sieve and allows one
to compute the discrete log of primes in a specified 512-bit group in about one minute,
by means of a precomputation of the first three steps of number field sieve for that
specific group. In fact, this vulnerability was already known since 1992 (BBDL*15), but
was applied by Logjam (ABD*15) to downgrade a TLS connection to use 512-bit Diffie-
Hellman export-grade cryptography, through a man-in-the-middle network attacker. Let
us analyze formally, within DEQPRL, how would a cryptanalytic attack through the
discrete log compromise the security of Diffie-Hellman.
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Example 5.2. Consider a Diffie-Hellman key exchange protocol:
l.a—>b:¢g" modp

Tb

2.b—>a:g" modp

Let us assume the attacker possesses enough computational resources to manage a pre-
computation of the first steps of number field sieve for a chosen group of 512-bit prime.
Recall that the discrete logs in that group are then computed in a feasible amount of time.
So, we can consider, in our signature, a function symbol representing the discrete log for
each of those primes. Consider the signature FPH containing: DLOG,(:,-) € F2H repre-
senting an oracle for the discrete log of the subscript argument; (-)(') € FQDH representing
exponentiation; (-) mod (-) € FPH representing the remainder of the division of the first by
the second argument. In the context of Diffie-Hellman key exchange, the equational prop-
erties of these operations are given by: TP" = {((2"1)*2 mod x3) ~ ((2*2)** mod z3)}.
Now let us fix some domains, representing the chosen group of 512-bit primes for the
implementation, the set of generators, the set of private keys and the set of ciphertexts:
DPH = { 512_prime, gen, prv_key, ciphertxt }. We axiomatize the domain restrictions
simply as: APH = { (€ prv_key, g € gen, p € 512_prime = (g* mod p) € ciphertxt) }.

The probability of a cryptanalytic attack using discrete log can be expressed in
DEQPRL as: Hyp®" +(ron aony Pr(DLOG, (g,m1) ~ x,) > Pr(p € 512_prime), where HypPH=
{VY(m1 » g**mod p Amg ~ g**mod p), ¥ (p € 512_prime—DLOG,(z1, 27> mod p) » x2)},
meaning that the probability of an offline guessing attack is bounded below by the
probability of the intruder’s smart choice for the group to which he develops the
precomputation actually fall within the choice of the implementer. Obviously, the
attacker would not waste resources precomputing discrete logarithms unlikely to be
used. There are groups of 512-bit primes known to be much popular than others, so the
probability of the intruder’s smart choice be within one of the implementer’s choice can
be significantly large, thereby influencing the probability of the existence of an attack.
This formalization should be seen as a simple illustration of how the cryptanalytic
attacks can be modeled within DEQPRL. A

6. Conclusion and future work

We combined aspects from classical, equational and probabilistic reasoning to construct
a logic suited for the qualitative and quantitative analysis of equational constraints and
domain restrictions over a set of outcomes. The design of the logic was aimed at formal-
izing the kind of reasoning carried out in security protocol analysis provided an attacker
with cryptanalytic capabilities. Parameterized by suitable properties of the underlying
algebraic base and domain restrictions, we have obtained a sound and weakly complete
deductive system for our logic, as well as satisfiability and decidability results. Lastly, we
used the logic to verify and estimate the probability of attacks to cryptographic protocols
in the presence of an attacker with an informed way of cryptanalysis, reducing the gap
between symbolic and computational models (Bau05; AC06; AC05; CBC10; CBC13).
We are working on extending the scope of the probabilistic satisfiability problem
PSAT (FDBI11; Nil86) and GenPSAT (CCM16) with the algebraic component. In this
way, we are currently implementing a prototype tool for SAT-DEqPrL using a reduction
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to QF_LIRA. We expect to test such a tool on interesting cryptographic protocol analysis
scenarios, as illustrated above.
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Appendix A. Additional Proofs

Consistency is defined in the usual way: A ¢ Glob is consistent if A ¢ xy 0 for some

n

6 € Glob. Note that a global formula of the form V\ d; is consistent if and only if there
i=1

exists 1 <4 < n such that §; is consistent.

Proof of Theorem 8.2 As usual, the proof of completeness follows by contraposition
and consists on finding a model for the negation of an unprovable formula. Hence, we
assume that i (p 5y ¢ and build a F-structure satisfying ~0. The construction combines
several known techniques from equational logic, first-order logic and probabilistic logic,
which interact in a non-trivial way. We begin by writing the consistent formula -4 in
disjunctive normal form as %1 v --- v 9,,,. Then, we choose a consistent disjunct 1);, of the

B} e AT, (3)
and define RelF = {wjl-, .. ,w;”} ¢ Glob to be the set of relevant formulas that should be
satisfied in the final F-structure. We also add to the signature a new constant c, , for
each ¢ € Loc and n € N, obtaining a signature F* = {F} } _ coinciding with F in all but
F§ =Fo U (Upetoc {Cono | n0 €NY).

Afterwards, we fix an enumeration for Loc x Loc and further extend the set RelF with
witnesses for negated global formulas and with suitable certifications for non-negative
global formulas, through the following inductive definition:

form

W, = RelF
Wi = W;u {—N’(p} - (V[—mp}]’g LA (V(p? - V[p2]Z 1))} for each i e N,
vl ol
where names(}) Unames(¢?) =7 = {n1,...,nk}, Gp = {Comrs---sConp }-

Lemma A.1. W = U;y W; is consistent (regarding F*).

Proof of Lemma A.1 can be found in (Morl6) and follows the same steps as Henkin
construction (?).
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We fix a maximal consistent extension Z of the set W c Glob™, whose existence is
guaranteed by the Lindenbaum’s Lemma. Then consider the F*-algebra A = Tp+(2)/=,
where the congruence relation is given by ¢; = to if V(¢; » t3) € Z. The relation = is a
congruence as consequence of axioms Eql-4 and theorem N. A domain interpretation is
then taken accordingly to the aforementioned maximal consistent set =, I*(D) = {[t]- |
V(te D) €= and t € Tp+ (@)} for each D € D.

—A satisfies I': by definition of =, E(I'), C4, N, and recalling that = is a maximal
consistent set, it is easy to check that A - T'.

—(A, I*) verifies A: given (t1 €Dq,... tg, € Dy, —>t'1©Di,...,t§62©Dk2) € A and
7 e AX, notice that 7 results from applying a substitution ¢ € Tr+ (@)X and then a
quotient by =. Assume that [t;]T € I*(D;) for each 1 < i < k;, which means that for
each 1 <i < ky, [0(t;)]= € I*(D;) or, equivalently, ¥(o(t;) € D;) € . It means that
V(o(t1) € DyA--Ao(tg,) € Dy, ) € 2, and from E(I) it follows that V(o (t])©® Dj V-V
o(ty,)®©D;,) € Z. But = is maximal consistent with respect to the deductive system
H(r,a) and o(ty),..., a(t;%) are nameless terms, so it follows that exists j € {1,...,ka}
such that V(o(té)@D}) €=,

We note that each negated global formula in the maximal consistent set, -Vy € =,
leads to an outcome p~'% : N — A assigning each name to the equivalence class of
the appropriate constant: p™?(n) = [cyn]=. The set S = {p™% | -Vy € Z} of possible
outcomes is not empty since the conjugation of the reflexivity axiom Eql with the axiom
that enables the negation to be passed through the universal quantifier, N2, implies that
-V (t#t)eZ, for each t e T(N).

A probability space is then defined, in the lines of (FHMO90), and starts by choos-
ing carefully a set of atoms of interest: initially we collect in 2 all the local formu-

las occurring inside probabilistic formulas of RelF, 2 = U InPr(1)), where
1eRelFn(Probu—Prob)

InPr(q1-Pr(p1)+...+qi-Pr(p;) >b) = InPr(=(q1-Pr(p1)+...+q-Pr(e;) 2 b)) ={¢1,..., 01},

and then use it to define the suitable atoms © = { AYAn A —w]|Tc Q} . We consider
yeY weONT

a representative outcome for each element of § € ©, whenever it is possible: if S # @,

choose pg € S? and let us represent the probability assigned to ps by xg; otherwise, if

S% = @, ie. (A I*P) - V-0, fix 29 = 0. The accuracy of © immediately implies that

U S? =9 and §% n 5% = @, for each 61 % 0.
6ec©
The set © has the crucial local formulas to define the system of inequalities

1T, + -+ apTy, 2b, for each aiPr(p1) + -+ axPr(pr) > b € RelF
1T, + -+ apTy, <b, for each aiPr(p1) + -+ axPr(pr) < beRelF
> To =Ty, for each p € Q
0cO st O (4)
Sap=1
0e©
xg =0, for cach 6§ € © such that S% = @
xo >0, for all 0 € ©

We claim that this system of inequalities has a solution. Indeed, using Fagin, Halpern and
Megiddo’s result of soundness and completeness for the axioms of inequality (see Section
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4 of (FHM90)), we know that (4) is unsatisfiable if and only if it is inconsistent. But it
leads to a contradiction, as we can find a global formula that represents this system of
inequalities within DEQPRL. Let us look at this in more detail!

To write down a global formula that represents the system (4), let us fix an order on
elements of 2: Q= {©1,...,¢q} . Then, consider the successive application of axiom P2
to deduce that

Pr(¢1) = Pr(wi Awz2) +Pr(pr A—p2) =

=Pr(p1 A2 Aws) + Pr(er Az A=p3) + Pr(o1 A ~pa A @3) + Pr(pr A —~p2 A —p3) = (5)

=...= > Pr(0).
6eO st 01
It means that o) Pr(e:1) = > Pr(#). We can obtain a similar formula for each
0eO st O0—p1

¢ € Q). Moreover, since V 6 <> T and 0; A0; < L for any 0;,0; € ©, 0; # 0;, using axioms
0c©

P2 and P4 we can deduce that Pr( V 9) = Y Pr(0) and it follows that Y. Pr(0) = 1.

0c© 0e© 0c©

Before finishing, notice that PAux2 and P2 imply that: - oy A (V(=0) — Pr(0) = 0).
0e©

Axiom P1 and the previous justifications, allow us to write (3) equivalently as:

wjl-/\---mj);j/\/\ Pr(y) :ZPr(G) /\(ZPr(H) = 1)/\(/\V(ﬁ0) - Pr(09) = O)/\/\ (Pr(6) >0). (6)

oeQ2 90 0e0 9¢® 9¢®
Since we can assign probabilities independently to the different elements in ©, (6) is
satisfiable if and only if the system of inequalities (4) is satisfiable. Under the hypothesis
that the system of inequalities is unsatisfiable, using the results of soundness and com-
pleteness for the axioms of inequality, the system would be inconsistent. But it would
mean that we could derive an inconsistency from (6) using I1-16, C1-C4, which is a con-
tradiction with the consistency of (3). We conclude that the system (4) is satisfiable. Let
{z}}oeco be a solution. The solution of (4) is used to define a probability distribution
over the atoms and thus over the outcomes satisfying them. The probability distribution
P:S—[0,1] is defined as follows:

P(pe) = wz;, foreachbeO,
P(p) = 0, for each pe S~ {py |0 €O}.

A probability space P = (S, <7, i) is built on top of this probability distribution, con-
sidering the o-algebra o7 generated by the set {S?¥ | ¢ € Loc} and the probability measure
w: o/ —[0,1] such that u(X) = Y P(p). Let us verify that p is a probability measure:

eX

-Given X e &, (X)) 20 since #(X) = ¥ ,ex P(p), and the system of inequalities (4)

together with the definition of P imply that P(p) >0 for each p € S.
- We conclude that u(S) = 1 by observing that S € & as result of S = S** and
further pu(S) = 3 P(p), which leads to the expected measure 1 for the entire set
peS

of possible outcomes by simply recalling the definition of P and writing u(S) =
> Pp) = > P(p)+ X P(pe) =0+ ¥ ;. Since {z} }peo is a solution for (4)
pES peS\{p9|9€@} 0e® 0e®

we actually have p(S) = Ygeq zj = 1.



Probabilistic Logic over Equations and Domain Restrictions 25

- Given a countable collection of pairwise disjoint sets {X;};e;y S &, the equality
M(U Xl-) = Y u(X;) holds as a consequence of sets {X;};c; being pairwise disjoint
iel iel
and from the following equalities: > u(X;) =Y ¥ Plp)= ¥ P(p) =pUier Xi) -
el pelU X;
iel

iel peX;

i

Just note that each of the previous sums have a finite number of non-zero elements.
Now that a F-structure (A,IAJP’) has emerged, it remains to prove that it actually
satisfies all the relevant formulas RelF. For that purpose, we leave an auxiliary remark
whose proof follows easily by induction on the complexity of .
Remark 1. Given -V¢g € Z and a local formula ¢ € Loc with names(y) =7,

V[plz,, €Z if and only if A, I* IF ]2 .

Ceoq
We conclude the proof verifying that we have indeed a model for RelF. Recall that
RelF ¢ VLoc u -~VLoc u Prob u -Prob, consider 7 € RelF and let us analyze the four cases:

- if v is of the form V¢ with names(y) = 7, we want to prove that for every p € S,
(A, T), p IFioe @. Given p € S, recall that it was motivated by some -V, € =, say
that p = p~7¥°. Since V¢ € RelF ¢ Z it follows that V[gp]goo € E by construction of
W. Using Remark 1 we conclude that A, I* i [(p]?%, which according to definition
of p~¥#0 implies that (A, I*), p77%0 Ik .

- if 7 is of the form -V, with names(-¢) = names(¢) = 7, notice that p~¥% ¢ S.
Moreover, since -V € Z, it follows that V[ﬁgo]gp € =. Remark 1 implies that A, I* I
[ﬂp]?@7 which by definition of p=7¢ leads to (A, I*), p™"¢ Iriec =, s0 (A, T4, P) I- =V .

- If v € Prob is of the form g - Pr(p1) + -+ ¢ - Pr(¢;) > b, we have:

(AT P) - q1 - Pr(p1) + - +q - Pr(e) 2 b
g p(SP) + @ p(S¥) 2 b

iff g > Plp)+—+aq z P(p) 2b

peS st peS st

(A, T8), plpoc 21 (A, T4, pirjoc ey
iff @ ¥ Plpe)++a X Plps)2b
0eO st 0eO® st
[ 0=
it ¢ Y zp++aq X xzp2b
6e® st 6e®© st
PR 0

The last inequality is valid since g1 - Pr(@1) + -+ ¢ - Pr(y;) > b e RelF and {z} }gco is
a solution for (4), hence the first assertion holds as well.
- If v € =Prob, the reasoning is similar.

Hence we have: (A, I*,P) I~ 4. L]

Sketch of the proof of Lemma 4.1 For lack of space, we only summarize the idea
underlying the proof of Lemma 4.1 very briefly. The details can be found in (Morl16).

To prove the correctness of Algorithm 1, one should ensure that every model in the
equational context corresponds to a valuation over the wider propositional set of variables
B*, and vice-versa. In this sense, for the direct implication, we construct several valuations
from outcomes in a model for § and then unify them in a bigger valuation. The verification
that the Algorithm returns Sat is an immediate consequence of the construction. For the
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reciprocal implication, we split the bigger valuation into valuations over B, and then over
B. Finally, we use an argument similar to the one used for the proof of completeness to
construct the final model for 6. O
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