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Abstract

We introduce properties of consequence relations that provide abstract
counterparts of different notions of finite-valuedness in logic. In partic-
ular, we obtain characterizations of logics that are determined (i) by a
single finite matrix, (ii) by a finite set of finite matrices, and (iii) by a
class of n-generated matrices for some natural number n. A crucial role
is played in our proofs by two closely related notions, local tabularity and
local finiteness.

Keywords: Matrix semantics, Many-valued logic, Finite-valued logic,
Strongly finite logic, Locally tabular, local finiteness, Cancellation, Finite-
determinedness.

1 Introduction

The aim of this paper is to give abstract characterizations of different no-
tions of finite-valuedness in logic, that is, logics whose semantics involve a finite
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number of truth-values. It is well known since the work of Lindenbaum that
structural Tarskian logics correspond exactly to the semantical consequence rela-
tions determined by a family of logical matrices [23]. More recently, building on
the seminal results obtained by  Loś and Suszko [15], and by Wójcicki [21, 23],
on the abstract notions of uniformity and couniformity, Shoesmith and Smi-
ley [20] singled out the cancellation property, which captures exactly the class
of structural logics that can be characterized by a single (possibly infinite) logi-
cal matrix. This last property is often considered in the literature as the defining
feature of logics that are called many-valued, a family that includes fuzzy logics
(finite- and infinite-valued  Lukasiewicz logics, Gödel-Dummett logics, the logics
of continuous t-norms), the logics of Post, Belnap-Dunn four-valued logic, etc.

With the present paper, that we consider a natural continuation of this line
of research, we hope to shed further new light on the very notion of finite-
valuedness. An obvious starting point for a discussion of finite-valuedness is the
notion of tabularity which, although introduced in the context of modal and
super-intuitionistic logics [8, p. 49], can be extended to arbitrary logics. One
may say that a logic is tabular when it is defined by a truth table, or, more
generally, when it is determined by some finite structure (frame, logical matrix,
etc.). This definition still leaves out certain logics that one would intuitively
regard as finite-valued, such as Kleene’s logic of order, which is defined by two
three-element matrices and yet, crucially, cannot be characterized by any single
matrix. In the context of matrix semantics, this example suggests that another
reasonable notion would be to say that a logic is finite-valued when it is given
by a finite set of finite matrices, dubbed strongly finite logics in ??. Other
generalizations of finite-valuedness may also be fruitful to consider, for instance
that of being characterizable by a class of matrices each of which is generated
by at most n elements (for a certain n ∈ N). One may then wonder whether
or not these properties hold for a given consequence relation. When is a logic
characterizable by a single finite matrix? When is it characterizable by a finite
set of finite matrices? When is it characterizable by a class of n-generated
matrices for some given n?

In the present paper we provide an answer to the above questions, that is,
we give necessary and sufficient conditions for a logic to be characterizable by
a finite matrix, by a finite set of finite matrices, and by a class of n-generated
matrices. It is worthwhile emphasizing that these conditions are expressed at
the same level of abstraction as the above-mentioned notion of cancellation,
or even as the properties that define the Tarskian notion of logic itself. To
the best of our knowledge, only the second of the above-stated questions has
already found an answer in the literature [22, Theorem 3.9]; we believe, however,
to have improved the result of [22] by providing a simpler and more workable
characterization.

The paper is organized as follows. Section 2 introduces the basic defini-
tions and overviews the relevant known results. Section 3 presents our main
characterization results (Theorems 3.12, 3.14 and 3.16), and includes two sub-
sections. In Subsection 3.1 we show that the three essential properties involved
in our characterizations are independent, and in Subsection 3.2 we illustrate the
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usefulness of the characterization results using some simple but informative ex-
amples. Finally, Section 4 discusses the obtained results alongside with possible
directions of future research.

2 Preliminaries

In this section we fix the notation and introduce the definitions that are used
throughout the paper.

Algebras (see [7] for further details). As usual, an algebra A is a set A equipped
with a finite number of finitary operations. Given an algebra A and a set
X ⊆ A, we say that A is generated by X when, for every a ∈ A, there is a term
t(p1, . . . , pk) in the algebraic language of A and elements a1, . . . , ak ∈ X such
that a = tA(a1, . . . , ak). If |X| = n ∈ N, we say that A is n-generated, and in
general we say that an algebra is finitely generated when it is n-generated for
some n ∈ N. When A is n-generated, we denote the generators by {a1, . . . , an}
and, for each a ∈ A, we fix a term (in at most n variables), denoted αa =
t(p1, . . . , pn) ∈ Fmn, such that a = tA(a1, . . . , an). When A is finite with
A = {a1, . . . , an}, we take αai = pi.

Logics (see [23] for further details). We denote by Var the (countable) set
of propositional variables. Given an algebraic signature (that we often leave
implicit), we denote by Fm the absolutely free algebra built over Var. A
logic defined over Fm, is denoted by L = 〈Fm,`〉, where ` is a structural
consequence operator. We say that a set Γ ⊆ Fm is an L-theory when
Γ` := {ψ ∈ Fm : Γ ` ψ} = Γ. An L-theory Γ is consistent when Γ 6= Fm. We
say L is finitary if Γ ` ϕ implies there is finite ∆ ⊆ Γ such that ∆ ` ϕ. Let the
finite set of variables {p1, . . . , pn} ⊆ Var be denoted Varn, we denote by Fmn

the absolutely free algebra built over Varn, which we view as a subalgebra of
Fm.

Matrices (see [12] for further details). We will be dealing with matrix semantics
for logics. A matrix is a pair M = 〈A, D〉 where A is an algebra and D ⊆ A is
a subset of designated elements. We extend the above definitions on algebras to
matrices, saying that M = 〈A, D〉 is generated by some X ⊆ A (n-generated,
finitely generated) when its algebraic reduct A is.

Each matrix M = 〈A, D〉 gives rise to a logic LM = 〈Fm,�M 〉 in the above
sense by defining Γ �M ϕ if and only if, for all homomorphism v : Fm→ A, we
have that v(Γ) ⊆ D implies v(ϕ) ∈ D. In this case we say M is the characteristic
matrix of LM . This extends to a class of matrices M = {Mi : i ∈ I}, which
defines a logic LM = 〈Fm,`M〉 by setting Γ �M ϕ if and only if Γ �Mi

ϕ for
all i ∈ I. A logic is said strongly finite if it is characterized by a finite set of
finite matrices.

Local finiteness and local tabularity. Given a logic L = 〈Fm,`〉, the inter-
derivability relation a` is known as the Frege relation of L. This is always an
equivalence relation, but not necessarily a congruence of the formula algebra
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Fm. The Tarski congruence of L is the largest congruence relation ≡L that
is contained in a` (we denote it by ≡ instead of ≡L when L is clear from the
context). Restricting to formulas in n variables, we define ≡n as ≡∩ (Fmn×
Fmn) and denote the corresponding quotient Fmn/≡n by Fm∗n. When the
Frege relation a` is a congruence of Fm, then it coincides with ≡ and the logic is
called self-extensional. The following characterization of the Tarski congruence
[12, p. 29] will be particularly useful for us: for any logic L = 〈Fm,`〉 and for
all ϕ,ψ ∈ Fm,

ϕ ≡ ψ iff γ(ϕ, ~q) a` γ(ψ, ~q) ∀γ(p, ~q) ∈ Fm

where γ(p, ~q) is any formula with parameters p and ~q = q1, . . . , qk. We say that
a set of formulas with parameters Γ(p, ~q) ⊆ Fm is L-separating when, for all
ϕ,ψ ∈ Fm,

ϕ ≡ ψ iff γ(ϕ, ~q) a` γ(ψ, ~q) ∀γ(p, ~q) ∈ Γ.

We say that a logic is locally finite when, for every n ∈ N, the algebra
Fm∗n is finite, that is, Fmn is partitioned in finitely many classes by the Tarski
congruence. A logic is called locally tabular1 when, for every n ∈ N, Fmn is
partitioned in finitely many classes by the Frege relation, that is, there is no
infinite set of formulas {ψi : i ∈ N} ⊆ Fm∗n such that ψi 6a`ψj for i 6= j (i.e.,
any set of formulas built over finitely many propositional variables contains only
finitely many a`-nonequivalent formulas). The definitions immediately imply
that local finiteness and local tabularity coincide on self-extensional logics, and
that local finiteness implies local tabularity2. It is known that classical logic is
locally tabular, and therefore also locally finite, but intuitionistic logic fails to
have both properties.

Cancellation ([20]). A logic L = 〈Fm,`〉 has cancellation if

Γ,
⋃
{Γi : i ∈ I} ` ϕ implies Γ ` ϕ

for all Γ ∪ {ϕ},
⋃
{Γi : i ∈ I} ⊆ Fm such that

(i) var(Γ ∪ {ϕ}) ∩ var(
⋃
{Γi : i ∈ I}) = ∅

(ii) var(Γi) ∩ var(Γj) = ∅ for i 6= j ∈ I

(iii) (Γi)
` 6= Fm for all i ∈ I.

It is easy to see that every logic given by a single matrix (for instance clas-
sical logic) has the cancellation property; the following result shows that this is
actually an equivalence.

Theorem 2.1 ([15, 20, 23]). A logic L has cancellation if and only if L = LM
for some matrix M .

1Our terminology is inspired by [8, p. 19], which however does not distinguish between the
two notions.

2The converse is not true in general, as shown in [17].
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A natural example of a logic lacking cancellation is Kleene’s logic of order
K≤ (see, e.g., [11]), which is defined by two three-element matrices. To see that
cancellation fails, it is enough to observe that p ∧ ¬p ` q ∨ ¬q holds in K≤ but
∅ 6` q ∨ ¬q.

Producing logics that do not have the cancellation property is easy, and
will be useful in Section 3.1. Given a logic L = 〈Fm,`〉, we denote by L− =
〈Fm,`−〉 the theoremless companion of L defined as follows. We add to any
matrix semantics for L a matrix M∅ with an empty set of designated elements
(the underlying algebra of M∅ is irrelevant). It is easy to see that L− has no
theorems, since no formula can be satisfied in M∅. However, the presence of
M∅ does not affect consequences of non-empty sets of premisses. For a formula
ϕ ∈ Fm that was valid in L (∅ ` ϕ), we have that 6`− ϕ but ψ `− ϕ for any
formula ψ (independently of the variables appearing in ψ). Hence, for any L,
the theoremless companion L− never has cancellation.

3 Finite-valuedness

This section contains a characterization of the different semantical notions
of finite-valuedness under consideration. In order to obtain them we introduce
a new abstract property, which is given in the following definition.

Definition 3.1. Let L = 〈Fm,`〉 be a logic and ∆ ⊆ Fm. We say that:

– L is ∆-determined if, for all Γ ∪ {ϕ} ⊆ Fm, whenever Γ 6` ϕ, there is a
substitution σ : Var→ ∆ such that Γσ 6` ϕσ.

– L is finitely determined when L is ∆-determined for some finite ∆ ⊆ Fm,
and if |∆| ≤ n ∈ N, we say that L is n-determined.

– L is Fmfin-determined when L is Fmn-determined for some n ∈ N.

Notice that, by structurality of L, the first item in the preceding definition
could be equivalently stated as: for all Γ ∪ {ϕ} ⊆ Fm,

Γ ` ϕ if and only if Γσ ` ϕσ for every substitution σ : Var→ ∆.

The next lemmas state some basic properties of ∆-determinedness. Recall that
Varn = {p1, . . . , pn}.

Lemma 3.2. If L is n-determined, then it is Varn-determined.

Proof. If σ : Var → ∆ = {ψ1, . . . , ψn} and Γσ 6` ϕσ, then if we define the
substitution τ : Var→ Varn such that τ(p) = pi whenever σ(p) = ψi, we obtain
that Γτ 6` ϕτ by structurality of L. Hence, Γ If L is ∆-determined and the
cardinality of ∆ is n ∈ N, then L is Varn-determined.

Lemma 3.3. Let ∇ be the set formed by choosing a formula in each ∆/≡L
class. If L is ∆-determined, then it is ∇-determined.
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Proof. Follows directly from the fact that ≡L is a congruence of Fm contained
in a`.

In the next definition we introduce a class of matrices that provides a com-
plete semantics for Fmfin-determined logics.

Definition 3.4. Given a logic L = 〈Fm,`〉, the class of n-generated matrices3

MLn = {MT : T is a consistent L-theory}

is defined by MT = 〈Fm∗n, T ∗〉 and T ∗ = [T ∩ Fmn]≡n .

Lemma 3.5. The class MLn characterizes the Fmn-fragment of any logic L =

〈Fm,`〉. That is, for all Γ ∪ {ϕ} ⊆ Fmn, we have Γ ` ϕ if only if Γ |=MLn ϕ.

Proof. The rightward implication follows easily, since MLn is L-sound by con-
struction. In fact, for every L-theory T , the matrix 〈Fmn, T 〉 is L-sound and de-
fines the same logic as MT = 〈Fm∗n, T ∗〉 because ≡ is a congruence contained in
a`. For the other direction we need to prove that if Γ 6` ϕ then there exists a con-
sistent T and a valuation v : Var → Fm∗n such that v(Γ) ⊆ T ∗ and v(ϕ) /∈ T ∗.
Then, we can choose the L-theory T = Γ`, which is consistent since ϕ 6∈ T , and
v such that v(p) = [σ(p)]≡n for all p ∈ var(Γ ∪ ϕ). Then v(γ) = [γσ]≡n for all
γ ∈ Fm. Clearly v(Γ) = [Γ]≡n ⊆ T ∗ and v(ϕ) = [ϕ]≡n /∈ T ∗.

In the above proof we might have considered just the class of matrices having
as algebraic reducts the free algebras over n generators, without taking the
quotient. This class indeed also characterizes the Fmn-fragment of any logic.
However, it is on the class MLn that we will mainly focus in the remainder of
the paper.

In the following lemmas we establish a number of sufficient conditions for a
logic to be locally finite. This last property is particularly useful to us, as we
will use it to construct finite matrices that characterize a given logic.

Lemma 3.6. If L is a locally tabular logic and has a finite L-separating set Γ,

then L is locally finite.

Proof. We need to show that Fm∗n is finite for every n ∈ N. Let Γ an L-
separating set. By assumption, for all ϕ,ψ ∈ Fm, we have ϕ ≡ ψ if and only
if γ(ϕ, ~q) a` γ(ψ, ~q) for every γ ∈ Γ. Let k be the number of parameters used
in Γ. Since L is locally tabular, Fmn+k is partitioned by a` into finitely many
classes. Thus there cannot be an infinite set {ϕi : i ∈ N} ⊆ Fmn such that
γ(ϕi, ~q) 6a` γ(ϕj , ~q) for i 6= j.

Lemma 3.7. If L is locally tabular and has an L-separating set Γ built over

finitely many variables, then L is locally finite.

3This family can also be seen as a generalized matrix (also called abstract logic), i.e., an
algebra with a family of distinguished sets (e.g., see [12]).
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Proof. Let Γ be an L-separating set built over a finite set of variables. Since
L is locally tabular, there are only finitely many a`-nonequivalent formulas in
Γ, so we can pick one representative for each equivalence class modulo a`, say
{γ1, . . . , γk} = Γ0 ⊆ Γ. Let us check that Γ0 is a L-separating set. For each
γi ∈ Γ\Γ0, we consider γj ∈ Γ0 the chosen representative of the a`-equivalence
class of γi and obtain

γi(ϕ, ~q) a` γi(ψ, ~q) if and only if γj(ϕ, ~q) a` γj(ψ, ~q),

for by assumption γi(ϕ, ~q) a` γj(ϕ, ~q), γi(ψ, ~q) a` γj(ψ, ~q) and a` is transitive.
The desired result then follows from Lemma 3.6.

Lemma 3.8. If L is Fmfin-determined and locally tabular, then L is locally

finite.

Proof. The proofs follow from the fact that if γ(p, ~q) separates two formulas
ϕ,ψ ∈ Fm, then there is σ : Var → Fmn such that γ(p, σ(~q)) also sepa-
rates them and γ(p, σ(~q)) has at most n variables as parameters,. That is,
if γ(ϕ, ~q) 6a`γ(ψ, ~q), then, since L is Fmn-determined, there is σ : Var → Fmn

such that

σ(γ(ϕ, ~q)) = γ(σ(ϕ), σ(~q)) 6a`γ(σ(ψ), σ(~q)) = γ(σ(ϕ), σ(~q)).

Using the structurality of L, it is not hard to show that this fact implies that
γ(ϕ, σ(~q)) 6a`γ(ψ, σ(~q)).

In the next lemma we show that in the presence of local tabularity, it is
equivalent to a logic to be Fmfin-determined (note that in general Fmfin is
infinite) is equivalent to being finitely determined. So, in particular, even if
it would seem less general, the above lemma could be equivalently stated by
replacing the assumption of Fmfin-determinedness by finite-determinedness. In
most subsequent statements we shall use finite-valuedness when in presence of
local tabularity.

Lemma 3.9. If L is Fmfin-determined and locally tabular, then L is finitely

determined, and Varn-determined for some n.

Proof. As L is Fmfin-determined, there is n ∈ N such that L is Fmn-determined.
By Lemma 3.8 we know that L is locally finite, and therefore Fm∗n is finite.
Hence the result follows from Lemmas 3.2 and 3.3.

The next definition and lemmas aim at characterizing the logics whose se-
mantics can be given by a (not necessarily finite) class of n-generated matrices,
for some given n ∈ N.

Definition 3.10. Let M = 〈A, D〉 be a matrix generated by {a1, . . . , an} ⊆ A.

Define vgen : Varn → {a1, . . . , an} by

vgen(pi) = ai,
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and, for each v : Var→ A, define the substitution σv : Var→ Fmn as

σv(p) = αv(p)

where αa = t(p1, . . . , pn) ∈ Fmn is the term defined earlier satisfying v(p) =
tA(a1, . . . , an).

Lemma 3.11. For all valuations v : Var→ A, we have v = vgen ◦ σv.

Proof. It is sufficient to observe that vgen ◦ σv(p) = vgen(αv(p)) = v(p) for all
p ∈ Var.

We are now ready to prove the first of our characterization results.

Theorem 3.12. A logic L is defined by a class of n-generated matrices for some

n ∈ N if and only if L is Fmfin-determined. In particular, L is characterizable
by the class MLn if and only if L is Fmn-determined.

Proof. We first prove that if M is a class of n-generated matrices, then LM is
Fmn-determined. We need to show that, for every Γ ∪ {ϕ} ⊆ Fm such that
Γ 6|=M ϕ, there is a substitution σ : Var→ Fmn such that σ(Γ) 6|=M σ(ϕ). From
Γ 6|=M ϕ we have that there is M = 〈A, D〉 ∈ M and a valuation v : Var → A
such that v(Γ) ⊆ D and v(ϕ) /∈ D. The result then follows by Lemma 3.11 if
we let σ := σv.
As to the other direction, we know by Lemma 3.5 that MLn chacterizes the
Fmn-fragment of L. We show that if L is Fmn-determined, then the family
of matrices MLn chacterizes the whole L. All matrices in MLn are at most n-
generated and L-sound by construction. In order to prove completeness, we
make use of the fact that L is Fmn-determined. If Γ 6` ϕ, we know that there is
σ : Var→ Fmn such that Γσ 6` ϕσ. But then Γσ 6�MLn ϕ

σ and so Γ 6�MLn ϕ.

Our next result (Theorem 3.14) provides a characterization of one of the
possible notions of finite-valuedness, namely that of a logic being definable by
a finite set of finite matrices. We need a preliminary lemma.

Lemma 3.13. If LM is strongly finite, then it is finitely determined. Moreover,

if M is a class of finite Σ-matrices with cardinality bounded by n, then LM is
Varn-determined.

Proof. We need to show that, assuming Γ 6|=M ϕ, there is a substitution
σ : Var → Varn such that σ(Γ) 6|=M σ(ϕ). Consider then M = 〈A, D〉 ∈ M
and a valuation v : Var → A such that v(Γ) ⊆ D and v(ϕ) /∈ D. The result
follows by Lemma 3.11, letting σ := σv where αv(p) = pi for v(p) = ai.

Theorem 3.14. A logic L is strongly finite if and only if L is finitely determined

and locally tabular.
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Proof. The rightward implication follows from Lemma 3.13. For the converse,
notice that if L is finitely determined and locally tabular, then by Lemma 3.8
L is also locally finite. Hence Fm∗n is finite, which implies that the family of
matricesMLn given in Definition 3.4 is also finite. The fact that the familyMLn
is sound and complete for L (Theorem 3.12) concludes our proof.

Theorem 3.14 is a stronger version of [22, Theorem 3.9], which states that a
logic is strongly finite (determined by a finite set of finite matrices) if and only
if it is Fmfin-determined and locally finite. Our result refines Wójcicki’s in two
ways. It uses local finiteness instead of local tabularity, which we now know
(by Lemma 3.8) to be equivalent in the presence of Fmfin-determinedness. A
first advantage is then that we refer to the Frege relation (i.e., logical equiv-
alence) instead of the more technically involved notion of Tarski congruence.
Secondly, we were able to replace Fmfin-determinedness by the simpler prop-
erty of being finitely determined. We also believe that our results better clarify
the interdependencies between the various relevant properties.

The fact that strongly finite logics are finitary is well known [23, Theorem
4.1.7]. Next we present a proof of this fact using the above characterization
result.

Proposition 3.15. If L is Fmfin-determined and locally tabular then it is fini-

tary.

Proof. By assumption L is Fmn-determined for some n ∈ N. We first prove
that for every Γ ∪ {ϕ} ⊆ Fm satisfying Γ ` ϕ, there is m ∈ N such that
Γm = Γ ∩ Fmm ` ϕ.

Let us assume this is not the case. Let mϕ ∈ N be such that ϕ ⊆ Fmmϕ .
Then, since L is Fmn-determined, for each m > mϕ, there is a σm : Varm →
Fmn such that Γσm 6` ϕσ. As Γi ⊆ Γj of i < j, we have that Γ

σj

i 6` ϕσj for
every i ≤ j. It is not hard to see that Zorn’s lemma guarantees the existence
of σ : Var → Fmn satisfying Γσi 6` ϕσ for every i ∈ N. By assumption, we have
that Γ ` ϕ, so Γσ ` ϕσ. However, Γσ ⊆ Fmn and therefore by local tabularity
of L we know there are only finite number of L-equivalence classes in it, hence
there is finite ∆ ⊆ Γ, such that ∆σ a` Γσ. But since ∆ is finite, there is m such
that ∆ ⊂ Γm, and therefore Γσm ` ϕσ, contradicting Γσi 6` ϕσ for every i ∈ N.

We finish the proof by noting that as there is m ∈ N such that Γm ` ϕ, and
L is locally tabular, there are only finite L-equivalence classes in Fmm, and
therefore there is finite ∆ ⊆ Γm ⊆ Γ such that ∆ ` Γ, and hence ∆ ` ϕ.

Lastly, the following theorem characterizes logics that are finite-valued in a
stricter sense, that is, logics that can be defined by a single finite matrix.

Theorem 3.16. A logic L is defined by a single finite matrix if and only if L
has cancellation, is finitely determined and locally tabular.

Proof. The rightward implication follows from Theorem 3.14 together with the
fact that every logic characterized by a single matrix has cancellation [20]. As
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to the other direction, assume L is Varn-determined and consider the family
of matrices MLn (Definition 3.4). All these matrices share the same under-
lying algebra Fm∗n, which is finite because L is locally tabular (hence, by
Lemma 3.8, also locally finite). Thus, the family MLn is finite. Let then
MLn = {M1, . . . ,Mm}. Referring to Definition 3.4, notice that T ∗1 = T ∗2 implies
that T1 ∩ Fmn = T2 ∩ Fmn, because L-theories are closed under the derivabil-
ity relation ` and the Tarski congruence ≡ is contained in the Frege relation
a`. Hence, for Mi = MT , we can unambiguously write Ti = T ∩ Fmn.
Let for each 1 ≤ i ≤ m, σi : Varn → {pi·1, . . . , pi·n} such that σi(pj) = pi·j and
the following matrix: A = Fmn·m/≡n·m and

D = [(
⋃

1≤i≤m

Di)
` ∩ Fmn·m]≡n·m ,

where Di = (Ti)
σi . The matrix M = 〈A, D〉 is L-sound by construction, more-

over A is finite because L is locally finite. We are going to see that M is also
complete, that is, if ∆ |=M ψ, then ∆ ` ψ.
Assume ∆ 6` ψ, and let us prove that ∆ 6|=M ψ. Since L is Varn-determined,
there is σ : Var → Varn such that ∆σ 6` ψσ. Let 1 ≤ i ≤ m be such that
(∆σ)`∩Fmn = Ti. Define a map v : Fm→ A given by v(ϕ) = [(σi ◦σ)(ϕ)]≡n·m

for all ϕ ∈ Fm. It is easy to check that v is a homomorphism, and that
var(v(ϕ)) ⊆ {pi·1, . . . , pi·n}. Hence, v(∆) ⊆ [Di]≡n·m ⊆ D and v(ψ) /∈ [Di]≡n·m

because ψσ 6∈ Ti = (∆σ)` ∩ Fmn. We are going to use cancellation to prove
that v(ψ) /∈ D.
From v(ψ) /∈ [Di]≡n·m , we have Di 6` ψσi◦σ. Moreover, we have:

• var(ψσi◦σ ∪Di) ∩ var(
⋃

0≤j≤m
i 6=j

Dj) = ∅,

• var(Di1) ∩ var(Di2) = ∅ for 0 ≤ i1 6= i2 ≤ m,

• (Dj)
` 6= Fm, as Dj is a subset of a consistent theory.

Hence, by the cancellation property of L, we have

Di,
⋃

0≤j≤m
i 6=j

Dj 6` ψσi◦σ.

Using ≡n·m ⊆ a`L, it is easy to see that, for each Γ ∪ {ϕ} ⊆ Fmn·m, we have
Γ ` ϕ if and only if

{γ : [γ]≡n·m ∈ [Γ]≡n·m} ` ϕ′ for all ϕ′ ∈ [ϕ]≡n·m .

Thus, from
⋃

0≤j≤m
i6=j

Dj 6` (σi ◦ σ)(ψ), we obtain

v(ψ) = [(σi ◦ σ)(ψ)]≡n·m /∈ [(
⋃

0≤i≤m

Di)
` ∩ Fmn·m]≡n·m = D.
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L Canc Fmfin LocTab
CPL X X X
RN X X ×
G∞ X × X
Int X × ×
K≤ × X X
RN− × X ×
G−∞ × × X
Int− × × ×

Figure 1: Separating Canc, Fmfin and LocTab.

The construction of the matrix in the proof of the preceding theorem is
analogous to those of [15, 20, 23], the essential difference being that we can
obtain a finite algebra given that we are working beyond cancellation. This
is possible because local tabularity and finite-determinedness guarantee that
we can start from a finite number of theories instead of the potentially non-
denumerable class of theories of the original construction4.

Theorem 3.16 clarifies the difference between the two notions of finite val-
uedness that we have been considering: being characterizable by a finite matrix
or by a finite set of finite matrices. The difference is the presence of the cancella-
tion property, which is not related to having a semantics involving only a finite
number of truth values. This means that if a logic can be defined by a finite
set of finite matrices but not by any finite matrix, then it cannot be defined by
any infinite matrix either.

3.1 Separation of properties

In this section we give examples of logics showing that all combinations of
the properties considered above are independent.

Classical logic (CPL), which has all three properties listed in Figure 1, is the
prototypical example of a logic defined by a single finite matrix.

We call RN the logic defined by the matrix 〈A, {1}〉, where A is the free
one-generated Heyting algebra, known as the Rieger-Nishimura lattice [3]. RN
has obviously cancellation (Canc) and Fmfin. LocTab fails because RN is not
locally finite and thus, by Lemma 3.8, it cannot be locally tabular. Note that
in the absence of local tabularity Fmfin does not imply finite-determinedness.
However, the failure of finite-determinedness of RN is witnessed by the formulas
appearing in Gödel’s proof that Int is not finite-valued [13]. Gödel considers the
formulas ϕn =

∨
1≤i<j≤n

(pi ↔ pj) for n ∈ N, and it is easy to check that for every

substitution σ : Var→ Varn we have `RN ϕ
σ
n+1 but 6`RN ϕn+1.

4Notice that Fm and Fmn have the same cardinality and therefore the theories over them
may be of the same cardinality too. Hence, even if a logic is given by a class of n-generated
matrices and has cancellation, this construction does not always result in an ω-generated
matrix.
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G∞ is the infinite-valued Gödel-Dummett logic, which is defined by the ma-
trix 〈[0,1], {1}〉 where [0,1] is the standard real-valued Gödel algebra [14]. It
is well-known that G∞ is not finite-valued but it is locally finite (see e.g. [1])
and hence locally tabular. By Theorem 3.16, this implies that G∞ cannot be
Fmfin-determined.

Intuitionistic logic (Int) enjoys Canc as shown for instance in [20, Theorem
5] or [23, Theorem 3.2.9]. To see that Int is not locally tabular we just need to
invoke the fact that the one-generated Heyting algebra is infinite: this means
that Int is not locally finite, and since it is self-extensional, we know that local
tabularity must fail. The proof above that RN is not finite-determined works
also for Int, but we can further show that Int is not Fmfin-determined. To prove
this we need to invoke some definitions and results from [3, 4]. For each n ∈ N,
the n-universal model of Int (which is unique up to isomorphism), denoted U(n),
captures the Fmn-fragment of Int, that is, ∅ `Int ψ if and only if U(n) � ψ for
every ψ ∈ Fmn [4, Theorem 3.8]. Letting ϕk be the Jankov formula (or even
the subframe formula, see e.g. [3, Theorem 2.5]) of U(k) for k ∈ N, we have
that U(n) � ϕk for k > n and U(n) 6� ϕk for k ≤ n. Hence, U(n) � ϕn+1, and
thus U(n) � ϕσn+1 for every σ : Var → Fmn. We conclude that 6`Int ϕn+1 but
`Int ϕ

σ
n+1 for every σ : Var→ Fmn.

As mentioned in Section 2, Kleene’s logic of order K≤ does not have Canc,
however it is locally tabular and Fmfin-determined by Theorem 3.14. The logics
denoted by RN−, G−∞ and Int− are the theoremless companions of (respectively)
RN, G∞ and Int, defined as in Section 2. These logics complete our table because,
as it is easy to show, removing theorems ensures that cancellation fails while
preserving Fmfin and LocTab.

3.2 Two illustrative examples

We illustrate the advantage of having an abstract characterization of finite-
valuedness by analyzing a few examples. We deliberately consider very simple
examples which are however sufficiently rich to illustrate the difficulties one can
find and how our tools may help in their analysis.

Consider the logic L = 〈Fm,`〉 obtained by adding a nullary connective ⊥
and the schematic rule ⊥p to the implication fragment of classical logic. One

can check that, for all Γ∪{ϕ} ⊆ Fm, Γ ` ϕ if and only if Γ `imp ϕ or Γ `imp ⊥,
where `imp denotes the consequence relation obtained by using any rule that
is valid in the implication fragment of classical logic but never the ⊥p rule5.
Despite our unfamiliarity with this logic, one easily obtains that L inherits all
of the following properties from the implication fragment of classical logic:

Canc: Assume that Γ,
⋃
{Γi : i ∈ I} ` ϕ, and that Γ, ϕ, Γi for i ∈ I satisfy

(i)-(iii). Then Γ,
⋃
{Γi : i ∈ I} `imp ϕ or Γ,

⋃
{Γi : i ∈ I} `imp ⊥. Since

5L is the (disjoint) fibring of the logic of classical implication CPL→ with the logic of
bottom Lbot, i.e., L = CPL→ •Lbot considered in [16]. Note that L is still a proper weakening
of classical logic as, for instance, ⊥ → p is not a theorem. Clearly, `imp is the same as the
consequence relation of CPL→ but over a language enriched with ⊥.
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classical logic has cancellation and var(⊥) = ∅ we obtain that Γ `imp ϕ or
Γ `imp ⊥, and conclude that Γ ` ϕ.

Fmfin: We have that Γ ` ϕ if and only if Γ `imp ϕ or Γ `imp ⊥. From the
obvious 2-determinedness of CPL→, this is equivalent to Γσ `imp ϕσ or
Γσ `imp ⊥σ for each σ : Var → Var2. Since ⊥σ = ⊥, this is immediately
equivalent to Γσ ` ϕσ for each σ : Var → Var2, and the 2-determinedness
of L follows.

LocTab: We have that ϕ a` ψ if and only if ϕ `imp ψ or ϕ `imp ⊥, and ψ `imp ϕ
or ψ `imp ⊥. Hence, a`imp ⊆ a` and the local tabularity of L follows
immediately from the local tabularity of CPL→.

By our characterization we then know that L must be determined by some
finite matrix. A simple search will easily yield the following complete four-
valued matrix for L (see [18] for further details): M = 〈A, D〉, where A = 2× 2
is the {→}-reduct of the four-element Boolean algebra, ⊥ is interpreted as 〈1, 0〉
and D = {〈1, 1〉}.

Let us now consider the simplest protoalgebraic logic I = 〈Fm,`〉 of [10].
It is the logic on a single binary connective →, enjoying modus ponens and all
instances of the axiom p → p. Clearly, for any two formulas ϕ and ψ, we have
that ϕ ` ψ if and only if ` ψ or ϕ = ψ. Since there are infinitely many formulas
which are not theorems (already in Fm1), it follows that the logic is not locally
tabular, and hence also not strongly finite.

This argument can be generalized as follows:

Proposition 3.17. Given L = 〈Fm,`〉 such that for all ϕ,ψ ∈ Fm, ϕ ` ψ if

and only if ` ψ or ϕ = ψ, and there are non-theorems of arbitrarily large size,
then L is not strongly finite.

Proof. If there is n such that there are infinitely many non-theorems in Fmn,
then we immediately conclude that L is not locally tabular.

Otherwise, assume that for each n there is only a finite number of non-
theorems in Fmn, and therefore their size is bounded. Then, if we pick any
of the infinitely many non-theorems ψn with size larger than this bound, we
have that ` ψσn for every σ : Var → Varn but 6` ψn. Therefore, L is not finitely
determined.

In any of the cases we conclude that the logic is not strongly finite.

Any logic presented only by schema axioms easily satisfies cancellation, as
well as the first premiss of Proposition 3.17. However, there are many such
logics that are finitely valued: e.g., the logic over the signature with a single
n-ary connective c and with the single axiom c(p1,...,pn) . In order for a logic of

axioms to fail strong finiteness what must happen is that there must be formulas
of arbitrary large size that are not instances of the axioms.

This result is not very interesting in itself, neither are the logics it applies
to usually considered by logicians. Nonetheless, it shows how, using our char-
acterization results, one can identify relevant connections between the shapes
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of the schema axioms/rules of a logic and the nature of a possible semantics
for it. Although we believe that much richer classes can be covered by similar
results, Proposition 3.17 already captures a wide variety of (very weak) logics.
It becomes trivial to recognize, for instance, that the logic of a binary connective
presented only by (some of) the usual axioms of classic implication (but exclud-
ing modus ponens) is not strongly finite. Still note that the result also applies to
logics with rules, namely the simplest protoalgebraic logic I mentioned above,
or even its axiomatic weakening: the logic of a binary connective having only
the rule of modus ponens.

4 Conclusions and outlook

We have established new necessary and sufficient conditions for a logic to
be characterizable by (i) a single finite matrix (Theorem 3.16), (ii) a finite
set of finite matrices (Theorem 3.14), and (iii) a class of n-generated matri-
ces (Theorem 3.12). We accomplished this by making use of three properties:
Fmfin-determinedness, local tabularity and cancellation. We proved that these
properties are all independent by giving examples of logics that separate all the
possible combinations. While local tabularity and cancellation are easily found
in the literature, Fmfin-determinedness appears only briefly, and unnamed, in
[23, p. 256], however the interplay between these properties has never been fully
studied.

The property of Fmfin-determinedness, which reduces, so to speak, the whole
logic to what happens in a finite-variable fragment of the language, is the key
ingredient to our main results, and is required for characterizing the above-
mentioned classes of logics (i–iii). In fact, if a logic L = 〈Fm,`〉 is Fmn-
determined, then L is the strongest among all the logics L′ in the same signature
that coincide with L over the Fmn-fragment. That is, for every such logic L′,
we have LFmn ⊆ L′ ⊆ L, where LFmn is the logic axiomatized by the set of
rules {∆

ψ : ∆ ` ψ, ∆ ∪ {ψ} ⊆ Fmn}. In other words, no such L′ can be Fmfin-
determined, and thus finite-valued, except for L itself. Hence, the existence of
L′ 6= L reduces to whether L can be axiomatized using n variables. To see this,
one just needs to notice that L is axiomatizable using at most n variables if
and only if LFmn

= L. For instance, since CPL is not axiomatizable using two
variables [9], the above argument implies that the logic CPLFm2 generated by
the 2-variable fragment of classical logic is not finite-valued.

An interesting problem related to Theorem 3.16 is to come up with an up-
per bound on the size of a characteristic matrix for a logic L which has can-
cellation and is also finitely determined and locally tabular. Indeed, if L is
Fmn-determined, and s : N → N is the function that assigns to each natural
number n the number s(n) of ≡n-classes of Fmn, then our result shows that
the logic can be given a characteristic matrix whose size is at most s(n · 2s(n)).
This bound is tight, e.g., for CPL (assuming the language includes at least one
nullary connective), as s(0 ·2s(0)) = s(0) = 2. It may be interesting to study this
tightness (or possible improvements of the upper bound) for other well-known
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finite-valued logics (e.g., logics determined by a finite Heyting or  Lukasiewicz
algebra).

As noted earlier, in the absence of local tabularity, the construction in Theo-
rem 3.16 cannot be used to establish a connection between Fmfin-determinedness
and the cardinality of a characteristic matrix for a logic that has cancellation.
We wonder whether such a connection exists, and which other abstract property
would correspond to a logic having a denumerable characteristic matrix. Int is
known to have no denumerable characteristic matrix, but on the other hand it
also fails Fmfin-determinedness.

From the point of view of algebraic logic it would be interesting to study
the properties of some algebra-based semantics for a logic that correspond to
the various notions of finite-valuedness we considered. For example, it is not
hard to show that an algebraizable logic6 L is strongly finite if and only if
the algebraic counterpart of L is finitely generated as a generalized quasivariety.
Can this result be generalized to wider classes of (or even arbitrary) logics? The
answer seems far from obvious, also because a precise formulation of the problem
depends on which class of algebras we take as the algebraic counterpart of an
arbitrary logic (several well-motivated options are considered in the literature,
see [11]).

The characterizations provided in the present paper, together with the result
on the independence of the involved properties, give a new perspective on the
notion of finite-valuedness. For instance, it is now clear that the divide between
a logic admitting a semantics given by a finite set of finite matrices and a
single finite matrix is exactly cancellation, a property that is not related to
the number of truth values involved. As observed in the introduction, such
a strict notion of finite-valuedness leaves out Kleene’s logic of order K≤ [11],
which is given by two three-valued matrices that furthermore have the same
underlying algebra, and thus differ only on the sets of distinguished elements.
This situation corresponds to the notion of generalized matrix: an algebra with
a family of sets of distinguished elements instead of just one set, and may be
useful for this discussion. In fact, it follows from the proof of Theorem 3.14
that a logic is given by a finite generalized matrix if and only if it is given by a
finite set of finite matrices, for all the matrices in the class MLn share the same
algebra Fm∗n and hence form a generalized matrix. In light of our results, one
may thus argue that a more appropriate notion of finite-valuedness for a logic
would be to be characterizable by a finite generalized matrix, which is exactly
captured by Fmfin-determinedness plus local tabularity.

We would like to extend these characterization results to non-deterministic
matrix semantics (see e.g. [2]). It is not hard to see that any logic given by a
finite set of finite non-deterministic matrices is Fmfin-determined. Furthermore,
if n is an upper bound to the cardinality of the non-deterministic matrices, then

6Most well-known logics in the literature are algebraizable, for example classical and intu-
itionistic logic, (the global consequence of) normal modal logics,  Lukasiewicz infinite-valued
logic (corresponding to, respectively, Boolean algebras, Heyting algebras, modal algebras and
MV-algebras). Natural examples of non-algebraizable logics abound, too: for example the
above-mentioned Kleene’s logic of order is not algebraizable. For a reference, see [6].
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the logic is Varn-determined. We may therefore ask: which additional properties
(if any) are needed to capture this broader notion of (non-deterministic) finite-
valuedness?

The property of ∆-determinedness seems to deserve further investigation
by itself. The fact that classical logic is {>,⊥}-determined is an immediate
consequence of its two-valued semantics. Something similar can be obtained
whenever a logic can express all its truth values, as it happens for example,
with the logics in Post’s hierarchy [19] (which not only can express the constant
functions but also are also functionally complete). From an abstract point
of view, one can look at formulas in ∆ as syntactical truth values for a ∆-
determined logic. It may be interesting to study such a logic by exploring the
structure of the set ∆, whenever it is, for example, finite or constituted by
formulas with a certain recursive shape pattern.
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