Fibring Logics with Topos Semantics

M. E. Coniglio! A. Sernadas®> C. Sernadas?

I Departamento de Filosofia, Universidade Estadual de Campinas, Brazil
2 CLC, Departamento de Matemética, IST, Portugal

Abstract

The concept of fibring is extended to higher-order logics with arbi-
trary modalities and binding operators. A general completeness theorem
is established for such logics including HOL and with the meta-theorem
of deduction. As a corollary, completeness is shown to be preserved when
fibring such rich logics. This result is extended to weaker logics in the cases
where fibring preserves conservativeness of HOL-enrichments. Soundness
is shown to be preserved by fibring without any further assumptions.

Key words: Modal higher-order logic, categorical logic, completeness, conservative ex-
tensions.

1 Introduction

Given the interest in the topic of combination of logics [2] and the significance of
fibring [5, 6, 10, 13] among the combination mechanisms, we have been following
a research program directed at establishing preservation results on fibring. In
[16] we established the preservation of completeness when fibring propositional
based logics endowed with an algebraic semantics. This transference result was
later extended to first-order based logics in [12], albeit at the expense of a quite
complex semantics.

It seems worthwhile to pursue also the study of fibring of higher-order based
logics. Indeed, the applications that have been motivating our work in com-
bination of logics require sometimes the use of higher-order arbitrary binding
operators (like quantifiers but not only), besides arbitrary modal-like opera-
tors. Typical applications of powerful techniques for combining logics include
(but are not restricted to) multiformalism (read multilogic) approaches in soft-
ware engineering, security, knowledge representation and linguistics. In such
approaches the use of several logics in the same project is the rule, rather than
the exception. In short, a specification/theory is build with fragments scattered
over several logics. Fibring can help here by allowing the use of a unique logic
where all fragments can be expressed and, more importantly, related and mixed.
On a more theoretical vein, we also had hopes that working with higher-order
logic would allow a simpler, more abstract semantics for binding operators,
when compared with the technical difficulties we faced in [12] where we worked
only with first-order structures. It turned out to be the case.

In this paper, we start by defining in Section 2 a wide class of logic systems
endowed with topos semantics and with Hilbert calculi possibly including rules
with provisos. This class is shown to encompass many commonly used logics,
such as propositional logics, modal logics, quantification logics, typed lambda
calculi and higher-order logics. Arbitrary modalities and binding operators are
allowed, as well as any choice of rigid and flexible functions.

The proposed semantics is a generalization of the traditional topos semantics
of higher-order logic. This generalization preserves the simplicity and elegance
of the traditional one, while being able to cope with arbitrary modalities, quan-
tifiers and other binding operators. Two entailments are defined: the local
entailment as usually used in categorical logic and the global entailment nec-
essary to deal with necessitation and generalization. Examples are given of
common logics for which it is possible to lift the original semantics to the topos
semantics level, while preserving the denotation of terms (and formulae). This
shows that no great generality is lost by assuming that we are working with
logics endowed with the proposed topos semantics.

The proposed deduction mechanism is in the Hilbert calculus style, but
allowing rules with provisos. A formal treatment of provisos was first proposed
n [11]. Such a formal treatment is necessary when combining logics since we
must be able to know how to apply rules from a given logic in the environment of
the combined logic. In this paper, we develop a quite simple notion of universal
proviso that is enough for the purpose at hand of fibring deduction systems
using only provisos related to binding.

In Subsection 2.4, a general completeness theorem is established by first
showing that every consistent deduction system including HOL and with the
meta-theorem of deduction (MTD) has a canonical model. The construction
of the canonical model follows the traditional approach in topos semantics of
higher-order logic (see for instance [1]), but with the adaptations made neces-
sary by the richer language (arbitrary modalities and binding operators) and
the need to work with two entailments.

In Section 3, we start by defining both unconstrained and constrained fibring
of logic systems in the sense of Section 2 and show that soundness is preserved
by fibring. Then, as a direct corollary of the completeness theorem of Subsec-
tion 2.4, we obtain a first completeness preservation result: the fibring of full
logic systems endowed with deduction systems including HOL and with MTD
is also complete. We also show that, under some weak conditions, a full logic
system is complete iff it can be conservatively enriched with HOL. Then, as
a direct corollary of this result, we obtain a second completeness preservation
result: the fibring of two full, complete logic systems is complete provided that
conservativeness of HOL-enrichment is preserved. We leave as an open problem
finding sufficient conditions for the preservation of HOL-enrichment.

2 Higher-order based logics

We make precise in this section the notion of logic system (signature, class of
models, deduction rules) that we need. We conclude the section with a general

completeness theorem.

The envisaged notion of logic system was chosen carefully having in mind
two main goals: (i) it should be general enough to encompass many commonly
used logics, namely with arbitrary modalities and (possibly higher-order) bind-
ing operators like quantifiers; (ii) it should be possible to construct a logic
system (in our sense) from any given such logic preserving the denotation of
terms/formulae at each model.

The first desideratum is motivated by the homogeneous scenario that we
want to set up for fibring. Indeed, in such a scenario, when combining logics
one assumes that all of them are presented in the same style (with signatures
of the same form, with models of the same kind and with deduction systems
of the same nature). That is, in the homogeneous scenario, when combining
two logics we assume that they are objects in the chosen category of logics.
Therefore, the first part of this section is dedicated to setting up the category
Log of logic systems where in the next section fibrings are to be defined as
(universal) constructions.

It should be mentioned that the homogeneous scenario is obviously much
more tractable than the heterogeneous one. In the heterogeneous case, we
may want to combine, for instance, a logic endowed with a tableaux deduction
system and a logic endowed with a Hilbert (axiomatic) deduction system. At
the semantic level logics can also be presented in dramatically different styles.
The applications we have in mind (mentioned in the Introduction) require that,
in the future, the problem of heterogeneous fibring should be addressed and
solved.

Meanwhile, fibring in the homogeneous scenario can be put to useful work
if we are able to provide a means to convert any given logic to a logic system
in our sense. That is, before combining two logics we first present them as
logic systems in the category Log defined in this section. Then, we are able to
proceed with the fibring in a homogeneous situation.

The second desideratum above addresses this preparation step. The least
we would like to have is to make sure that the conversion step preserves the
entailments of the given logic. Indeed, we can claim the logic was not changed
if the entailments are the same.

But we go further at the semantic level. We would like to recognize each
model of the original logic in the corresponding logic system. A similar re-
quirement should of course apply to the language. We would like to be able to
recognize each symbol of the original logic in the corresponding logic system,
while preserving the language. On the other hand, we refrain to address the
problem of converting the deduction rules and we assume that the logics are
given from the beginning with a Hilbert axiomatic system.

2.1 Language

Assume given once and for all the set S with distinguished elements 1 and €.
We denote by ©(S) the set inductively defined as follows: (i) s € ©(S) whenever
s€S; (i) (01 x -+ x 0,) € O(S) whenever 04,...,60, € O(S) for integer n > 2;
(iii) (0 — 0') € O(S) whenever 0,6 € ©(S). As usual, we write " for the n-th

power of @ (the product of § with itself n times) and by convention 6° is 1 and
0! is 0. The elements of S are known as sorts or base types. The elements of
©(S) are known as types over S. Base types 1 and € are called the unit sort
and the truth value sort, respectively. Assume also as given once and for all the
families

o == {Zg}pcos) where each =y is a denumerable set;
o X = {Xp}oco(s) where each Xp is a denumerable set.

The elements of each =y and Xy are called schema variables and wvariables,
respectively, of type 6.

Definition 2.1 A signature is a triple ¥ = (R, F, Q) such that:
o R = {Ryo}gpco(s) where each Ry is a set;
o F'={Fyo }o9co(s) Where each Fyy is a set;

e = {Q90’9”}97g/’9//€@(5) where each Qggrgr is a set. A

The elements of each Ryg are called rigid function symbols of type 66’. The
elements of each Fpy are called flexible function symbols of type 06’. The
elements of each Qgggr are called (binding) operator symbols of type 66'0" like
quantifiers but also lambda-abstraction and set comprehension.

Definition 2.2 The family ST(X) = {ST(X)g}gco(s) is inductively defined as
follows:

o { € ST(X)y whenever & € Zy;

x € ST(X)g whenever x € Xp;

&8 € ST(X)g whenever £ € Zy, v € Xg and &' € Eyy;

(rt) € ST(X)y whenever r € Rggr and t € ST(X)g;

(f t) S ST(E)@/ whenever f € Fyg and t € ST(Z)@;

(qrt) € ST(X)gr whenever q € Qggrgr, x € Xg and t € ST(X)g;

(t1,...,tn) € ST(X)g, x...xp, Whenever t; € ST(X)p, for i = 1,...,n with
n # 1;

(t); € ST(X)p, whenever t € ST(X)g, x...xp, for 1 <i<mn withn>2. A

The elements of each ST(X)g are called schema terms of type 6. Schema
terms of type €2 are also known as schema formulae. Schema terms without
schema variables are called terms: T(X)g denotes the set of terms of type 6.
Schema formulae without schema variables are called formulae. We write SL(X)
and L(X) for ST(X)q and T'(X)q, respectively.

The traditional concepts associated to binding operators are assumed to be
carried over to this language. For instance, an occurrence of a variable x in
a term t is said to be bound iff it appears within the scope of some (binding)
operator ¢ applied to x. Note that x is bound in 52’,.

The following examples show that the proposed notion of signature is rich
enough to encompass a wide variety of logics. More importantly, the generated
language is not changed in any significant way.

Example 2.3 Modal propositional logic.
Given a traditional propositional signature P (the set of propositional vari-
ables):

e The members of the families R and F' are empty, except:

— Rig = {f,t};
— Raa ={~}
— Rz ={\,V,=, &}
- Fa="7P;
— Faq ={0,0}.
e All members of the family @ are empty. AN

Example 2.4 Propositional logic.

As in Example 2.3, except Foqo = (). Note that it is useful to keep the propo-
sitional symbols as flexible for the purpose of fibring as will be explained in
Section 3. A

Example 2.5 First-order predicate logic.

Given a first-order signature (G, P) where G = {G,}nen and P = {Pp}pen+
(the families of sets of fol function symbols and predicate symbols, respectively,
of different arities) and a base sort i different from 1 and Q:

e All members of the families R and F' are empty, except:

— Riyny =G, for n € N;

— Raqa ={—};

— Razq ={\,V,=, &}
— Fjng = P, for n € NT,

e All members of the family @ are empty, except:

- Qina = {3,V}.
Note that, again having in mind interesting fibrings, here we chose functions to
be rigid and predicates to be flexible. A

Example 2.6 Pure typed lambda-calculus.

e The members of the families R and F' are empty, except:

— R(9—0)x0)0r = {aPPyo };
— Rp2q = {=0}-

e All members of the family () are empty, except:

— Qgor(9—01) = {Noor }-

Note that here we chose not to include flexible elements in the signature. A

Example 2.7 Higher-order intuitionistic logic.

e The members of the families R and F' are empty, except:

— R(9—0)x0)0r = {aPPgo };
— Rp2q = {=0}-

e All members of the family @ are empty, except:

— Qonv—a) = {setq}.

Note that we chose not to include flexible elements in this signature that will
be denoted by Ypor, in the sequel. Other logical operations (true, false, the
propositional connectives and the traditional higher-order quantifiers) can be in-
troduced through abbreviations as can be seen in any standard book on higher-
order logic (for instance [1]). A

In subsequent examples, we may omit the typing of the variables and other
symbols when no confusion arises, writing = for =y and so on. We may also use
traditional infix notation, writing (y1 A y2) for (A{y1,7v2)), {z : 7} for (setz),
t(t") for (app(t,t’)) and so on. Finally, we may write simply f instead of (f())
whenever f € Fyy.

2.2 Semantics

When working with higher-order based logics, it is natural to adopt a topos
theoretic semantics in the style of categorical logic (see for instance [9]).

However, a slight generalization is needed in order to fulfill the second
desideratum discussed a the beginning of this section. Indeed, given a (pos-
sibly general) Kripke semantics of an arbitrary modality we would like to be
able to generate the corresponding topos semantics while preserving the origi-
nal models in a precise sense: each of the original models should be converted
into a topos model with the same denotation of terms/formulae.

We tried to achieve this objective with the traditional topos semantics in
categorical logic. The obvious approach led us to consider the (modal) complete
Heyting algebra of truth values induced by each Kripke model. Then, each
such algebra H induced a topos by the well known technique of H-sets (see
for instance [15]). But the approach failed badly for non-S4 modalities. With

hindsight, this should be expected by the essentially intuitionistic nature of the
approach. Indeed, the internal modality of traditional topos semantics is of
course the intuitionistic box and, therefore, a S4 box (see for instance [7]).

Since we wanted to be able to cope with arbitrary modal-like operators
we were led to a more general topos semantics achieved by endowing each
model with an extra parameter (an object W of the topos) playing the role
of the world space. As shown in the examples at the end of this subsection,
this generalization was effective with respect to the issue at hand: denotation
of terms/formulae is preserved when obtaining a topos model from a model
in a given logic. Hence, entailment is also preserved. Furthermore, the extra
parameter also allows an explicit distinction between modal and other operators
that helps a reader better acquainted with more traditional semantics.

However, it should be stressed that the extra parameter is not necessary for
achieving completeness (as proved in Subsection 2.4). It is only necessary for
being able to generate a topos model from each given Kripke model preserving
the denotation of terms/formulae. As explained before, this is essential in order
to make the homogeneous scenario of fibring more useful in applications.

From now on, we use the following notation in the context of topos theory.
If f: Ax B — C then trn(f, B) : A — CF is the exponential transpose of f
obtained from the definition of CB. If g : A — CB*P then ctr(g,D): Ax D —
C?B is the exponential cotranspose of g obtained from the definition of (C5)P
and the isomorphism between (C?)P and CB*P. Given an object A of a topos
&, we denote by Sub(A) the lattice of (equivalence classes of) subobjects of A.
Finally, the extent (or support) of an object A, denoted by E(A), is the (domain
of the) subobject of 1 given by 3, (id4) (where !4 is the unique morphism from
A to the terminal object 1).

Definition 2.8 A X-structure is a triple M = (£, W, -ps) where € is a topos, W
an object of £ such that E(W) = 1, and -j; an interpretation map such that:

e for 0 € ©(S), O) is an object of £ such that:

— 1)y is terminal;

— Q, is subobject classifier §2;

— (01 X - X Op)pr = b1 X -+ X Opap;
(0= 01 = (B)

o for r € Ry,

— 7 = {rMr}reo(s) Where rasr € E((Oar)™, (0'3)™) (the set of mor-
phisms from (657)™ to (6’37)™)). The family 73, must be natural in
the following sense: given 7,7 € O(S) and m € E(W x 137, W x7/01),
n € EW x1/n,00), then ctr(rpsotrn(n, 7/ a7), 7' ar)om = ctr(rasro
trn(nom, Tar), Tar);

e for f € Fyyr,

— fu = {furtreos)y where farr € E((0ar)"V*™, (6'3)"*™). The
family fj; must be natural in the following sense: given 7,7’ € ©(S)
and m € EW x 1, W x 7'ap), n € EW x 7/51,0), then ctr(fpr o
trn(n, W x 7/37), W x 7/pr) om = ctr(farr o trn(nom, W x mpr), W X
™);

o for q € Qogor,

— g = {qmr}reo(s) where garr € E((0'2)™ %M, (6”3)™). The fam-
ily gy must be natural in the following sense: given 7,7 € ©(S)
and m € 5(W X Tar, W X 7'/]\4)7 n € 5(W X Ty X QM,QIM), then
ctr(qpr o trn(n, 7'ar X Opr), 7' ar) o m = ctr(qpr © tro(n o (m X
l'dgM),TM XHM),TM). A

We denote by Str(X) the class of all X-structures. We now turn our attention
to the definition of the denotation of terms in a given Y-structure. To this end,
we need to recall the notion of context.

By a context we mean a finite sequence & = x . .. x, of distinct variables. We
denote by [| the empty context. Given a context & = x; ... x, where the variables
r1,...,T, are of type 01,...,0,, respectively, we write 6z for 6; x --- x 6,, and
say that 6z is the type of the context #. This convention is obviously extended
to the empty context: 0 is 1.

Given a set of terms using a finite number of free variables, we may refer to
its canonical context formed exclusively by those free variables (this canonical
context is unique once we fix a total ordering of the variables).

In the sequel we shall need to use ST(X, Z), SL(X, %), T(X, Z) and L(X, %)
with the obvious meanings: we use only variables in the indicated context.

The following definition is a slight generalization (made necessary by the
modal dimension) of the traditional notion in categorical logic.

Definition 2.9 Let £ = z1,...,z, be a context with type 0z = 01 X --- x 0,
and Oz = 011 X - -+ X Oppr. Then, the denotation

[T(S, &) — EW x Oz, 6))
of terms of type 6’ with free variables in Z is inductively defined as follows:

°]]M = p; where p; is the projection from W x Ozp; to 0;,r;

(rt ctr(rarg, o trn([t]3, 0zar), Oz01);

[=
[
[(f)Mf = ctr(fuo, o trn([t]2, W x Ozn), W x Oz1);
[
t

(qzt)]¥ = ctr(qug.,. o trn([[ty]]%, Oz X Oar), 0z1) where y is of the same

z
ype 0 as x and does not occur in T

[OT2 = "oz

[{tr,. ot = ([[l for & > 2;

o [(1):i]3 = p; o [t]¥ where p; is the projection from @1ps X - -+ X Ops to
Oin- A

Let M be a Y-structure. Since, according to Definition 2.8, the families rj;
(for r € Rggr), far (for f € Fygr) and qpy (for ¢ € Qggrgr) are natural, then it is
straightforward to prove by induction the Substitution Lemma for ¥-structures:

Proposition 2.10 Let ¢’ be a term free for a variable z in a term ¢. Then, for
any Y-structure M and appropriate contexts ¢ and Z, it holds:

M M M
[ti]1 7z = [tz o (7, []52)
where 7 : W X Oy X Oz — W X Oy is the canonical projection.

Finally, we go for the definition of entailment (actually, of two entailments)
for a given class of ¥-structures.

Definition 2.11 An interpretation system is a pair S = (X, M) where X is a
signature and M is a class of X-structures. A

In the sequel, we shall need more notation from topos theory. Given y :
A — Q we denote by mon(x) : dom(mon(y)) — A the monomorphism obtained
in the pullback of the diagram determined by {x, true}. The order in Sub(A)
is given as follows: [f] < [g] iff there exists an arrow h : dom(f) — dom(g)
in £ such that f = goh. If x1,x2 : A — Q then we define xy; < xo iff
[mon(x1)] < [mon(x2)]. Given [f],[g] € Sub(A) and an object B then: [f] < [g]
iff [f x idg] < [g X idp], provided that E(B) = 1 (see [3]). Finally, for each
objet A, truey denotes the arrow trueoly : A — Q and A denotes the infimum
in the lattice Sub(A).

Definition 2.12 Given an interpretation system S, ¥ C L(X,Z) finite and
v € L(X,7), we say:
o U globally T-entails ¢ within &, written ¥ ':‘sf p, iff, for every M € M,

[[ap]]fvl/[= trueywg,,, Whenever /\ [[w]]iy = truew xo,,,;
PeV

o U globally entails ¢ within S, written ¥ l=§ p, iff ¥ |=‘§£ o choosing for &
the canonical context of ¥ U {¢};

o VU Jocally Z-entails ¢ within S, written ¥ |=de p, iff, for every M € M,
A 1Y < [eld

pew

o VU Jocally entails ¢ within S, written W |=‘§ p, iff U hgf @ choosing for &
the canonical context of ¥ U {p}. A

10

It is then straightforward to prove for any VU{p} C L(X,Z): ¥ l=§ @ implies
v ':‘S:z w; and ¥ IZ‘C? implies ¥ Ing . The converses are not necessarily true,
because we allow empty (initial) domains in the interpretation of types.

For these entailments, we may drop the reference to the assumptions when
U = (). And we may also omit the reference to the interpretation system.

The local entailment defined above coincides with the traditional notion of
entailment in categorical logic. The global entailment proposed above brings
to the topos setting the notion of global entailment already common in modal
logic.

As already mentioned, the following two examples (modal propositional
logic and first-order logic) show that for many common logics it is possible to
lift the original semantics given to those logics to the topos semantics level,
while preserving the two entailments. For such logics, working with the original
semantics or with the proposed topos semantics is equivalent. For this reason,
not much generality is lost by assuming from now that the logics we are working
with are endowed with the topos semantics.

2.2.1 Modal propositional logic

Let ¥ be a signature as described in Example 2.3. Assume we are given a
class K of general Kripke structures for ¥ of the form K = (W, R, B, V). This
class defines the global and local entailments as usual. Very briefly, recall that
[¢]¥ € B (the admissible set of worlds where ¢ holds) and:

ol ':§ @ iff, for every K € K, [¢] = W whenever ﬂ [[fy]]K =W,
vel

o I'EX ¢ iff, for every K € K, ﬂ | A]
vyel

The idea is to generate from K a class of 3-structures My and check whether
we recover the original entailments with the topos semantics.

For each K € K, let Mg be the YX-structure (Set, W, .y,) where, for in-
stance:

o 11+ = M. (Ad. 0);
o —ar = M. (NG B(@)°);
AMer = Ah. (Ad. (p1(R(@)) M p2(R(@))));

PMyir = M. (Aud. Vi (u)) for any p € P;

Omer = M. (Qud. | | h(v,d)).
veW: uRv

It is easy to verify that each of these families is natural in the sense of Defini-
tion 2.8.

Letting Mx = {Mk : K € K} and Sg = (X, M), it is straightforward to
prove:

11

Proposition 2.13 Let K be a class of Kripke structures for 3. Then:

o T EX @ iff T ESK o

o TEN iff T ESE o

Recall that every monomorphism f : dom(f) — A has associated an unique
morphism char(f) : A — € such that (dom(f),{f, dom(s)}) is the pullback of
the diagram determined by {char(f), true} (see [8]). Then, the result is a direct

consequence of char([¢]*) = [¢]*% which is proved by induction identifying
W with W x 1.

2.2.2 First-order predicate logic

Let ¥ be a signature as described in Example 2.5. Assume we are given a
class Z of fol structures for ¥ of the form I = (D,-7). This class defines the
global and local entailments as usual. Very briefly, recall [p]! € DX (the set
of assignments that make ¢ true) and:

o I ':g o iff, for every I € Z, [¢]’ = DX whenever ﬂ [[fy]]f = D%,
~er

o I'FL ¢ iff, for every I € Z, ﬂ [V]F €[]
yel’

Again, we envisage to generate from Z a class of Y-structures Mz and check
whether we recover the original entailments.
For each I € 7, let My be the Y-structure (Set, 1,.5s,) where, for instance:

e iy, =D
* gryr = Ah. (M. g1(p1(h(@)), . . ., pn(h(d)))) for any g € Gn;

o —arr = M. (AG. (h(@))°);

e = M. (Aud. 7 (pr(h(u, @)), . .., pp(h(u, @)))) for any m € Py;

Ingr = M. (M. || h(@, d)).
deD

Again, it is easy to check that each of these families is natural in the sense of
Definition 2.8.

Letting Mz = {M;: I € Z} and Sz = (X, M7), it is again straightforward
to prove:

Proposition 2.14 Let 7 be a class of fol structures for . Then:
o Flzggoiﬁfi:gfcp;

o TEX piff TEYT o

12

2.2.3 Higher-order intuitionistic logic

Higher-order logic is usually defined with topos-theoretic semantics. However,
it is worthwhile to show how that semantics is adapted to our more general
setting. Let X por, be the signature described in Example 2.7. We establish the
semantics of this logic by endowing it with the class M%OL of all X-structures
of the form M = (£, W, -ps) such that:

e appyy - = tra(eval(fyr,04,) o eval(tar, (05,)%™ x 6pr), Tar) (Where the
arrow eval(B, A) : B x AP — A is the evaluation map obtained from the
definition of exponential AP);

e —¢n;r = trn(char(diag(fnr)) o eval(Tar, Onr X Oar), Tar) (where the diagonal
map diag(A) : A — A x A is the monomorphism (id4, id4));

e setygysr = tro(trn(eval(tyr X 0pr, Q) ocan, Opr), Tar) where can is the canon-
ical isomorphism from (Q™ > x 731) x Oy to Q™MXIM (131 x Oyf).

Clearly, this adaptation leaves the entailments unchanged since the extra W
has extent 1 (see [3]) and we have no flexible symbols. Observe that these
morphisms are natural by construction.

2.3 Deduction

We now leave for a moment semantic concerns and concentrate on making
precise the notion of deduction system we want to work with. Such systems
include in general inference rules with provisos. For instance, dp = Vx §p can
be inferred from 6 = Vx d provided that “x is not free in dp”. So, we start by
defining what we mean by a proviso as a “predicate” on substitutions.

By a X-substitution p we mean a O(S)-indexed family of maps from =y to
T(X)g. As usual we write tp instead of p(t) for any t € ST(X), where p :
ST(Y) — T'(X) is defined inductively from p as expected. It is only worthwhile
to mention that [)(527,) = (¢ ,0)2", ,» Where the right-side expression is the X-term
obtained from £p by replacing every free occurrence of x by & p. We denote by
Sbs(X) the set of all ¥-substitutions.

Analogously, we define a schema X-substitution o as a O(5)-indexed family
of maps from Zy to ST(X)g, as well as the induced map 6. And we denote by
SSbs(X) the set of all schema X-substitutions.

Let ¥ be a signature in the sense of Definition 2.1. By a local X-proviso we
mean a map 7 : Sbs(X) — 2. Intuitively, w(p) = 1 iff the X-substitution p is
allowed. Recall the example above: §p = Vx dp can be inferred from § = Vx d
provided that “z is not free in §p”. In this case the envisaged proviso is defined
by: m(p) = 1 iff = is not free in dp.

But this local notion of proviso is not enough. Indeed, for the purpose
of fibring, we shall need to be able to translate rules from one signature to
another. So, we need a universal notion of proviso that may be evaluated at
any signature.

To this end, simplifying from [11], we start by setting up the category Sig of
signatures with the obvious morphisms. In this category, the signature ¥; with

13

three families of singletons is terminal. We denote by !s; the unique signature
morphism from ¥ to .
Observe that any given local 31-proviso 7w can easily be extended to another
signature X as follows: X
ms(p) = (s 0 p).

(Here, as usual, h denotes the unique extension of h : ¥ — ¥’ to the language
of schema terms.) Therefore, we are led to the following definition:

Definition 2.15 A (universal) proviso is a map II : Sbs(¥X1) — 2. A

Observe that provisos about binding are universal in this sense. That is,
they can be defined in the terminal signature and extended as above to other
signatures. For instance, that is the case of the proviso “z is not free in §p”
taken as motivating example.

We denote by Prov the set of all (universal) provisos which includes the unit
proviso U such that U(p) = 1 for every X;-substitution.

We are finally ready to state what we mean by an inference rule (premises,
conclusion, proviso) and, afterwards, to introduce the notion of (Hilbert) de-
duction system.

Definition 2.16 A X-rule is a triple (I", §, II) where ' U{d} C SL(X) and IT is
a (universal) proviso. A

When I" = () the conclusion § of the rule is also known as an aziom. When
I" is finite the rule is said to be finitary.

Definition 2.17 A deduction system is a triple D = (3, Rq, Rp) where X is a
signature and both Rq and R, are sets of finitary ¥-rules and Rg CR,. A

The elements of R, are called proof rules and those of Rq are known as
derivation rules. As we shall see, the former reflect global entailments and the
latter local entailments. Naturally, deductions appear also in two forms: proofs
and derivations.

But, before defining proof and derivation, we need some further notation
about provisos. If II,II" € Prov then the proviso II M II" € Prov is defined as
follows: (IIMII")(p) = 1iff TI(p) = I'(p) = 1. Furthermore, we say that IT < II'
iff I = II N 1II'. Finally, given II € Prov and a schema Y-substitution o, we
denote by (Ilo) the (universal) proviso defined as follows:

(o) (p) = (0 s; 0 0).

Definition 2.18 A #-proof within a deduction system D of § € SL(X, &) from
I' C SL(X,%) with proviso II is a sequence of pairs (01,II1),..., (dy,1I,) in
SL(X, Z) x Prov such that ¢, is d, II,, is IT and for each i = 1,...,n:

e either §; € I" and II; is arbitrary;

14

e or there is a rule ({7{,...,7;},0",II') € R, and a schema ¥-substitution
o such that:

L. foreachj =1,...,k, thereisai; € {1,...,i—1} such that §;, = ’yg-a;
2. 0; =00
3. II; <11, I—]"'l_lHik M (H,O').

When there is such a Z-proof in D of § from I with proviso II, we write T’ I—Ej.
d0<II. And when there is a context T such that I’ I—% 0<IT we write I‘}—pD5<1H. VAN

Definition 2.19 A #-derivation within a deduction system D of 6 € SL(X, %)
from I" C SL(X, Z) with proviso II is a sequence of pairs (01,111),..., (o, ;)
in SL(X, Z) x Prov such that d,, is d, II,, is IT and for each i =1,...,n:

e either §; € I" and II; is arbitrary;
e or () l_Ef 5; < 11;;

e or there is a rule ({7{,...,7;,},0",II') € Rq and a schema ¥-substitution
o such that:

L. foreach j =1,...,k, thereisai; € {1,...,i—1} such that &;; = vjo;
2. 0; =0o;
3. II; < Hil I_I"'l_IHik M (H,U).

When there is such a Z-derivation in D of § from I' with proviso II, we write
T I—% 6 < II. And when there is a context & such that T’ |—de 0 < IT we write
T'Hq7 6 <11 A

As usual, with respect to both proofs and derivations, we may drop the
reference to the assumptions when I' = () and the reference to the deduction
system. Furthermore, when II = U we may also omit the reference to the
proviso.

By putting together an interpretation system in the sense of Subsection 2.2
and a deduction system we are led to the following notion of logic system.

Definition 2.20 A logic system is a tuple £ = (¥, M, Rq,Rp) provided that
S¢ = (¥, M) is an interpretation system and Dy = (X, R4, Rp) is a deduction
system. A

Given a logic system £ and o € {p,d}, we write ¥ F~. ¢ for ¥ l=f§ ¢ and
T FE STl for T HDF 5 <L

Definition 2.21 A logic system L is said to be:

e sound iff, for each o € {p, d}, any context #, and finite VU {p} C L(X, Z),
the entailment ¥ IZéE © holds whenever ¥ }—Oﬁf ®;

15

e completeiff, for each o € {p,d} and WU{p} C L(X), the deduction ¥+, ¢
holds whenever ¥ EX . A

Remark 2.22 A few words about the definition of soundness stated above.
The intended definition of soundness of a logic system L is, for o € {p,d},

\IJI_OL:QD implies ¥ |=§ ®.

Unfortunately, this definition is not correct in the realm of logic systems, be-
cause of the (possibly) empty domains interpreting the types. In fact, from
W, 9 EE o and ¥ X ¢ we cannot infer ¥ EX o, for o € {p,d} (see, for instance,
[1]). On the other hand, it is obvious that any logic system L satisfies the
following property: from W, LZJI_OEQO and Uk,“1 we infer \I”_OEQD, for o € {p,d}.
Therefore the standard definition of soundness must be changed, and we must
live with the fact that it is possible to have

\Ifl—oﬁgo but ¥ E/OL ©

even in a sound logic system L. A

The following semantic concepts associated to how well structures fit rules
are used in the sequel. A Y-structure M is said to be appropriate for a deduction
system D iff, for o € {p,d},

¥ &0

oF

© whenever ¥ }—?5 ©.

For each o € {p,d}, a E-structure M is said to tze o-appropriate for a X-rule
(T, ,11) iff for every X-substitution p such that II(!x 0 p) =1,

Lp &AM 5),

Clearly, a ¥-structure is appropriate for a deduction system D = (£, Rq, Rp)
iff it is d-appropriate for every derivation rule in R4 and p-appropriate for every
proof rule in R,

For each o € {p,d}, given a set R of X-rules, we denote by Ap,(R) the class
of all ¥-structures that are o-appropriate for the rules in R. Moreover, given a
deduction system D, we define Ap(D) = Apy(Ra) N Ap,(Rp)-

Clearly, a logic system £ = (¥, M,Rq,Rp) is sound iff M C Ap(D.).
Finally, a logic system L is said to be full iff M = Ap(Dy).

We conclude this subsection with two interesting examples.

2.3.1 Modal propositional logic

Let X be a signature as described in Example 2.3. We establish the deductive
component of the modal logic K by endowing it with the set Rq composed of
the following rules:

tautl: (0,& = (&= &), U);

16

taut2: (0, (&= (&= &)= (G = &)= (& =§)),U);
taut3: (0, (~& = -&) = (6= &)= &), U);
norm: (0, (0(€ = &)) = ((06) = (0&))). U);

P: ({&1, (&= &)} &, U
and the set R, containing the rules in Rq plus necessitation:
NEC: ({¢:}, (06). U).

By endowing this deduction system with the class of all structures appro-

priate for it we obtain a full logic system that we call MPLg.

2.3.2 Higher-order intuitionistic logic

We need some additional notation for provisos:

e r < ¢ denotes the (universal) proviso that, for each p € Sbs(X;), returns
the value of the assertion “x occurs free in §p”;

e = £ ¢ denotes the (universal) proviso that, for each p € Sbs(X1), returns
the value of the assertion “x does not occur free in §p”;

e 01 > x : Jo denotes the (universal) proviso that, for each p € Shs(%;),
returns the value of the assertion “41p is free for x in d2p”.

Let YXgor be the signature in Example 2.7 and recall the usual set-theoretic
abbreviations in the context of higher-order logic. For instance, Uy stands for
{27 : t} and t)! for {h Ct; x ty : Va(zx €ty = Ay((y € ta) A ((z,y) € h))}.

The deductive component of the envisaged higher-order logic is as follows
(omitting the types of schema variables, variables and other symbols and as-
suming that ¢ € N, k£ > 2 and 0, 04, ..., 0y are types):

e R4 is the set composed by:

tautl: (0,.& = (&= &), U);

taut2: (0, (61 = (2= &) = (1= &)= (&= §&)), U)
taut3: (0, (&1 = &) = (G = &) = (1= (82AE))), U);
tautd: (0,& = (&= (&1 &), U);

uni: (), Vzi(xz1 = (), U);

equa;g: (0, (&1 = &) = (&3¢] = &s)), (> 21 &3) T (&2 > ;1 &3))s
refp: (0,Va1(z1 = 1), U);

Projio,..o0it (0,Vxy - -Vap(((z1,...,25)i = 2;), U) for 1 <i <k;
prodyg, gt (0,Vzi(x1 = ((z1)1,. .., (z1)k), U);

comphy: (0,Vxi(x1 € {z1: &} < &), U);

subs; p: (0, (Vail2) = &2, (G0 > 2 0 &2) M (25 < &2));

17

fung gz (0, V1 (21 € UL =NwoVaaVay (3, 24) € 216 wa(23) = 24)), U);
equiv: (), (§1= &) = (L= &) = (&4 & &), U);
MP: ({&1,61 = &}, &, U);

e R, is obtained by adding to Rq the following rules:
GEN, p: ({&1 = &}, 6 = (Voila), i A &1).

In [4] it is shown that z1 = x1, ..., 2, = xn, ¥ F4z ¢ in the sequent calculus
for higher-order logic presented for instance in [1] iff ¥ F4z ¢ in the deduction
system above (for ¥, ¢ in the language of [1]).

By endowing the deduction system presented above with the class M of
all appropriate structures we obtain a full logic system that we call HOL. It is
worth noting that this HOL contains all the traditional models M%,; described
in Paragraph 2.2.3. Indeed:

Proposition 2.23 M(I){OL C Ap(Dyor).

Proof: Let M € M%OL. We need to prove that M is o-appropriate for every
rule in R, of HOL for o € {p,d}. Note that M is d-appropriate for every axiom
of Rq of HOL other than fungy.. This is a consequence of the equivalence, stated
in [4], of Dyoy, restricted to the language of Local Set Theory, and the sequent
calculus of Bell [1]. On the other hand, M is d-appropriate for axiom fungg:. In
fact, it is well-known that, in any topos, using the properties of the subobject
classifier €, finite limits and exponentials of the form Q4 it is possible to con-
struct arbitrary exponentials (see, for instance, [8]). The fact that exponentials
appear as pullbacks of certain diagrams guarantees the d-appropriateness of M
for fungg. It is straightforward to prove the d-appropriateness of M for MP
and the p-appropriateness of M for MP and GEN, because the interpretation
of the universal quantifier is the usual in categorical semantics. QED

2.4 Completeness

We proceed now to establish a general completeness theorem about full logic
systems containing HOL and with the meta-theorem of deduction.

Let D be a deduction system. We say that: (i) D includes HOL iff the
deductive system Dyor defined in Paragraph 2.3.2 is embedded in D; and
(ii) D has the meta-theorem of deduction (MTD) iff it includes HOL and the
following condition holds: W, tq¢ iff Wkq(1 =).

In the sequel, we use the following notation. Let I' be a finite subset of
SL(X). Then (AT') denotes a schema formula obtained from I' by taking the
conjunction of all the schema formulae in I in an arbitrary order and association
(if I' = (0 then we take (AT) to be t). Let & = x; ...z, be a context. Then
(Z = Z) denotes a formula (A{z1 = z1,...,2n = zp}).

Lemma 2.24 Every deduction system D including HOL and with MTD has a
canonical model Mp = (Ep, Wp, -p).

18

Proof: In the proof we adopt the usual set-theoretic abbreviations in the con-
text of higher-order logic. For instance, as already used, Uy stands for {zf : t}
and t& for {h Ct; x tg : Va(x €ty = y((y € t2) A ({z,y) € h))}.

e Part I: The topos &Ep.

This first part of the proof follows with very light adaptations the standard
construction in categorical logic (see for instance [1]). Let ¢T'(X)g be the
set of closed X-terms of sort § € O(S), and consider the collection 2y =
Usco(s) €T(X)9—g)- We define in Ay, the following relation:

t1 ~p to iff FqP(t1 = to).

Note that t; ~p t2 implies that t1,t2 € cT'(X)p_q) for some sort 6, and ~p
is an equivalence relation. The equivalence class of t € 2y will be denoted by
[t]p, or [t] whenever D is obvious.

We define the category Ep as follows: the objects of £p are equivalence
classes [t]. We use the letters A, B, C, etc. to denote the objects of Ep. Given
A = [t;] and B = [t2], a morphism in &p from A to B is an equivalence class
[t] such that FqPt € ti'. Note that the notion of morphism is well-defined.
As usual we write g : A — B whenever g = [t] satisfies Fq”t € th'. Given
[t] = [t1] — [t2] and [¢'] : [t2] — [t3] then the composition map [t'] o [t] in Ep is
defined as

{(z,2) : (wet) A(z €ts) Ay € t2) A ({zyy) € 1) A ({y,2) € 1))},

Note that [t'] o [¢] is well-defined and [t'] o [t] : [t1] — [t3]. The composition o is
associative. Given t € Ay let idy = [{(z,x) : z € t}]. Then, idy : [t] — [{]
and idy o g =g and hoidy = h for g: A — [t] and h: [t] — B. Thus &p is a
category.

If z; € Xy, (i =1,...,n) such that x; # x; for i # j then Z will denote the
term (x1,...,2,). Let ¢, € Ay, such that ¢ and ¢’ have sort ((61 x---x6,) — Q)
and (6 —), respectively, and let § € T(Z,Z)g. If T € tHq2 € t' then
[{{(z,d) : Z € t}] is a morphism from [t] to [t'], which will be denoted by

(Z —).

Observe that this notation is somewhat inaccurate; maybe (¢ € t — 6 € t/)
would be better but, for the sake of simplicity, we prefer to maintain it.
If §; is free for y; in § then

(g — 5) o (f — <51, . 6m>) = (7_3 = 531132)

Now we will prove that Ep is a topos. Consider 1p = [U1]. For any object A
there exists an unique morphism from A to 1p given by (z — ()), therefore 1p
is terminal in Ep.

The product [t1] X [ta] of [t1] and [t2] in Ep is [t1 X ta] with canonical pro-
jections ({(z,y) — x) and ((z,y) — y).

Consider Qp = [Ug] and true : 1p — Qp given by (2! — t). Then
(Qp, true) is the subobject classifier in Ep. If [t] : A — B is a monic in &p
then char([t]) : B — Qp is given by

(y = Fz((z,y) €1)).

19

Let [t1] and [tz]. Then the exponential [t2]["!] is given by [t}']. The morphism
eval([t1], [t2]) : [t5] x [t1] — [t2] is given by

{{(ha),y) = (hety) A(xetr) A((,y) € h)}].
If [t] : A x [t1] — [to] then trn([t], [t1]) : A — [t5!] is given by
(= {{y,2) : ((z,9),2) € t}).
If [t] : A — [t5] then ctr([t], [t1]) : A x [ta] — [ta] is given by
[z, 9),2) + (we A)A(yet) AVu((z,u) €t = (y,2) € u))}].

It is easy to show that [Uy]IY¢! is isomorphic to [Up—g1)] and eval([Us], [Ug]) is
((h,z) — app(h,x)) in this case. On the other hand, [Ug] x [Ug] = [Uggxer]-

e Part II: The X-structure Mp = (Ep, Wp, -p).
Now we define a Y-structure Mp = (Ep, Wp, -p) as follows: Wp is 1p and

e Oy is [Up) for every 0 € ©(S);

o rypr is (h— {(Z,(ry)) : (Z,y) € h}) whenever r € Rgg, # appgrg:,
r =g

o farpris (b= {((1,2), (fy)) : ((z1,7),y) € h}) whenever f € Fyy;

® qupr is (b — {(Z,(qzw)) : ((2,2),u) € h}) whenever ¢ € Qooror, ¢ #
sety.

The interpretation in Mp of appyy, = and sety is as in Subsection 2.2.3. In
what follows, we will briefly analyze them. Considering [Uy]IV?! as [U(g—on)] let

g = eval([Up], [Up]) o eval([Ur], [Utg—g1)] x [Us)-
Using the results stated in Part I, we get that
9= ({1, z) — app(l',) o [{((h,Z),u) : (T,u) € h}].
From this follows easily that
9 ={{(h,T),appu) : (T,u) € h}]
and then
apPyy ripr = tro(g; [Ur]) = (h — {(z,appu) : (Z,u) € h}).
Now consider the diagonal map
diag([Up]) = (z — (z,2)) : [Up] — [Us] x [Up].
Using Part I and the deduction rules of HOL we get

char(diag([Us])) = (y — 3z((z,y) € diag([Up]))) = (y = ()1 = (¥)2))-

20

Let
g = char(diag([Uy])) o eval([U.], [Ug] x [Up]).

Then g = [{{(h, Z), (y)1 = (y)2)) : (%,y) € h}], therefore
=oMpr = trn(g, [Ur]) = (b — {(Z, (y)1 = (¥)2)) : (Z,y) € h}).
Finally, considering [Uq] %! as [Ug_q)] let
g = eval([Ur] x [Ug], [Ug]) o can,
where
can : ([Ug] "1l s [UL]) x [Ug] — [U)V" 11Vl s ([U7] x [Ug))

is the canonical isomorphism. Using Part I and the rules of HOL it is easy to
prove that

g = [{{(W,(@,2)),v) : ({z,2),v) € W'} o [{{((h,Z),2), (R, (2,2))) : t}]
= [{({{h,2),2),v) : ({Z,2),v) € h}].
Let g, = trn(g, [U]). Then
g1 = [{((h,2),u) : YaVo((z € u) =v & ((&,x),0) € h)}].
Therefore setgyr,, = trn(gy, [U7]) is given by
setgrryr = (h— {(Z,u) : Vavo((z €u) =v < ((Z,2),v) € h)}).

It only remains to prove the naturality of morphisms rps,» (where r # appgry
and r # =), fupr and qu,r (Where ¢ # sety). Observe that the other
families of morphisms are natural by construction. We only consider the case
of 7y, because the proof for the other cases is similar. Since W =1 then

rupr = (b= {(Z, (ry)) - (z,y) € h})

for every 7. Let m = [t] : Uy — Uy and n = [t'] : U — Uy. Then

Fage o trn(n,7'ar) = (21— {(7, (ry)) : (7,9) € ¥}).
Using Part I and the rules of HOL we obtain

ctr(rarss o trn(n, 7ar), 7') 0 m = [{(7, (ry)) : F5((5,7) € ¢ A (7,1) € ¢)}].
On the other hand,it is straightforward to prove that
ragr o trn(n o m, mar) = (21— {(7, (ry)) : 3((5,8) € LA (3,9) € O)}).

Hence we obtain the desired naturality of the morphism:

ctr(rpr o trn(n, 7' pr), 7' ar) o m = ctr(rasr o trn(n o m, Tar), Tar)-

21

o Part IIL: [t]}'" = ((z1, %) — 1).
Let t € T(X,Z)p. By induction on the complexity of ¢, and using the fact that
Wp is 1p (therefore [Uy] ~ Wp x [Up] for all) we prove now that

[Y7 = (21, 3) > t) : 1p x [U;] — [Up),

where 2! € X3 does not occur in #. If ¢ is a variable or ¢ is () the result is

obvious. If t is (t1,...t,) or t is (t'); the conclusion follows easily by induction
hypothesis. Tf ¢ is appgg(t1,12) then [(t1,)] = (2%, 2) — (t1,12)), by
induction hypothesis. Let

9 = aPPy a1y © tr[{t1, 12)]3. [U7]).

Using Parts I and IT we obtain that

g = (h={{@appu) : (T,u) € h})o (' = {(z,(t1,t2)) : t})

= (2!~ {(z,app(t1,t2)) : t}).
From this follows easily that
[app(t1,t2)]5® = ctr(g, [Ur]) = ((z',2) = app(t1, t2)).

If ¢ is (¢ = t2) let g be =gnrp, o trn([(t1, £2)] ¥, [U,]). Then g is

(h = {(@, (¥ = (¥)2)) = (@y) €h})o (21— (T, (tr,t2)) : t}),
therefore g = (21— {(Z, (t; = t2)) : t}). From this we infer that

[(t1 = t2)] 3 = ctr(g, [US]) = (21, &) = (t1 = t2)).

If ¢ is setgz let y be a variable free for x in ¢ not occurring in Z. By induction

hypothesis,
[pilz,2 = (% (&, 9)) = @f).

Let g = setgpry,r © trn([[apij]]%”, [U;] x [Ug]). Then g is the composite of
(h— {(z,u) : YaVu((x € u) =v & ((Z,z),v) € h)})

and
(F = {({@,y), 05) + b))
Therefore, using the deduction rules of HOL,

g = = {(Z,u) VaVo((z €u) =v & v=)})
= (1= {(z,u) : Vz(z€u & ¢)})

= (' {@f{z s o}« t}).

22

From this follows that

[setoz] X' = [{z : @} = ctr(g, [U;]) = ({z*,2) = {z : ©}).

If t is (ft), with f € Fpg and t € T'(X)y then
[t]7 = ((z',2) = ¢),

by induction hypothesis. Let g = far,- o trn([t ’]]]Y[D Wp x [Uy]) and let 2t € X;
not occurring in (z1,z). Then g is the composite of

(h— {4 2), (fy) = ((z',7),y) € h})
and
(at = {{(z12),t) : t}).

Therefore, using the rules of HOL, it is easy to see that

g=(a' = {((z1,2),(f1)) : t}).
Thus
[(F)]EP = ctr(g, Wp x [U7]) = (1, &) — (ft))
as desired. The proof for the case t = (rt’) with r € Ryy is similar. Finally,

suppose that t is qzt’, where ¢ € Qggrgr, © € Xg and t/ € T(X)g. Let y free for
z in ¢’ not occurring in Z. By induction hypothesis,

[#5157 = (1 @ 9) = 1),

Let g = qurpr © trn([[t’m]]%f’, [Ur] x [Ug]). Then g is the composite of

(h = {(z,(gzu)) : ((z,2),u) € h})

and
(' = {((Z,9), 1) : t}).

Using again the deduction rules of HOL we obtain that

g= ("~ {(z,(qgzt")) : t}).

Then
[(qzt")]3™ = ctr(g, [U]) = ((z',2) = (qat")).

e Part IV: UH,Py implies ¥ |=<E {MD}>

Let ¢ € L(X) with canonical context Z. Then FqP¢ implies FqP¢ = t implies
((z4,2) — @) = ((z1,2) — t) implies [[(p]]iyp = [[1:]]9]%/[D (by Part III) implies
#éz’{MDD . Now, let U U {p} be a finite set of X-formulae and let (A ¥)
be as introduced at the beginning of this subsection. Then WH4P¢ implies

(2/\]\\12) = ¢, because D has MTD. Then, I=<E {(Mp}) (AY) = ¢ and so
\If#< AMp}) 0.

e Part V: ¥ #@ {(Mp}) ¢ implies W4 .

23

Now we verify that Mp is a canonical model for D (w.r.t. derivations). Let
¢ € L(X) with canonical context Z. Then |=(<112’{]V[D}> ¢ implies |Ig0]]§./[f’ = [[t]]é\./[D
implies ((2%,Z) +—) = ({(2*,Z) — t) (by Part III) implies Fq”¢ = t implies
FaPp. Now, let W U{p} be a finite subset of L(X). Then ¥ F:éz’{MD}> ¢ implies
FZSE’{MDD (A¥) = ¢ implies FqP (A V) = ¢ implies 4Py, because D has
MTD.

e Part VI: Mp is appropriate for D.

By Part 1V, it suffices to prove appropriateness of Mp w.r.t. proofs. Let

U U {p} be a finite subset of L(X). If ¥ I—Ef ¢ and /\ [[@D]]QJEWD = truew x gz,

Ppew

then ES MY 4 then £ MPY oA (@ = 2), de., PPV A (7 = &) for

every 1) € W. By Part V we infer FqP A (Z = Z) and so FqP for every ¢ € .

Then F4P ¢ and so |=(<12’{MD}> o, by Part IV. Therefore [[gp}]gb = truew x gz, -
QED

Observe that the reduct to Xgor, of Mp belongs to M%OL. That is, Mp is
standard with respect to the language of pure HOL.

Theorem 2.25 Every full logic system with deduction system including HOL
and with MTD is complete.

Proof: Let § = (X, M), where M is the class of ¥-structures appropriate for

D. Consider a finite set of formulae W U {¢}. If ¥ E§ ¢ then, since Mp is

appropriate for D, we get ¥ IZSE’{MDH @. Thus UH4Pp, by Part V of the proof

of Lemma 2.24.
Finally, suppose that ¥ l=g ¢. Let # be the canonical context of ¥ U {¢}
and let DY be the deduction system obtained from D by adding the axiom

0, (\) A (@& =2),0),

where (A ¥) and (¥ = &) are as defined above. If MY is the class of X-structures
appropriate for DY then

MY ={M e M:[(\T)A (@ =2)]Y = truew oy, }-

Let SY = (X, MY). Since ES$¥ (¢ A (7 = 1)), we have £o P (64 (7 = 7))
by Part VI of the proof of Lemma 2.24. Therefore, 42" (p A\ (Z=1Z)), by Part
V of the proof of the same lemma. Hence \Ill—ngo. QED

3 Fibring
In this section, we start by defining both unconstrained and constrained forms

of fibring as universal constructions in a suitable category of logic systems.
Afterwards, we show that soundness is always preserved by fibring. Finally, we

24

address the problem of preservation of completeness, first establishing a result
in the case of rich logics (including HOL and with the MTD) and then extending
this result to weaker logics assuming the preservation of the conservativeness
of HOL-enrichment.

3.1 Concept

Let h : ¥ — Y/ be a signature morphism. Given a set R of Y-rules, the image of
R by h, denoted by h(R), is the set {(h(I'), h(5),II) : (T, 6, II) € R} of ¥'-rules.
Given a deduction system D = (X,Rq4,Rp), let h(D) = (X', h(Rq), h(Rp)).
And given a X-structure M’ = (&', W' -pp), the reduct of M’ along h, denoted
by M'|, is the X-structure (€', W' -pp o h).

Let £ = (¥, M,Rq,Rp) and L' = (X', M', R}, R},) be logic systems. By a
logic system morphism h : L — L' we mean a signature morphism h : ¥ — ¥’
such that:

[a—

. M'|, € M whenever M’ € M’;

2. for every M’ € M', M" € Ap(h(Dr)) whenever M'|, € Ap(D,);
3. h(Ra) C RY;

4. h(Rp) C Ry,

Conditions (1), (3) and (4) are to be expected from previous work on the subject
of fibring, namely [16, 10]. Condition (2) is a reasonable requirement that will
allow the preservation of soundness by fibring. Methodologically, condition (2)
should be looked upon more as a requirement on the rules of Dy than on the
models. For instance, consider the usual rule of quantified logic

O VeE= &8, € >x:g)

where the proviso has the usual meaning that no free variable in £ is captured
by a quantifier when z is replaced by £ in £. This rule becomes unexpectedly
unsound when put in an environment where modalities and flexible symbols
are available. More precisely, condition (2) will be violated when this rule
is present in £ and modalities and other flexible symbols appear in £’. For
instance, choose for £ a temporal quantified logic. Consider for £ the formula
(s =z)= (F(s > x)) where s is flexible and F is the “sometime in the future”
modality, and for ¢’ the term s. Then, £ becomes (s = s) = (F(s > s)).

Fortunately, is is easy to make rules more robust in the sense that they do
not bring problems with respect to condition (2). In the example at hand, it is
enough to reinforce the proviso with the additional requirement that no flexible
symbol in £ falls into the scope of a modality when z is replaced by ¢ in &. This
stronger proviso changes nothing in the original quantified logic but it makes
all the difference when embedding it into a richer logic such as a fibring.

This remark suggests the following definition which will be used at the end
of this section.

25

Definition 3.1 A deductive system D is said to be robust iff, for every signature
monomorphism h : ¥ — ¥’ and Y-structure M’, M’ € Ap(h(D)) whenever
M'|h € Ap(D). A logic system L is said to be robust iff D, is robust. A

It is trivial to make robust any given logic system. Indeed, the brute force
method (including in all rules the additional requirement forbidding foreign
categories of symbols) always works. For instance, if a logic system has no
flexible symbols then we include in all rules the (proviso) additional requirement
that they may not be applied when p uses flexible symbols. This changes
nothing in the original logic system but makes it much weaker when combined
with other logic systems.

From now on, we assume that HOL is made robust, namely by interpreting
the proviso & > x : £ as forbidding both (i) capture of free variables in &’
by binding operators in ¢ and (ii) capture of flexible symbols in £ by flexible
symbols in &.

It is straightforward to set up the category Log of logic systems and their
morphisms. In this category fibrings appear as universal constructions.

Definition 3.2 Given two logic systems £’ and £”, their unconstrained fibring
is the logic system £ = L' ¢ L£” with:

e ¥ =Y @& Y with injections 7' and " (coproduct in Sig of ¥/ and ¥);

e M={MeStr(Xa¥"): M|y e M & M|;» e M" &
M]|; € Ap(D’) implies M € Ap(i' (D)) &
M]|;» € Ap(D") implies M € Ap(i"(D"))};
e Rq=14(R)Ui"(RY);

o Ry =i(R}) Ui"(RL). A

Before proving that unconstrained fibring is a coproduct in the category
Log we need to state a useful result.

Lemma 3.3 Let h: X — Y be a signature morphism.

1. Let UAbe a schema E—Sl}bstiAtution and consider the schema ¥'-substitution
0'=hoo. Then 6’oh=hoé.

2. Let M’ be a ¥'-structure, p € Shs(X) and p/ € Shs(X') such that p/ = hop.
Then [[tp]]g,/[I = [[fz(t)p']]%/[, for every t € ST(X, ¥).

3. Let D be a Y-deduction system and M’ € Str(X'). Then M' € Ap(h(D))
implies M'|;, € Ap(D).

Proof: 1. It is easy to prove by induction on the complexity of a schema term
t € ST(X, %) (where, by convention, £ has complexity 1) that a variable z

occurs free in t iff it occurs free in h(t). Then, it is immediate that a schema
term ¢ is free for a variable z in a schema term ¢’ iff A(t) is free for z in h(t').

26

From these facts the result follows by induction on the complexity of the schema
term.

2. Immediate from item 1 and our definitions.

3. Immediate from item 2 and our definitions. QED

Proposition 3.4 The unconstrained fibring £’ & L” is the coproduct in Log
of £' and L".

Proof: Let L = L' & L" = (¥, M,Rq4,Rp) as in Definition 3.2. Then it is
immediate that the injections i’ : ¥’ — ¥ and ¢ : ¥ — ¥ are morphisms in
Log. Let £ = (X, M, R4, R,) be a logic system and j' : £ — L, j” : L” — L in
Log. Consider the unique signature morphism h : ¥ — % such that ho i’ = j’
and hoi” = j”. Tt suffices to show that h is morphism in Log. Let M € M.
We need to show that M|, € M. Observe that (M|,)|s = M|; belongs to
M, because ;' is a Log-morphism. Analogously we show that (M|)| € M".
Assume that (M|;,)|i = M|; belongs to Ap(D’). Then M € Ap(j'(D')), that is,
M € Ap(h(i'(D"))), because j' is a morphism in Log. Then M|, € Ap(i' (D)),
by Lemma 3.3(3). Analogously we prove that (M|y,)|;» € Ap(D’) implies M|}, €
Ap(i"(D")), and so M|, € M.

Suppose now that M € M is such that M|, € Ap(D). Since M|, €
Ap(i'(D")) then M|; € Ap(D'), by Lemma 3.3(3), and so M € Ap(h(i'(D’)))
because j' = h o’ is a morphism in Log. Analogously we prove that M €
Ap(h(i"(D"))), because M|, € Ap(i"(D")). Therefore M € Ap(h(D)). By def-
inition of £ and the fact that j/ = h o4 and j” = h o¢” are morphism in Log
we have that h(R,) € R, for o € {p,d}. QED

Let Sg: Log — Sig be the obvious forgetful functor. Then:
Proposition 3.5 The forgetful functor Sg admits cocartesian liftings.

Proof: Let h : ¥ — ¥/ be a signature morphism and £ = (X, M, R4, Rp) a
logic system. Consider the logic system hgg(L) = (X', M', h(Ra), h(Rp)) where

M ={M' e Str(X) : M|, € M, and M'|;, € Ap(D) implies M' € Ap(h(D))}.

Now we prove that (hsg(L), h) is a cocartesian lifting of h by Sg at £. Consider
a logic system £ = (3, M, Rq, Rp), a logic morphism g : £ — £ and a signature
morphism f : ¥/ — ¥ such that f oh = g. In a similar fashion that we prove
Proposition 3.4 it can be easily proved that f is the unique morphism in Log
from hgg(L) to £ such that foh = g. QED

Following the notation used in the proof above, given a signature morphism
h:¥ — ¥ and a logic system £ = (3, M, Rq,Rp), we denote by hgg(L) the
codomain of the cocartesian lifting of h by Sg at £. This construction is useful
when defining a more complex form of fibring where we allow the sharing of
symbols.

27

Given two signatures ¥’ and ", a sharing constraint over ¥’ and X" is a
source diagram G in Sig of the form

A "
PR S LN

Z//
for some signature ¥ and signature monomorphisms 4’ and A”. In this situation,
we denote by

E/ 699 E//
the pushout of the diagram G.

Definition 3.6 Given two logic systems £’ and £” and a sharing constraint
G over X and Y, their G-constrained fibring by sharing symbols is the logic
system

El 6% Ell
given by gsg(L' & L") where ¢ is the coequalizer of ¢ o b’ and i" o . A

Observe that we recover the unconstrained fibring as a special case of the
constrained fibring by choosing an appropriate sharing constraint: it is enough
to take X as the initial signature.

As an illustration of constrained fibring by sharing symbols, consider the
following useful example where we also explain the impact of choosing symbols
as flexible or as rigid even in a logic (like HOL) where no modalities are available.

Example 3.7 Modal higher-order logic

Consider the fibring of MPLg (defined in 2.3.1) and HOL (defined in 2.3.2)
while sharing the propositional signature (defined in Example 2.4) for obtaining
a modal higher-order logic. Choosing a symbol as flexible or rigid in HOL
changes nothing in that logic system. But, when HOL is combined with another
logic system with modalities rigid and flexible symbols will have quite different
properties. For instance, in the resulting logic we shall have as a theorem
(r=2)= (O (r = x)) for any rigid symbol r, but not for a flexible symbol. A

Sometimes, besides sharing symbols, we may also want to share deduction
rules. This form of combination appears as a colimit in Log.

In order to show that Log is small cocomplete it is sufficient to show that
Log has small coproducts (the proof is similar to the proof of Proposition 3.4)
and coequalizers. Observe that, given hy, hy : ¥ — Y/ in Sig, their coequalizer
is h:Y — Y where ¥ = (R" F" Q") with R = R'/ =g/, F' = F'] ~p
and Q" = Q'/ ~¢/, ~pC R’ % is the least equivalence relation generated from
{(h1(r), ha(r)) : 7 € R}, =p and =~ are defined in a similar way and h(r’) =
] (for ' € R), h(f") = [f'] (for [€ F") and h(¢) = [¢] (for ¢ € Q).

Proposition 3.8 The category Log has coequalizers.

28

Proof: Let hi,hs : L — L' be logic system morphisms. The coequalizer
h : Sg(L") — ¥ in Sig of Sg(h1), Sg(hz2) : Sg(L) — Sg(L’) is the coequalizer
h: L — (& M'" R} Ry in Log of hy,hy, where M" = {[M'] : M' ¢
MG}, My is the class of all models M’ € M’ such that r,, = r},, whenever
=g rhy for every v,y € R, fi,; = fiyy whenever f{ =g fj for every
1. 5 € F', qy = dopy whenever ¢f =¢ ¢ for every ¢, ¢, € Q'; and for every
M= ("W) € Str(X), [M'] = (€, W', () with h(r")ap = r'ar for
every ' € R, h(f')) = [’y for every f' € F', h(q') = ¢ pp for every
¢ € Qs Ry = h(Ry) and R} = h(Ry). QED

Corollary 3.9 The category Log is small cocomplete.

Pushouts are specially useful for combining two logics while sharing a com-
mon sublogic.

Note also that the forgetful functor Sg : Log — Sig has a left adjoint.
Consider G : Sig — Log such that G(X) = (X, Str(X),0,0) and G(h) = h.
Using this functor, it is possible to provide an alternative characterization of
constrained fibring by sharing symbols. Given two logic systems £’ and L”

and a sharing constraint G = ¥’ L SIANS 37 , their G-constrained fibring by

sharing symbols is the pushout in Log of £’ e, (%) Ly

Therefore, all forms of fibring appear also as colimits in Log. So, from now
on we shall establish results about colimits that will also apply to fibrings. To
this end, observe that, for every signature X, the logic system G(X) is full and,
thus, sound.

Finally, note that the category Log might have been obtained as the flat-
tening of the obvious indexed category Sig — Cat. We refrained to analyze
here the properties of this indexed category because we were interested only
in the flat category of logic systems. However, many properties of Log would
be derivable from interesting properties of the indexed category (see [14] for
relevant results about indexed categories).

3.2 Preservation of soundness

All forms of combination of logic systems considered above preserve soundness
thanks to condition (2) in the definition of logic system morphism.

Proposition 3.10 Sound logic systems are closed under colimits in Log.

Proof: We start by showing that soundness is preserved by coproducts. For
simplification, we just prove that the coproduct of two sound logic systems is
sound. The general case is proved analogously.

Let £ = (X, M, Rq,Rp) be the coproduct of £ and L£”, and let M € M.
Since M|y € M" and M’ C Ap(D’) (by hypothesis) then M|; € Ap(D’) and so
M € Ap(i'(D')). Analogously we get M € Ap(i"(D")) and so M € Ap(D).

Finally, we show that the codomain of the coequalizer is sound whenever
the logic systems in the given diagram are sound.

29

Consider morphisms hq,he : £L — L' where £ and £’ are sound and let
h: L' — L" be the coequalizer as in the proof of Proposition 3.8. We have to
show that M"” C Ap(D"). Take [M’'] € M". Observe that [M']|, = M’ and
M’ € Ap(D’). Since h is a morphism in Log then [M'] € Ap(D"). QED

Corollary 3.11 Both forms of fibring preserve soundness.

3.3 Preservation of completeness

It is easy to find examples of complete logic systems that by fibring result in a
logic system that is not complete.

Example 3.12 Completeness is not always preserved.
For instance, consider the full logic systems £ and £” defined as follows.

o L'= (X M RyR,):

— X' = (R, F',Q’) such that:
* All members of the families R’ and F’ are empty, except:
R =)
* All members of the family Q' are empty.
- Ry =R, ={{0,p'(x),U) : z € Xj}.

o L= <E”,M”,Rg,7€g>:

— S = (R", F", Q") such that:
* All members of the families R” and F” are empty, except:
R =1
Rl =t}
* All members of the family Q" are empty.
- Ry =R, ={{0,t",U)}.

The two logic systems are obviously complete. However, their unconstrained
fibring £ is not complete. Indeed, the resulting (still full) logic system is as
follows:

o L= (3, M,Raq,Rp):

- X =(R,F,Q):
x All members of the families R and F' are empty, except:
- Ry = {"};
- Rin = ()
- Rig = {p'}.
x All members of the family @ are empty.
— Ra=Rp ={0,p(2),U) : 2 € X;} U{(D,t",U)}.

30

In every Y-structure M € M, we have [[p’(c”)]]f]w = truey. Hence, EX p/(c”),
but, obviously, }-o“p'(¢"). A

However, following the idea of [16], it is possible to take advantage of a
general completeness theorem in order to obtain a sufficient condition for the
preservation of completeness by fibring. In the case at hand, we can use the
very general completeness theorem obtained at the end of Subsection 2.4. To
this end, we need the following lemmas.

Lemma 3.13 Let h : £L — £’ be a logic system morphism. Then for every
ru{é} € SL(%,Z), proviso II and o € {p,d}:

I F£. 6 <11 implies h(T') FZ5 h(8) <11

Proof: We start by proving the following:

Fact: Let II be a proviso, o a X-substitution and ¢’ the YX/'-substitution given
by o/ = hoo. Then (Ilo’) = (Io).

Let p € Sbs(X). Since Isvoh = Iy then lsvoo’ = Tg/o(ﬁoa) = (ig/oﬁ)oa = Iyo0
and so (Ilo’)(p) = (po sy o0’) =T (poly o 0) = (o)(p).

We are ready to prove the result. Assume that I }—gf 0<Il. By induction on the
length n of a Z-proof of § from I' with proviso II we show that h(T") I—g% h(9)<II.
Base n = 1. If § € T then the conclusion is obvious. If § is obtained from an
axiom ((),v,II') in R, using a Y-substitution ¢ then ¢ is yo, II < (I'c) and
(0, h(7),I') is an axiom in R;},. Consider the ¥'-substitution o’ = hoo. Then
h(v)o" = h(yo) and (IT'¢’) = (I'0) by Lemma 3.3(1) and by the Fact proved
above. This shows the result for this case.

Step: Assume that there are a rule ({7{,...,7},¢, II') in R, and a X-schema
substitution o such that § = ¢’c and ¢;; = vjo for j = 1,...,k and some
{ir,...yig} C {1,...,n — 1} and additionally IT < II;, M --- 1L, 1 (Io).
So I’ I—gf 0;; <1l;; for j = 1,..., k. Therefore, by the induction hypothesis,
h(T) I—g% h(6i;) <1y, for j = 1,...,k. But ({h(71),...,h(y)}, h(d),IT') is
in R,. Hence considering o’ = h oo we obtain {h(v})o’,...,h(v})0"} Fpz
h(6")o" <« (IT'0’) and by Lemma 3.3(1) and by the Fact proved above we get
{h(0s,), ..., h(0i,)} Fpz h(0) < (IT'c). The result follows easily from this. The
proof of the desired result for derivations is similar. QED

Lemma 3.14 Full logic systems are closed under colimits in Log.

Proof: We start by showing that fullness is preserved by coproducts. For
simplification, we just prove that the coproduct of two full logic systems is full.
The general case is proved analogously.

Let £ = (X, M, Rq4,Rp) be the fibring of £ and £”. Then

M={M € Str(X): M|y e M' & M|;p e M" &
M]|; € Ap(D’) implies M € Ap(i'(D')) &
M)|;» € Ap(D") implies M € Ap(i"(D"))}.

31

Since M’ = Ap(D’) and M” = Ap(D”), by hypothesis, then

M ={M € Str(X) : M|y € Ap(D') & M|;» € Ap(D") &
M]|; € Ap(D’) implies M € Ap(i'(D')) &
M|;» € Ap(D") implies M € Ap(i"(D"))}

and so

M = {M € Str(2) : M|y € Ap(D') & M|y € Ap(D") &
M € Ap(i'(D")) & M € Ap(i"(D"))},

that is, M = Ap(D), by Lemma 3.3(3).

Finally, we show that the codomain of the coequalizer is full whenever the
logic systems in the given diagram are full.

Consider morphisms hq, ho : £ — L' where £ and £’ are full and let h : £ —
L" be the coequalizer as in the proof of Proposition 3.8. We have to show that
M" = Ap(D"). By Proposition 3.10, we already know that M” C Ap(D"). To
show that Ap(D") C M” take M"” € Ap(D"). Consider M' = M"|;,. Using
item 2 of Lemma 3.3 and the definition of D" we get that M’ € Ap(D’) and
by fullness we have that M’ € M'. It remains to show that M’ € My, which
follows easily using the definition of reduct. QED

Corollary 3.15 Both forms of fibring preserve fullness.

Theorem 3.16 Let £’ and £” be full logic systems with deduction systems
including HOL and with MTD. Then, for every sharing constraint G over '
and " such that all the symbols in X gy, are shared, their fibring

L/ % LN
is full, includes HOL, has MTD and is, therefore, complete.

Proof: Since both £’ and £” are full and include HOL then their G-constrained
fibring £ is full, by Lemma 3.14, and obviously it includes HOL. By Theo-
rem 2.25, it suffices to show that £ has MTD.

Recall that a rule in the fibring can only come from £’ or from £”. Moreover,
it is worth noting that a deduction system including HOL has MTD iff {({ =
M)y -y (=) Ha(§=0) <II for every derivation rule ({y1,...,7},d,II) and
every schema variable £ € =g not occurring in the rule. The proof of this fact
is an easy adaptation of [16]. Now assume that £’ and £” have MTD. Assume
without loss of generality that a given derivation rule of £ comes from £’ and it
is of the form: ({i'(7}]),...,7(y},)},4'(0"),1I). Since D’ has MTD then, by our
remark above, we have {({=11),...,({ =) }Fa(§=0") <II' where £ does not
occur in the rule. By Lemma 3.13 we get {({ = (71)), ..., (=7 (7)) }a(§ =
i'(0")) «II'. Since £ € Zg does not occur in the derivation rule of £ the result
follows. QED

32

As expected, this result has a counterpart for colimits: the idea of course is
to require that every logic system in the diagram be full with MTD and include
HOL. But we refrain to spell it out because it is not relevant for the rest of the
paper.

Unfortunately, Theorem 3.16, although useful, requires that each of the
given deductive systems includes HOL. What about weaker logic systems?
Given two such complete systems we might consider their enrichments with
HOL and then try to compare the fibring of the original systems with the
fibring of the enriched systems since the latter is complete thanks to the theorem
above. To this end, we start by making precise what we mean by enriching a
given logic system with HOL and then we establish a very useful property of the
enrichment: the enrichment is conservative iff the original system is complete
(under some weak conditions).

Definition 3.17 Let £ = (¥, M, R4, Rp) be a logic system and let L& HOL =
(¥, M,Rq,Rp) be the unconstrained fibring of £ and HOL with injections
e:Y = Yand i: Xgor — 3. Denote by RffOL the set of derivation rules
of HOL. Then, the HOL-enrichment L* = (X%, M*, R}, R},) of L is defined as
follows:

o Y =1

o M* = M;
o R ={(0,(AT)=61I): ([,6,I) € e(Ra)} Ui(REOE);

o R =Ry A

Observe that £* has MTD (the proof is similar to that of Theorem 3.16).
Moreover, ¥ I—gg o whenever ¥ I—gi@HOL ©, and the converse is true iff LH HOL
has MTD.

In the sequel, it is convenient to use e : ¥ — ¥*, the embedding morphism
of ¥ into ¥*. We say that L£* is a conservative extension of L iff, for finite
VU {p} C L(X) and o € {p,d}, U+,“¢ whenever e(¥)-,*"e(¢). Observe that,
for o € {p,d}, U, ¢ implies e(¥)F,~ e(), because of the definition of L£*.

It is clear that, as long as the rules at hand are robust (recall Definition 3.1),
every structure of M appears in M* with its interpretation map extended to
the symbols of Yoy, as in M%OL: no model of £ is lost. Hence:

Lemma 3.18 Let ¥ U {¢} C L(X,Z) be a finite set and o € {p,d}. Assume
that £ is robust. Then ¥ F£. ¢ iff e(¥) EL e(y).
Proof: Observe that [[ap]]g/’*‘e = [e(y)]Y" for every M* € Str(X*) and v €
L(X). Let M*|o = {M*|c : M* € M*}. Therefore,

(1) e(w) EE M o) it wESAM)

ox T

Since M*| C M, ¥ |=§)§JM> ¢ implies ¥ ,:g,M*H ¢. Furthermore, the latter
implies e(¥) ,:g,w) e(p).

33

Conversely, since £ and HOL are assumed to be robust, we have
M ={M* € Str(¥*) : M*|e € M and M*|; € Ap(Dnor)}-

Observe that every M € M can be extended to a X*-structure M* such that
M*|. = M and M*|; € MY, thus M = M*|. and the result follows from

(1) QED

Lemma 3.19 Let £ be a full logic system. Then £* is full and complete.

Proof: As observed above, £* has MTD. On the other hand £* is full by
Lemma 3.14 and the fact that Apyq(R};) = Apy(Ra). The result follows from
Theorem 2.25. QED

With these two lemmas and the following definition, we are finally ready to
establish the envisaged result.

Definition 3.20 A logic system L is said to be expressive iff for every context
Z = x1...x, there is a finite set Az C L(X) such that the set of variables
occurring free in Az is {x1,...,x,}, and I—dﬁf @ for every p € Agz. A

This condition is used in the proof of item 2 of Theorem 3.21 in order to
obtain canonical contexts in derivations. It should be noted that the most
common logics are expressive in this sense.

Theorem 3.21 Let £ be a full logic system.

1. The logic system L is complete whenever L£* is a conservative extension
of L.

2. Assume that L is expressive and robust. Then L£* is a conservative exten-
sion of £ whenever L is complete.

Proof: 1. Assume that £* is conservative and ¥ F% . Then by Lemma 3.18
e(W) ES" e(yp). Using Lemma 3.19 we obtain e(¥)F,~ e(p) and so WH,“¢ by
conservativeness of L£*.

2. Observe that fullness of £ implies fullness of £*, by Lemma 3.19. Let
U U {p} C L(X) be a finite set such that e(¥)-,“ e(p). Then there exists a
context & such that e(¥) F-. e(p) and so e(V) F5; e(p) using the soundness
of £L*. Let Az be a set of theorems associated with & using the expressiveness
of £. Therefore e(¥ U Az) F£. e(p) and so ¥ U Az F~, ¢ by Lemma 3.18, i.e.,
UUAz |:§ ©. Since £ is complete then ¥ U Az,“o, i.e., UF.%¢ and so L* is
a conservative extension of L. QED

Indeed, this result suggests an approach to the problem of improving the
Theorem 3.16 towards ensuring the preservation by fibring of completeness
without requiring the inclusion of HOL. The idea is to identify under which

34

conditions fibring preserves the conservativeness of HOL-enrichment. In those
conditions plus those of Theorem 3.21, the completeness of the fibring

Lzﬁléﬁﬁ

would result from the conservativeness of L£*.
In short, we are led to the following theorem:

Theorem 3.22 Let £ and L£” be full, expressive, robust and complete logic
systems. Assume also that the conservativeness of

g
(El @ £//)*
follows from the conservativeness of £ and £”*. Then, their fibring
E/ 699 ﬁl/
is also full, expressive, robust and complete.

If we know under which conditions we can infer the conservativeness of
g
(E, @ [://)*

from the conservativeness of £* and L£"*, this result can become quite useful.
Unfortunately, it is an open problem to find those conditions. It seems that
those conditions will include, at least, the following requirements on each of the
given logic systems £’ and £”: (i) adding new constants (of any sort) should pro-
duce a conservative extension and (ii) should not destroy the conservativeness
of the HOL-enrichment. Note that the logic system £’ in the counter-example
at the beginning of this subsection does not fulfill requirement (ii).

Acknowledgments

The idea for this paper came up during a visit of John Bell to Lisbon and the
second and third authors are grateful for his encouragement. The authors wish
also to express their gratitude to Claudio Hermida for many useful pointers into
categorical logic and for correcting a couple of our misunderstandings at the
early stages of the work, and to Alberto Zanardo for many useful discussions
and for an important hint concerning the relationship between completeness
and conservativeness of HOL-enrichment. The second and third authors are
also grateful to their Coimbra colleagues in the ACL Project for introducing
them to the joys of topoi some years ago. Finally, the authors are indebted
to the anonymous referees that made significant suggestions towards improving
the readability and effectiveness of the paper to the intended audience. Fur-
thermore, one referee pointed out a technical bug and suggested the correction.

This work was partially supported by Fundac¢ao para a Ciéncia e a Tecnolo-
gia (FCT, Portugal), namely via the FEDER Project FibLog POCTI/MAT /372
39/2001. Most of the work was carried out during a long term visit by the first
author to Lisbon with the postdoctoral grant 01/1045-0 of Fundag¢do de Amparo
a Pesquisa do Estado de Sao Paulo (FAPESP, Brazil).

35

References

1]
2]

[3]

[10]

[11]

J. L. Bell. Toposes and Local Set Theories. Oxford University Press, 1988.

P. Blackburn and M. de Rijke. Why combine logics? Studia Logica,
59(1):5-27, 1997.

M. E. Coniglio. Categorical logic with partial elements. In W. A. Carnielli
and I. M. L. D’Ottaviano, editors, Advances in Contemporary Logic and
Computer Science - Proceedings of the XI Brazilian Conference on Math-
ematical Logic, volume 235 of Contemporary Mathematics, pages 63-82.
American Mathematical Society, 1999.

M. E. Coniglio and C. Sernadas. A complete axiomatization of
higher-order intuitionistic logic. = CLE e-Prints, 2(6), 2002. CLE-
UNICAMP, Campinas, Brazil. Available at http://www.cle.unicamp.br/e-
prints/abstract_15.html.

D. Gabbay. Fibred semantics and the weaving of logics: part 1. Journal
of Symbolic Logic, 61(4):1057-1120, 1996.

D. Gabbay. Fibring logics. Oxford University Press, 1999.

J. Lambek and P. J. Scott. Introduction to Higher-Order Categorical Logic.
Cambridge University Press, 1986.

S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. Springer-
Verlag, New York, 1994.

A. M. Pitts. Categorical logic. In S. Abramski, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume b5,
pages 39-128. Oxford University Press, 2001.

A. Sernadas, C. Sernadas, and C. Caleiro. Fibring of logics as a categorial
construction. Journal of Logic and Computation, 9(2):149-179, 1999.

A. Sernadas, C. Sernadas, C. Caleiro, and T. Mossakowski. Categorial
fibring of logics with terms and binding operators. In D. Gabbay and
M. de Rijke, editors, Frontiers of Combining Systems 2, pages 295-316.
Research Studies Press, 2000.

A. Sernadas, C. Sernadas, and A. Zanardo. Fibring modal first-order logics:
Completeness preservation. Logic Journal of the IGPL, 10(4):413-451,
2002.

C. Sernadas, J. Rasga, and W. A. Carnielli. Modulated fibring and the
collapsing problem. Journal of Symbolic Logic, in print.

A. Tarlecki, R. Burstall, and J. Goguen. Some fundamental algebraic
tools for the semantics of computation. III: Indexed categories. Theoretical
Computer Science, 91(2):239-264, 1991.

36

[15] O. Wyler. Lecture Notes on Topoi and Quasitopoi. World Scientific, 1991.

[16] A. Zanardo, A. Sernadas, and C. Sernadas. Fibring: Completeness preser-
vation. Journal of Symbolic Logic, 66(1):414-439, 2001.

