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Abstract

We discuss the problem of segmentation in pattern recognition. We adopt the model and the general approach in the landmark paper by
Wang, Buhmann and von der Malsburg (Neural Computation, (1990), 2, 94–106), and expand their model in a number of ways. We review
their solution to the segmentation problem in associative memory, which consists in feature binding being expressed by synchrony relations
between oscillators or populations of neurons. We extend the model by introducing a law of synaptic change, which allows the network to
learn by structuring itself in response to stimuli with relevant features. We discuss the problem of interference between pattern completion
and the learning of new memories. We also propose a form of multiplexing of input information taking advantage of the time-structure of the
neurons’ response. It is based on the assessment of analog as well as of binary properties of the stimuli and provides for an enhancement of
the network’s processing capacity. The relevance of the results for biological systems is pointed out.q 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Associative memory is by now a well-established model
of memory encoding and retrieval. According to this para-
digm, data of long-term memory are encoded in the synaptic
weights of the connections between neurons. Short-term
memory and memory recall are viewed as patterns of activ-
ity of the neural network. This activity can be stationary
(Hopfield, 1982; 1984) or oscillatory (Baird, 1986; Doya
& Yoshizawa, 1989; Freeman, Yao & Burke, 1988; Li &
Hopfield, 1989).

One of the drawbacks of associative memory is its
reduced capability of generalization (von der Malsburg,
1983). Patterns in nature are usually complex and highly
structured, composed of multiple sub-patterns that may
have occurred already, and that are likely to occur again
in different arrangements. Classical associative memory
does not take this fact into account. Instead, it treats a
complex pattern as a whole, retrieving all or nothing of it.

Since a complex pattern is not likely to recur in exactly the
same form, the ability to learn from experience is thus
compromised. This applies to different sensory modalities,
such as vision, audition and olfaction (von der Malsburg &
Schneider, 1986; von der Malsburg & Buhmann, 1992;
Wang, Buhmann & von der Malsburg, 1990). We shall
focus on olfaction. The main reason is that, within the
context of memory storing and retrieval, Hamming distance
seems to be the natural topology of this sensory modality.
Other modalities demand for additional knowledge of the
structure of perceptual space, which are unnecessary to
olfaction (Wang et al., 1990). Odor molecules can appear
in different combinations. From psychophysics (Laing &
Frances, 1989; Laing, Panhuber, Willcox & Pittman,
1984), we know that any new mixture of odors is treated
as a unique percept; but when the separate components are
known in advance, their discrimination becomes possible.
Although the clearest examples are at the low level of
sensory processing, processes of segmentation should
occur also at higher cognitive levels (Wang et al., 1990).
For efficiency, the structure of the external world should
somehow be reflected in the interior organization of the
brain. Once the need for a segmentation formalism is
accepted, one must look at how it occurs in practice. One
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may start by investigating, already at the level of perceptual
space, the kind of information over which segmentation can
be performed. Complex modalities, such as vision, would
require an increased number of laws of perceptual grouping
into segments (von der Malsburg & Buhmann, 1992; Wang
et al., 1990). In the simpler case of olfaction, it suffices to
identify sub-patterns previously stored in memory.

At the system level, one should investigate the appro-
priate data structure to encode the memory patterns and
their segmentation. This concerns the brain as well as
models that implement memory. The solution to this
problem comes in the form of tags that are placed upon the
activity of neurons (Wang et al., 1990). Since segmentation
is already present at the level of input, these tags serve as a
means to establish relations between particular groups of
neurons and features of the input. If a complex pattern is
presented to the system (eventually corrupted), then all
neurons corresponding to that pattern become active.
Their ensemble activity denotes a successful retrieval.
Yet, because it is a composite pattern, some kind of differ-
entiation must exist at the level of neuronal dynamics,
within the whole set of neurons that have to be active in
response to that pattern. One refers to this grouping and
tagging as feature binding.

As a mechanism of binding, several authors have
proposed that the encoding of a common feature is
expressed by positive temporal correlations between neuro-
nal signals (Damasio, 1989; Eckhorn et al., 1988; Engel,
König, Gray & Singer, 1990; Engel, Ko¨nig & Singer,
1991a; Engel, Kreiter, Ko¨nig & Singer, 1991b; Gray &
Singer, 1989; Gray, Engel, Ko¨nig & Singer, 1989; Gray,
König, Engel & Singer, 1990; Schillen & Ko¨nig, 1994).
This requires nontrivial dynamics of the neurons. Neurons
that respond to the same feature will be positively corre-
lated; neurons not responding to the same feature will be
zero- or anti-correlated. A very important property is that
the temporal correlations can be spontaneously created
within the network, and therefore need not be stimulus-
locked. In this manner, the previous learning of segments
makes the segmentation of information possible during the
phase of retrieval, even when the input data do not have the
perceptual structure necessary for that segmentation.

Learning corresponds to changes in the network structure.
In contrast to the retrieval phase, segmentation properties
already present in the input are needed during the learning
phase, in order to adequately change the network structure.
In the formulation that we follow, it is the distribution of
synaptic weights that is allowed to vary. Correlations and
anti-correlations arise within the network through mutual
excitation and inhibition, and this process is conditioned
by the synaptic values. Hence, a natural prescription to
encode segmentation can be summarized as: all neurons
belonging to the same segment are coupled with excitatory
links; every two neurons not belonging to the same segment
have inhibitory links between them. Weights are created in a
Hebbian fashion.

At the retrieval stage, there is the possibility of pattern
completion. If a stationary input pattern is close to a stored
pattern, then, after a short transient, oscillations are
observed in the network. All neurons that should be active
in response to that pattern oscillate during at least a fraction
of the total time. The fact that they oscillate in phase or out
of phase with each other depends on whether or not they
belong to the same segment. During each fraction of the
total time, neurons of a particular segment oscillate in
phase, whereas all the other neurons remain silent. If a
segment is preponderant in a composite pattern, then the
corresponding neurons may oscillate during a fraction of
time that is greater than the fractions of the weaker
segments. In the modality of olfaction, this is analogous to
the case where a strong odor dominates in a mixture (in this
case, the strength of an odor is measured by the number of
receptor cells that it excites, not by its concentration in the
inhaled air). Overall, confusion between segments is
avoided via segmentation in the time domain, as described.

Let us clarify the type of associative memory we are
dealing with. We consider the case where the clamped
external stimulus acts as information input to the network.
Whereas in the well-known dynamical version of associa-
tive memory by Hopfield (1982) we have a mapping from
the space of initial conditions of the network to the space of
attractor solutions (actually the same space), here the
mapping is from the space of inputs to the space of attractor
solutions. Let us suppose that a specific uncorrupted input
pattern leads to a certain pattern in neuronal activity. This
neuronal pattern thus corresponds to a memory retrieval or
input pattern classification in an ideal case. In order to guar-
antee the main features of associative memory, moderate
distortions of an ideal input pattern or the elimination of
few neurons should not change the attractor of neuronal
activity by much. A distance, Hamming or other, can also
be defined in input space. If the input remains within a
certain distance from an ideal input pattern, then the same
neuronal pattern should always be retrieved. In this arrange-
ment, the initial condition of the network plays a less impor-
tant role. Still, if some reasonable conditions are obeyed by
the input acting on neurons, we can have the equivalent of a
content-addressable memory. The simplest such example is
the one where each input cell acts on its own neuron, stimu-
lating it with a certain level of excitation, or otherwise with
zero-level excitation. If some bits of information are
corrupted in the input pattern, then the network dynamics
should suffice to correct the fault and restore the desired
output pattern completely.

The model discussed in this paper goes along the lines of
the latter version, including the use of the simple one-to-one
input stimulation scheme. Both time and neuron state are
continuous variables, and neurons may present oscillatory
states as well as quiescent ones. Nonetheless, thresholding is
often used to provide a binarization of input or of network
state.

For alternative dynamical modeling approaches to the
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problem of odor recognition, see also the recent work
reported in (Hendin, Horn & Tsodyks, 1998; Hoshino,
Kashimori & Kambara, 1998). The issue of segmentation
is more directly addressed by Hendin et al. (1998).
However, the segmentation mechanism in the latter refer-
ence has a random nature, relying explicitly on noise and
rapid multiple sniffing, as opposed to the deterministic,
somewhat more reliable transitions between segments in
the approach that we follow.

In the case of a network with pre-determined synaptic
weights, one speaks of an information storage algorithm,
or the specification of the weights such that the retrieval
of an ensemble of patterns be optimally accomplished.
This information storage algorithm can be viewed as a
prescription. Thus the synaptic weights are imposed upon
the network, and are kept fixed. We may also discuss a more
complex scenario, one that is likely to occur biologically.
One considers two processes that can take place in a neuro-
nal network, at different time-scales: neuronal activity, and
a slower evolution of connectivity. On the short time-scale
corresponding to neuronal activity, the synaptic strengths
can be viewed as constant. On a longer time-scale, the
neuronal dynamics may induce a change in the synaptic
weights. The slower process corresponds to learning.
Synaptic plasticity is a pre-requisite for this type of learning,
both in biological systems and model networks, under the
Hebbian paradigm. Modernly, Hebbian learning is viewed
as a two-way process. That is, synapses can have their effi-
ciency strengthened or weakened as a result of learning
history. The former mechanism is the one best studied,
and is usually known as Long-Term Potentiation (Bliss &
Collingridge, 1993; De Schutter & Bower, 1993; Kanter
& Haberly, 1990; Landfield & Deadwyler, 1988; Manabe
& Nicoll, 1994; Moser, Trommald & Andersen, 1994). The
weakening of synaptic efficiencies has also been reported,
both at the slow time-scale of Long-Term Depression (Stan-
ton & Sejnowski, 1989; Stent, 1973) and at the faster time-
scale of Depotentiation (Xu, Anwyl & Rowan, 1998). This
two-way view of Hebbian learning is essential to the func-
tioning of the model in our paper. It has become standard
modeling practice to conceptually divide memory function
into separate periods of learning and autonomous retrieval.
During learning, external input keeps the neural network in
a pattern of firing that encodes some information to be
stored. The synaptic weights are changed during this period,
as a response to neuronal dynamics. The storage of the
pattern is successful if, once the learning period terminated,
the desired pattern of activity can be seen in the network,
even if the input pattern is incompletely presented or is
absent. In this so-called recall phase, synaptic change is
usually disallowed.

The model in Wang et al. (1990) features this separation
into learning and recall phases. Furthermore, learning actu-
ally consists of the storage of computed synaptic weights,
which are specified once and for all. In the present paper we
implement a form of autonomous synaptic learning of the

Hebbian type, where the network learns from examples. We
discuss the case where learning happens simultaneously
with pattern recognition, without a rigid separation between
learning and recall periods.

2. Physiological aspects

A detailed account of the neurobiology of olfaction is not
within our scope. Here, we briefly discuss some biological
features of the model. The mammalian olfactory system is
adopted as a concrete example.

There is much experimental evidence for the temporal
structure of the signals in the form of coherent oscillations.
Most of it comes from observations in visual cortex. Addi-
tional motivation for the model comes from reported oscil-
lations of electrical activity in the 40 Hz range, in rabbit
olfactory cortex (Freeman, 1978) and in monkey somato-
sensory cortex (Murthy & Fetz, 1991). In insect studies, the
major frequency peak during olfactory tasks was found to be
close to 20 Hz (Laurent & Davidowitz, 1994; Wehr & Laur-
ent, 1996). Significantly, in the latter references, Laurent
and co-workers report on a spatio-temporal structure of
neuronal response whereby a given odor elicits oscillations
occurring in different time segments in close resemblance to
a time-segmentation coding as described in our paper.

The investigation of olfactory memory and learning is
facilitated by the fact that the higher processing regions
involved are not very far from the very first receptor cells.
The pathways are relatively simple. In particular, the input
does not have to pass through the thalamus before reaching
the cortex, in contrast to other sensory systems.

The initial stage of the olfactory system is composed of
the olfactory bulb (OB). It receives input directly from
axons of sensory receptors, and transmits in parallel to the
anterior olfactory nucleus (AOC) and the prepiriform cortex
(PC) (Freeman, 1992). Additional feedback exists between
the three parts. Interactions between these parts and trans-
mission from the PC to the limbic and motor systems are in
the form of action potentials carried by bundles of axons.
Each of the parts has its internal columnar structure. The
electrical activity can be divided into local neighborhoods.
A local EEG can be defined as the (local) sum of extracel-
lular dendritic currents. For each of the three parts, this EEG
features spatially coherent oscillations over the entire
domain. A common wave form, the so-called carrier wave
(Freeman, 1992), contains from 30 to 90% of the variance in
simultaneous recordings from arrays of electrodes. It corre-
sponds to the well-known “40 Hz oscillations”, but it can in
practice range from 20 to 90 Hz. On account of this, the
oscillations are also called gamma waves (Freeman,
1991). When viewed in EEG tracings, they appear as bursts,
i.e. high-amplitude, high-frequency oscillations that stand
out from normal EEG, between inhalation and exhalation.
The carrier wave is not imposed by the receptors or by other
parts of the brain exterior to the olfactory system. It appears
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as a cooperative activity that results from self-organization
of the neuronal population. In particular, OB bursts clearly
show spatial patterns of phase that can only result from such
self-organization and not from external forcing (Freeman
and Baird, 1987). The carrier wave depends on the existence
of interactions between the three parts; but it is also
sustained by the internal organization of the parts. These
contain mutually connected excitatory and inhibitory
neurons. The grouping of neurons into the columns referred
to above, results in each column functioning as a local
oscillator. Apart from helping sustain the carrier wave,
mutual excitation between these oscillators induces a coop-
erative coupling. Mutual inhibition, on the other hand,
provokes a spatial contrast increase in the local amplitudes
of the common carrier, thus inducing a modulation in the
carrier. It provides for the functional type of separation
required by the associative memory and segmentation
theory. In the OB, the shape of the carrier wave is not the
key factor to signal a particular odor. That shape may even
change between successive inhalations of the same odor.
Instead, the odor is discriminated by the spatial pattern of
modulation of the carrier’s amplitude, the same in succes-
sive sniffs. Not only is the pattern self-organized, it is also
not topographically related to the input (Freeman, 1994).

Olfactory receptors have specialized cilia which respond
to different chemicals. Excited cells fire action potentials
directly into the OB through axonal connections. The
number of activated receptors indicates the intensity of the
stimulus. The location of the activated receptors is asso-
ciated with the nature of the odor. Hence, a spatial pattern
of activity is present already at the receptor stage. Yet, this
pattern is highly variable, due to unavoidable turbulence in
nasal air flow, which causes only a fraction of the receptors
sensitive to a particular odor to be excited during a sniff,
and the ones selected to vary between successive inhalations
in a random manner (Freeman, 1991). Nevertheless, as
mentioned above, the same spatial pattern of activity is
observed in the OB at all inhalations of the same odor.
This implies that some sort of pattern completion must

take place as early as in the OB (and most probably also
at later processing stages). A cooperative, self-organized
behavior of the entire neuronal population is required to
achieve the completion.

The PC and the OB are two candidate parts to which the
present modeling could be applied (Wang et al., 1990). One
may therefore try to identify the cells that most likely form
excitatory and inhibitory groups in each of them. In the OB,
these could arguably be the mitral cells for excitation, and
the granule cells for inhibition. In PC, pyramidal cells have
the role of excitatory neurons, whereas inhibition is
provided by inhibitory interneurons.

As referred above, a wealth of experiments confirm the
conceptual view of synaptic plasticity, required by associa-
tive memory. For experimental evidence of synaptic change
specifically in olfactory cortex, (see e.g. Kanter & Haberly,
1990). Apart from the single-cell level, synaptic learning
from experience can also be investigated via its conse-
quences at the macroscopic level. Let us consider once
more the spatial patterns of activity in the OB. The respec-
tive amplitude maps, representing a given odor, are seen to
change when the reinforcement associated with that odor
also changes (Freeman, 1991). If experience would not
influence internal connectivity, then the same spatial pattern
would be measured each time the same odor is inhaled,
before and after the change in the conditioned association.
Further anatomic and physiological arguments, pointing at
the associative memory capabilities of the piriform cortex,
are collected in the review of Bower, 1994. The patterns of
connectivity and the role of the balance between excitation
and inhibition, in the formation of sparse and distributed
patterns of neuronal activity, are stressed out. Finally, the
psychophysical experiments of Laing et al. (Laing &
Frances, 1989; Laing et al., 1984) provide good evidence
for the segmentation of information in olfactory tasks,
against which models could be tested.

3. Model

The system consists in a fully connected network of
elements such as the ones depicted in Fig. 1. These elements
may have two different states: a resting state, and an oscil-
latory one. The oscillatory state is also called “bursting”.
The oscillations are obtained via a feedback loop between a
group of excitatory neurons and a group of inhibitory
neurons. The average activities of these groups are denoted
by xi andyi, respectively. As to the equations describing the
evolution of thexi andyi, we follow the model of Wang et al.
(1990):
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Fig. 1. Illustration of the building blocks of the network. Two oscillators are
depicted. Excitatory connections within each oscillator end in triangles;
intrinsic inhibitory connections end in circles. Associative connections
between oscillators are represented as arrows. Adapted from Wang et al.
(1990).
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The time-constants of the excitatory and inhibitory parts of
the oscillators, respectively,t x and t y, can be chosen on
physiological grounds. The average values ofx and y are
controlled by the parameters�x and �y: All input to x andy is
filtered through sigmoidal gain functionsG. uu and 1=lu are,
respectively, thresholds and gain parameters of the
sigmoids. The nonlinearityF renders the oscillatory char-
acter of the network somewhat invariant to the number of
oscillators in a pattern. The synaptic strengths of the
feedback loop of each oscillator are quantified by the
Tuu0 ; u;u0 [ { x; y} : The summed excitatory input to oscil-
lator i, from all oscillators of the network, is given by

Sexc
i �t� �

XN
j�1

vij xj�t�;

whereas inhibitory input is given by

Sinh
i �t� �

XN
j�1

vinhxj�t� � vinh

XN
j�1

xj�t�;

for a network ofN elements.v ij andv inh represent excita-
tory and inhibitory associative synapses, respectively. The
latter are taken as constant throughout the network.
Symmetric connectionsvij � vji will be considered. The
time-dependent external input,Ii�t�; comes directly from a
sensory area, or from an intermediate pre-processing region.
The array {Ii} i�1;…;N contains the patterns to be processed
by the network.

4. Intermittent bursting—dynamical analysis

The variablesHi have an important role in the segmenta-
tion process. They provide delayed self-inhibition, with
strengtha and decay constantb . This generates intermittent
bursting of each group of oscillators belonging to a pattern,
and facilitates the transition between simultaneously
retrieved patterns. The delayed inhibition can also be
expressed by rewriting theHi equation in integral form:

Hi�t� � a
Zt

0
xi�t�exp�2b�t 2 t��dt: �2�

The following discussion of bursting helps clarify the beha-
vior of the system in response to external input. Let us
suppose that a given oscillatori is disconnected from the
network, and theSi and Ii in Eq. (1) are replaced by a
constant termF providing a fixed amount of excitation.

Thus we obtain the equations for the single oscillator
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_H � ax 2 bH;

with F representing the total excitation coming from
outside the oscillator. The interplay ofx and H gives rise
to a regular succession of bursting periods, with fast oscilla-
tions ofx around an average�x; alternating with resting peri-
ods of almost zero activity. This situation is illustrated in
Fig. 2. As suggested by the figure, the dynamics can be
naturally decomposed into a slow and a fast component.x
andy correspond to the fast dynamics. During the bursting,
their variation is fast enough so that only their time-aver-
aged values are perceived by the slow process. The variation
of H, on the other hand, is slow enough for this variable to
be treated as a parameter of the fast dynamics, at least in a
first approximation. The theory of dynamical systems now
helps to understand the behavior of the fast system�x; y�: In
the phase-space spanned by these two variables, more than
one asymptotic solution may exist; eventually, two of them
can be simultaneous attractors of the (fast) dynamics, and
we have bistability. In the present case, a fixed point near
(0,0), and a periodic limit cycle that does not contain the
origin, are simultaneously stable whenH takes values in an
open range�Hmin;Hmax�: This range can be evaluated from
Fig. 2. If we start from the situation where the stationary
solution is observed, we see that a steady decrease ofH is
happening, according to Eq. (3). Inevitably, a minimum
value Hmin is reached such that a node–saddle bifurcation
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Fig. 2. Simultaneous time course ofx andH for the single oscillator, with a
fixed external excitation value. Parameters of Eq. (3) aretx � ty � 0:4; �x�
�y� 0:2; Txx � 1:6; Txy � 1:9; Tyx � 1:3; Tyy � 1:0;F � 0:2; a � 0:17; and
b � 0:1; parameters ofG andF areux � 0:4; uy � 0:6; lx � ly � 0:05;
andh � 0:4:



(Guckenheimer and Holmes, 1983) of the fixed point takes
place. A sharp transition is then observed, and stability is
transferred from the fixed point to the high-value oscilla-
tions. From there on, the variation ofH is inverted and it
starts to increase. We note that, immediately afterH starts
growing, the fixed point near (0,0) becomes stable again.
However, the system does not come back into this fixed
point before a maximumHmax is reached. At that moment,
it is the limit cycle that loses its stability, to the lower fixed
point. The fast oscillations are once again a stable solution,
right afterH starts to decrease. Yet they cannot be observed
before the lower fixed point is made unstable once more.
This is repeated on a regular basis, producing a phenomenon
of hysteresis.H acts as a bifurcation parameter of the fast
dynamics, and at the same time its variation is influenced on
a slow time-scale by the fast dynamics itself.

In the following, bursting is investigated at the network
level.

5. Synchronization of oscillators

As a first step towards the study of collective behavior,
Wang et al. (1990) considered the dynamics of a pair of
coupled oscillators. This case is represented in Fig. 1. The
connectivity is given by

�Sexc
1 1 Sinh

1 ��t� � �v12 1 vinh�x2�t�

�Sexc
2 1 Sinh

2 ��t� � �v21 1 vinh�x1�t�:
We remember the choice of symmetric connectionsvij �
vji : Two cases can be distinguished, according to the sign of
the associative synaptic strength�vij 1 vinh�: if the sign is
positive, then the oscillators try to oscillate in synchrony,
alternating with quiescent periods due to the delayed self-
inhibition; if it is negative, mutual inhibition is observed,
and time is divided into periods during which only one of
the oscillators is active, while the other is at rest. In the latter
regime, both oscillators can have significant activity, but
never simultaneously.

These associative properties can be generalized to groups
of several coupled oscillators. If the net associative connec-
tions within a group are excitatory, then that group will have
a tendency to oscillate in synchrony. On the other hand, the
ensemble of oscillators of that group will inhibit (and be
inhibited by) all oscillators from any other group with
which they maintain inhibitory connections. In this manner,
only one group is active at a given time. Nevertheless, all
will eventually be given a chance to oscillate. The active group
will necessarily inhibit itself via the delayed feedback, and go
into the resting state, thereby no longer inhibiting all the other
groups and allowing one of them to burst.

A group of units oscillating in synchrony may behave like
a single oscillator, such that Eq. (3) can be used as an
approximation. Specifically, we consider a group ofM exci-
tatorily coupled oscillators. We may regard the activitiesxk

of the remainingN 2 M oscillators to be zero. Assuming
identical excitatory synapsesvij � v and homogeneous
constant inputIi � I ; Eq. (3) can be used instead of Eq.
(1) for the oscillating group. One takesxi ; x; yi ; y and
Hi ; H; for all i belonging to the group considered. Further-
more, there is the following correspondence between quan-
tities occurring in each set of equations:

Eq. (3) Eq. (1)
Txx

�x
$ Txx

�x
1 �M 2 1��v 1 vinh�

F $ I

Just as for the single oscillator, it is the variableH that
triggers the transition between high frequency collective
oscillations and resting periods.

6. Pattern retrieval with inhibited learning

External patterns are presented to the network via the
array {Ii} i�1;…;N: We start by considering stationary binary
patterns. TheIi have the value 0 or 1, multiplied by some
constant amplitude. They provide the required amount of
external excitation for oscillations to occur. Successive
pattern retrieval is observed when all the units that have
to be active for that pattern oscillate in phase. In the
presence of an uncorrupted pattern, each oscillatori has
its own amount of excitationIi that helps maintain its active
state. In the opposite case, with allIi � 0; no oscillations are
seen. In the simulations that follow, the values of the para-
meters are chosen in a way that renders the network’s
response as invariant to the size of the patterns as possible.

We begin by illustrating the property of segmentation in
the time domain. Let us suppose that a composite pattern is
presented to the system. It consists of several sub-patterns
(hereafter simply called patterns), with no apparent separa-
tion between them. These patterns can only be distinguished
by the network on the basis of previously acquired knowl-
edge. This knowledge is contained in the distribution of
connectivity: if two oscillators correspond to the same
pattern, they are mutually connected in an excitatory
fashion; if they belong to different patterns, they are inhibi-
torily connected.

Several variants of the connectivity obey the simple
condition in the previous paragraph. The connectivity
adopted here is different from the one in (Wang et al.,
1990). We set the constantv inh to a negative value, and
let the v ij control the total value of each associative
connection: ifv ij is positive anduvij u . uvinhu; then the
associative link will be excitatory; otherwise, the link will
be inhibitory. Thev ij are fixed by the rule

vij � 1
Dv

R0 1
SRX
l

Kil

0BB@
1CCAKij : �4�
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For each group of oscillators that should respond to the same
pattern, excitatory associative links are obtained by setting
Kij � 1 for each pair of oscillators within that group. For
each pair of oscillators belonging to groups that respond to
different patterns,Kij is set equal to zero. The termR0 1
SR=�

P
l Kil � provides a renormalization of synaptic weights.

1=Dv is a proportionality factor whose meaning will become
clear in Section 8. The parameters are chosen in a way to
fulfill the conditionvij . 0 anduvij u . uvinhu; or elsevij � 0
(Table 1). For example, each oscillator of a group ofM
elements responding to the same pattern, will have two
possible values for the associative links:vinh , 0 for the
connections with oscillators from other groups, and�vij 1
vinh� . 0 for connections within its group, where

vij � 1
Dv

R0 1
SR

M 2 1

� �
:

The transition mechanism discussed above, involving

delayed self-inhibition, allows that several different patterns
be discriminated by the network in a simultaneous represen-
tation. Each group of oscillators that corresponds to a
pattern present in the input, is allowed to oscillate on its
turn (see Fig. 3). In this manner, temporal segmentation of
the information is achieved. Other transition mechanisms
could be considered, e.g. stochastic ones. However, delayed
feedback makes for more reliable transitions. A more regu-
lar succession of states is observed, with each group being
given the chance to oscillate without waiting for a long time.

Let us inspect Fig. 3. The dynamics of each oscillatori is
conditioned by the signals that it receives from the other
members of the network, and also by the input conveyed
by its receptor cellIi. In the experiments of Section 6, the
input can only have the values 0 or 0.2. Globally, we
observe three different patterns memorized and retrieved,
each corresponding to a group of oscillators that are active
during a separate period. Segmentation is dependent on

C. Lourenço et al. / Neural Networks 13 (2000) 71–89 77

Table 1
Network parameters in the simulations

Parameters in common vinh � 25:0; a � 0:17; �x� �y� 0:2; Txy � 1:9; Tyx � 1:3; h � 0:4; uy � 0:6; lx � ly � 0:05
Figs. 3, 7 and 8 N � 21; tx � ty � 0:4; b � 0:1; Txx � Tyy � 1:0; ux � 0:4; R0 � 5:0; SR � 1:1; Dv � 1:0
Figs. 4–6 N � 21; tx � 0:5; ty � 0:6; b � 0:03; Txx � Tyy � 1:2; ux � 0:25; R0 � 5:0; SR � 1:1; Dv � 1:0
Figs. 9 and 10 N � 11; tx � 0:9; ty � 1:0; b � 0:1; Txx � Tyy � 1:0; ux � 0:4; R0 � 1:0; SR � 0:3; Dv � 0:2; uK � 3:0; lK � 1:0;

6 � 0:02; g � 1000:0
Figs. 11 and 12 Same as previous, exceptSR � 0:26
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Fig. 3. Discrimination of patterns in a simultaneous representation via a segmentation in the time domain. The network and input dimension isN � 21. Each
element of the network oscillates in response to external excitation. The individual oscillatory activities are represented by the variablesxi of Eq. (1). The input
is separated by the network into different patterns: the network activity is divided into periods of time during which only the oscillators corresponding to one of
the patterns are active. Three patterns are memorized. In this experiment, they are simultaneously present in the input, with strengths: 0.2
(0,1,1,0,1,0,1,0,0,1,0,0,1,0,0,0,0,0,0,1,0), 0.2 (0,0,0,1,0,0,0,0,1,0,1,1,0,0,0,0,1,0,0,0,0), and 0.2 (1,0,0,0,0,1,0,1,0,0,0,0,0,1,1,1,0,1,1,0,1). The thick vertical
line at t � 0 indicates which receptor cells convey external input: in this case, all of them. Input is kept fixed during the entire simulation. The vertical
scale for the activity of oscillators, shown on the right, has a value of 0.3. Parameters of Eqs. (1) and (4) are in Table 1.



intrinsic properties of the network, which relies on its
connectivity and internal dynamics to restore information
not present in the external input.

The grouping of oscillators is functional, and not
topographically conditioned. The index of each oscillator
gives no information of its spatial location, which we
leave undefined. In view of this, in all the numerical
simulations that follow, we shall choose consecutive

indices for the oscillators of the same group, for ease of
discussion.

In the experiment of Fig. 3, the memorized patterns have
similar sizes. We already observe that, in the case where
several groups are excited simultaneously, the larger ones
are active more often. When the size difference is larger, this
effect is amplified. The smaller patterns may even become
totally inhibited by the larger ones, and not oscillate at all, if
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Fig. 4. Pattern completion in the case of degraded input. In this figure and the two following ones, external input is 0.2 times a degraded version of pattern
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0). As in Fig. 3, a thick vertical line att � 0 indicates which receptor cells convey external input. The excited cells (cells
4–18) are a subset of the original pattern. Parameters of the network are in Table 1.
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Fig. 5. An attempt to restore a pattern with notably degraded input. The memorized patterns are the same as in Figs. 3 and 4, but only cells 10–18 are excited.



a simultaneous retrieval is attempted. However, the small
patterns can be retrieved if excited in isolation, or simulta-
neously with other small patterns of similar size.

Let us now discuss pattern completion. In the follow-
ing sequence of experiments, four patterns are memor-
ized in a network of 21 elements. The patterns are
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0), (0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,0), (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,1,0), and (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1). The
last three are never excited. The first one is present in the
input, but in an incomplete manner. For example, in Fig. 4,
the input pattern is 0.2 (0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,0,0,0). Thus, the first two bits of information are
degraded in the external input. Yet, the network manages
to restore the desired pattern completely, via the cooperative
dynamics that results from the associative connectivity.
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Fig. 6. Failure to restore a pattern with extremely degraded input. The memorized patterns are the same as in Figs. 3–5, but only cells 16–18 are excited.
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Fig. 7. Activity of the network when excited by modulated input. The thick vertical line att � 0 now corresponds only to the receptor cells that are “on”,
without expressing their indivual intensity. See text for the distribution of input intensity. Parameters of the network are in Table 1.



Figs. 5 and 6 show attempts at retrieval of the same pattern,
with more degraded versions of the input. An increasing
number of bits is missing in the external excitation. In
Fig. 5, the desired pattern is not restored in a perfect manner.
However, a kind of “soft” pattern completion is possible.
The success or failure of the retrieval depends on the way
the network dynamics is possible. The success or failure of
the retrieval depends on the way the network dynamics is
evaluated. Retrieval may fail if the evaluation of the
dynamics is too strict. For instance, if the network dynamics
is assessed during a short time-interval, this interval may
miss completely the oscillations ofx1 to x9. A longer time-
scale evaluation may “capture” the oscillations of all units,
thus viewing the pattern retrieval as successful. Let us
consider a concrete example. Suppose that, in Fig. 5, the
response of the network is monitored fromt � 0 to t � 100:
In some of the periods of activity of the pattern given byx1

to x18, the unitsx1 to x9 do not oscillate. A strict criterion for
the successful retrieval of the complete patternx1 to x18

would be the fact that all these oscillators display, or not,
the same activity fromt � 0 to t � 100: According to this
rule, the retrieval fails in Fig. 5. A less limiting criterion for
successful retrieval simply demands that all oscillators
display simultaneous nonzero activity during at least a frac-
tion of the time-interval considered. According to the latter
criterion, the network achieves the retrieval of the complete
pattern.

In the example of Fig. 6, the mutual entrainment of the
oscillators is clearly insufficient to complete the pattern.
Hence, the retrieval fails.

7. Higher-order coding of information

In order to expand the possibilities of short-term memory
in this model, we investigated how the network deals with
modulations of the input. These modulations are expressed
as a varying magnitude of the intensity multiplying the 0
and 1 bits of external excitation. The intensity variation can
be viewed as an “extra dimension” of the input. Below we
will argue that, apart from recognizing binary patterns, the
network can encode information contained in the modula-
tion of the input. Thus, the network possesses analog proces-
sing capabilities.

We consider again the example where four binary
patterns are memorized in the connectivity of a network
with 21 elements: (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0), (0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,0), and (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1). Let us consider a modulation of the first pattern,
with amplitudes (0.1,0.1,0.1,0.1,0.1,0.1,0.15,0.15,0.15,0.15,
0.15,0.15,0.2,0.2,0.2,0.2,0.2,0.2,0,0,0). The network’s res-
ponse is plotted in Fig. 7. As before, the binary pattern is
successfully retrieved. In addition, information related to the
detailed pattern intensity is encoded in the duration of the
bursts corresponding to each receptor cell. As can be seen in

Fig. 7, the higher the intensity, the longer the associated burst.
While keeping the input values fixed, we measured the burst
durationTburstasa functionof the input intensityI. Theduration
of a burst is defined as the time-interval during whichx is
greater than a threshold6 � 0:02: Tburst obeys to a statistical
distribution, which is characterized by an average value�Tburst

and a standard deviationsT. In the conditions of Fig. 7, we
obtained the relations

I �Tburst^ sT

0.1 4.6^ 0.6
0.15 6.5̂ 0.4
0.2 8.7^ 0.4

We see that the dispersion ofTburst around its mean
value is small. Hence, the value ofTburst for an oscilla-
tor xi provides an almost direct measure of the input
intensity I i.

For a more vivid example of higher-order coding, we split
the original 18-bit pattern into three smaller patterns of
6 bits each (via the forcing of inhibitory links between
each pair of oscillators belonging to different patterns).
Each of the patterns is excited by modulated input. The
modulation takes the form (0.065,0.065,0.14,0.14,
0.27,0.27) for each of the six-unit patterns. The groups of
oscillators respond as shown in Fig. 8. Once again, the
oscillators that receive the most intense external excitation
are the ones that display the longest bursts. The bottom of
the figure emphasizes the distribution of burst duration
within the same pattern. With the network connectivity
and distribution of input intensity as in Fig. 8, we obtained
the following values for burst duration:

I �Tburst^ sT

0.065 3.9̂ 0.5
0.14 6.1̂ 0.6
0.27 9.6̂ 0.4

This experiment combines the segmentation into binary
patterns with the assessment of the distribution of input
intensity according to burst durations. This provides a
kind of multiplexing of the information, thus increasing
the network capacity.

The retrieval of a binary pattern is invariant with respect
to modulations of the input, as long as the latter remains
above some threshold of excitability. In turn, the distribu-
tion of burst duration can be viewed as an analog pattern
conveyed by the network dynamics. A decoding mechanism
sensitive to burst duration may “read” the analog pattern,
corresponding to the distribution of input intensity
(arguably, knowledge about the intensity of input conveyed

C. Lourenc¸o et al. / Neural Networks 13 (2000) 71–8980



by each receptor may be relevant for some olfactory tasks).
According to the processing task, binary or analog information
can be extracted from the network dynamics. Thus, the short-
term memory capabilities of the network are enhanced.

The analog pattern can also be “binarized”. In the example
of Fig. 8 (top), the analog decoder could group the oscillators
according to common burst duration. This would allow to
define new “binary” patterns, given by (1,1,0,0,0,0,1,1,0,
0,0,0,1,1,0,0,0,0,0,0,0), (0,0,1,1,0,0,0,0,1, 1,0,0,0,0,1,1,0,0,0,
0,0), and (0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0, 1,1,0,0,0). This can
be interpreted as a new type of segmentation. However, it has
the transitory nature imposed by possible fluctuations of the

input. It should not be confused with the more permanent
segmentation, the one that is encoded in the network
connectivity, and that refers to the separation of oscillators
into groups of simultaneously active units. The latter would
of course reveal the patterns (1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0), and so on. As we saw, the two types of segmen-
tation may coexist.

8. Dynamical learning

The distribution of synaptic weights imposed upon
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Fig. 8. Top: An experiment similar to the one of Fig. 7, but with the 18-bit pattern segmented into three smaller ones. See text for details of the modulation.
Bottom: Enlargement of a portion of the figure. Notice the considerable variation in burst duration due to excitation of varying amplitude.



the network, as discussed above, may seem somehow
artificial. In addition, it does not incorporate possible
contributions from autonomous, unsupervised, learning.
In the present section, we introduce a form of Hebbian
learning for the network. The synaptic strengths are
allowed to change according to the dynamics of the
network. In the spirit of Hebb’s postulate (Hebb, 1949),

the variation of synaptic strengths depends essentially on
the covariance of the activities of oscillators at both ends
of the connections. We introduce the following law of
synaptic change:

_v ij � �R0 1 Ri�Kij 2 Dvvij �5�
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Fig. 9. Pattern segmentation. A 5-unit pattern separates into two smaller ones. The changes in external stimulus, that force this process, are coded in the vertical
lines. As in the figures of Section 6, a thick line at some position indicates that the corresponding oscillator receives external input in the period oftime on the
right of that line (at least until the next vertical line appears). On the contrary, a thin line indicates absence of external input. The input bits are multiplied by the
constant factor 0.2. The vertical scale for the activity of oscillators is now 0.5. Parameters of the network are in Table 1.
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Fig. 10. Preservation of long-term memory. Pattern presentations, after long periods of no stimulation, bring about successful recalls. Parameters are
as in Fig. 9.



_Ri � SR 2
X

l

Kil

 !
Ri ;

where

Kij � GK�vij 1 g�xi 2 6��xj 2 6��
and

GK�c� � 1

1 1 exp 2
c 2 uK

lK

� � :

The parameter values are chosen such that the factor�R0 1
Ri� is always positive. The main term associated with
Hebbian covariance is in the argument of the sigmoidGK.
6 is a small and positive parameter that defines a threshold
for the oscillators to be considered active. Typically, we let
6 � �x=10: R0 can be viewed as the (constant) concentration
of some neuromodulator (a more extended discussion of the
effects of neuromodulators appears in Section 9). The evolu-
tion equation forRi, on the other hand, expresses the fact
that the concentration of a neuromodulator is varying
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Fig. 11. Top: Dependence of segmentation on the time-history of the input, in a network of 11 elements. Here, segmentation does not occur. Input changes at
t � 49 andt � 57: Bottom: Response of the network, with a different time-history of the input. Segmentation is verified. Input changes att � 49 andt � 64:
“On” and “off” receptor cells are coded with thick and thin lines, respectively. The input bits are multiplied by the constant factor 0.2.



locally with a constant positive source termSR and a decay
term taking synaptic renormalization into account.Dv

measures the decay rate of synaptic strengths. The above
law implements the general learning rules: (a) if two oscil-
lators are simultaneously active, the excitatory links between
them are reinforced, or saturate at some higher value; (b) if
two oscillators are at rest, their connection is not altered; (c)
the excitatory links between an active oscillator and one at
rest, are reduced or can practically disappear - in this case,
the resulting connection will be inhibitory.

In a first approximation, suppose theKij in Eq. (5) can
only have the values 0 and 1 (these are the limits of the
sigmoid GK). Then, the stationary solution of Eq. (5) is
given exactly by Eq. (4). There can be situations where
the external stimulus does not change, or does not appear
in novel combinations, for a long period. In this case, there
is no induction of learning via synaptic change, and the
behavior of the network is analogous to the one seen in
Section 6.

Let us discuss how novelty can be conveyed by external
input. We assume that some input pattern has been
presented to the network previously, but did not feature
any segmentation structure. If, at a given occasion, that
pattern is presented to the network in segmented form,
then the network will incorporate in its links the knowledge
about that segmentation. In practice, a segmentation of an
input pattern consists in the stimulation of the network by
only a part of the bits of the originally larger pattern. Thus,
while being a part of the larger pattern, the smaller segment
can also occur isolated in the input. Hence, it could be
viewed as a pattern of its own. In later presentations, the
remaining part of the original pattern can also occur
isolated, although this is not a necessary condition for
segmentation.

On the level of synapses, segmentation is achieved via the
elimination of excitatory connections between oscillators
that should become part of distinct sub-patterns. The differ-
ence in the activities of the oscillators at both ends of a
connection, which forces Hebbian learning, is itself caused
by differential external stimulation.

A simple example of this process is shown in Fig. 9. In a
network of 11 oscillators, total stimulation starting fromt �
0 reveals the existence of a 5- and a 6-bit patterns memor-
ized. Fromt � 118 to t � 180; only a fraction of the 5-bit
pattern is stimulated. This results in this pattern being
segmented into two smaller ones, with 2 and 3 bits respec-
tively, as can be seen from the response to another total
stimulation ont � 180: Unsupervised learning has therefore
occurred.

Fig. 10 is a sequel of Fig. 9. It shows the property of
“freezing” of the associative links, over long periods of no
external stimulation. The associative connections between
groups of oscillators are preserved. This allows, in later
recalls, to have perfect pattern retrievals that maintain the
learned segmentation structure. In this case, freezing is due
to the natural dynamics of Eq. (5).

At this point, one must consider an important effect
caused by the introduction of the dynamical change of the
links. There is a conflict inherent to the choice that the
network must make, between pattern completion and pattern
segmentation. If stimulated by an incomplete version of a
previously stored pattern, should the network complete the
original pattern, or segment it? One way to avoid this
conflict is by admitting the existence of a so-called modula-
tion of the learning state. The network activity is divided
into different periods, respectively, for pattern learning and
for pattern recall. A biological mechanism that makes this
possible, is briefly discussed below.

9. Biological view of the modulation of state

Certain substances can have diffusive modulatory effects
on network function. They are called neuromodulators. In
contrast to neurotransmitters, they are not directly respon-
sible for information transmission. A particular neuromodu-
lator, acetylcholine, might just provide the required
modulation of the learning state that we mentioned above
(Bower, 1994). This substance is diffusely released through-
out the olfactory cortex. In the following we summarize the
properties of acetylcholine that are relevant for the function
of associative learning and recall (Bower, 1994). This
discussion is based on experiments where acetylcholine is
placed directly onto the cortical network (Hasselmo and
Bower, 1992; Hasselmo, Anderson & Bower, 1992).

Acetylcholine selectively suppress intrinsic associative
synapses. By increasing cell excitability, this neuromodula-
tor amplifies the influence of afferent input on cortical cells.
Furthermore, increased cell excitability causes a net growth
of the gain of synaptic modification, which in living tissue is
related to the size of the postsynaptic response during
synaptic modification. Finally, by maximizing the efficiency
of inhibitory neurons of olfactory cortex, acetylcholine
could inhibit spurious influences on synaptic modification
by eliminating weak neuronal activities. In our case, these
spurious influences correspond to attempts at completing
some pattern by an associative mechanism dependent on
information previously stored in the connectivity. The net
action of acetylcholine would therefore be to increase the
importance of the afferent input in restructuring the
network, as compared to the network’s intrinsic dynamics.

Although physiology rules out a complete suppression of
intrinsic synaptic transmission during learning, it is argued
in (Bower, 1994) that acetylcholine may effectively contri-
bute to a large inhibition of normal network recall dynamics
during learning periods. Also, a regulatory mechanism is
proposed by which the concentration of acetylcholine, and
thus the magnitude of its effects, varies smoothly according
to the needs of any particular learning sequence. In this
manner, the olfactory cortex would not necessarily have to
be in one of the two extreme states of learning- and recall-
only.
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These considerations on the regulatory action of
acetylcholine are not captured numerically in the
model that we analyze. Rather, when structural change
is allowed in the model network, it has essentially the
unsupervised-dynamical character provided by Eq. (5).
Nonetheless, a mechanism for imposing a modulation
of the learning state, from the exterior, would be easy
to implement in the model, as well as biologically
funded.

10. Dependence of learning on input timing

The model has additional features that are interesting in
the light of the discussion on state modulation. Namely, the
processes of pattern segmentation and pattern completion
can both be observed even if only “learning” periods are
considered.

Let us consider a concrete example. In two different
simulations, Fig. 11 (top and bottom) we keep the parameters
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Fig. 12. Top: Restoration of an analog-degraded pattern during a learning period, betweent � 50 andt � 75: Bottom: Segmentation due to inhomogenity of
the input intensity during a longer learning period (fromt � 50 tot � 100). The input bits 0 and 1 are multiplied by the constant factor 0.2, except forI11 which
has an intensity degraded by 0.1% (dashed line).



and initial conditions of the network equal. Only the time-
history of the input varies. In both cases, the network is
excited by a segmented pattern during a certain amount of
time. This time-interval starts att � 49; for both simula-
tions. However, it lasts longer in the case of Fig. 11
(bottom). In the first experiment, the short sniff conveying
inhomogeneous stimulation does not suffice to change the
structure of the network. The same three-fold initial pattern
persists, as indicated by the response to a complete stimula-
tion of the network aftert � 57: In the second experiment,
segmentation occurs and is responsible for a final ensemble
of five patterns, out of the original three. Therefore, a kind of
pattern completion takes place on the candidate learning
period of Fig. 11 (top), but not on the one of Fig. 11
(bottom).

We suggest that some temporal gating mechanism of
the afferent input, incorporating information from the
instantaneous distributions of receptor input and of network
activity, could enhance or minimize the influence of a
particular input pattern on the network structure, according
to requirements. Such a mechanism could allow the end of a
strict separation between learning and recall phases.

At this point, we notice that the basic conflict—between
pattern completion and the learning of segmentation struc-
ture—is only partially solved. In Fig. 11 (top), we see that a
pattern can be stimulated in incomplete form, during a time-
interval where synaptic change is allowed, without necessa-
rily altering the synaptic weights. Yet, this experiment does
not represent a situation where a pattern is only partially
stimulated and, at the same time, the corresponding oscilla-
tors are clearly active (that is, with oscillatory activity well
above the threshold6 ).

To solve the segmentation/completion conflict, a criterion
must be adopted which determines more systematically
when structural segmentation is to be performed. This
should be achieved for networks operating in unsupervised
mode. The inspiration for the required criterion comes once
more from biological processing. The basic mechanism is as
follows. If a pattern, which is memorized in the distribution
of synaptic weights, is excited in incomplete form during a
short time-interval, then the network should interpret the
incomplete pattern presentation as a degradation of the
input due to random fluctuations. Hence the incompleteness
of the pattern at the input level would be viewed by the
system as incidental. The pattern should be fully restored,
with all its oscillators displaying simultaneous activity.
On the other hand, if the pattern is repeatedly and
consistently presented in partial form, this can no longer
be interpreted as incidental. Thus the dynamics of the
system should force the synaptic weights to change in order
to embody a new segmentation structure. In this manner,
learning acquires a statistical character, which is closer to
biology. In Section 11, we provide further discussion of this
paradigm. In the analysis of corrupted patterns, we will note
that analog properties of the system must eventually be
considered.

11. Input modulations and change in connectivity

In the discussion of pattern completion, we considered
only purely binary input patterns. The bits 0 and 1, in the
stimulus, were multiplied by the homogeneous intensity 0.2.
We considered the degradation of input patterns in a worst-
case scenario. Namely, stimulation was completely absent
from one or more receptor cells that should normally be
stimulated if the pattern was integral. It was in this context
that the conflict between segmentation learning and pattern
completion was noted.

The absence of excitation from an individual receptor cell
corresponded to a bit 0 attributed to that cell. This is prob-
ably an extreme choice. Some amount of excitation may be
present, although not enough to elicit an oscillator’s
response. Moreover, the intensity of external stimulation
might take any value between zero and a certain physiolo-
gical maximum. For example, Fig. 8 might also be viewed
as an illustration of pattern restoration when the receptor
cells are excited with intensities between 32.5 and 135%
of the “ideal” average value 0.2. Analog fluctuations of
the input do not preclude a perfect binary response of the
network.

The argument can be extended to the case of learning. Let
us consider the enlargement in Fig. 8 (bottom). We see that,
within the same pattern, there are periods of time during
which not all oscillators are simultaneously active (but
they do overlap during some time-interval). In the experi-
ment of Fig. 8, the change in connectivity is permanently
inhibited. If this was not the case, differential activity might
elicit Hebbian synaptic change, as discussed in this paper.
Thus one might observe the occurrence of structural
segmentation into smaller patterns. Let us now consider
the regimes where synaptic change is allowed, as introduced
in Section 8. In the latter regimes, the occurrence of
segmentation depends on the time-scale of synaptic
adaptation. The latter could be adjusted through an adequate
choice of parameter values. In the parameter range that we
considered for our simulations, the network is very sensitive
to analog modulations of the input intensity during learning.
In living systems, a certain amount of random noise is
unavoidable for the input strength. Therefore, a proper
balance should be kept between the amplitude of the noise
and the rate of synaptic change, in order to avoid spurious
segmentations due to analog degradation. Furthermore,
binary pattern degradation—that is, an input cell stimulated
with zero intensity—can be viewed as a limit case of analog
degradation. Due to the extreme sensitivity of the network
equations to modulations of the input intensity, we discuss
the completion/segmentation conflict in the context of
analog corruption of patterns. Only a very small degradation
of the input intensity is allowed. This is a numerical restric-
tion which will desirably be relaxed by choosing different
parameter values in future investigation of the model.

The following experiment illustrates our discussion. In
the numerical simulations of Fig. 12, three patterns are
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initially stored in the network. During a certain time-inter-
val, the largest of the patterns, with 6 units, is stimulated
with some amount of analog degradation: oscillator 11
receives 0.1% less input intensity than the other oscillators
of the same pattern. We observe that the segmentation of the
6-bit pattern occurs when this learning period is long (Fig.
12, bottom), but not when it is short (Fig. 12, top). Notice
that the longer learning period has twice the number of
bursts of the shorter one. It can be concluded that the
network tolerates a certain amount of analog degradation
of the input, during a short time-interval, but it interprets
a longer imposition of inhomogenity of the input as a cue for
segmentation.

12. Conclusions

We discussed associative memory by departing from the
classical scenario where short-term memory, or pattern
recall, is expressed by a stationary distribution of network
activity. Instead, the information is encoded in time-depen-
dent activities observed during short periods. Severaldyna-
mical features are of great importance to memory function,
especially to the segmentation of information. Namely, the
moment and the order of presentation of patterns to
the network, modulations of intensity of the input, and the
nature of the network’s response to stimuli.

After pointing out a number of abstract as well as physio-
logical aspects of memory, learning and retrieval, we inves-
tigated a particular model of memory with a natural
application to olfaction. The model was presented in the
essence in (Wang et al., 1990), but we introduced modifica-
tions along two major directions. Namely, the possibility of
changes in the network structure resulting from alearning
process, and the evaluation ofanalogproperties of the input
simultaneously with the binary interpretation. Previous
studies had only considered purely binary input patterns.
Thus the input intensity could only have the values 0 or 1
times some constant magnitude. In contrast, we allowed for
intensity modulations of the input. By exploring the fine
structure of the time-intervals of bursting, we proposed
how the input modulations could elicit a higher-order
coding of information. The network could simultaneously
code features of the input in an analog and a binary way,
thus showing enhanced processing capabilities. In this
manner, analog features of the input provide for additional
information structure.

We analyzed the dynamical phenomena leading to
neuronal synchronization and bursting. The features of
completion of corrupted patterns, and segmentation of the
information, which are requirements of pattern retrieval,
were illustrated with numerical simulations. In Section 8,
we studied the operation mode in which the network can
extract and memorize the different patterns that make up a
composite one. This is achieved in an unsupervised manner.
Learning takes place by the network being structured in

response to stimulus history alone. The conflict between
pattern learning and pattern recall was considered, as
well as the possibility of a modulation of the learning
state. The importance of stimulus timing with respect to
the internal dynamics of the network was pointed out.
We proposed a mechanism allowing the end of a
separation between learning and recall phases. This
mechanism relies on time-gating of the input, and not on
structural blocking of synaptic change. The consequences of
analog degradation of the input intensity, during a learning
phase, were noted.

In the simulations in our paper, distinct patterns do not
present a superposition of active units. This facilitates the
numerical implementation of the dynamical learning, while
preserving desired properties of associative memory such as
the capabilities of pattern completion and generalization. In
the original model (Wang et al., 1990) there could be a
superposition of active bits between different patterns, but
dynamical learning was lacking. In that case, a superposi-
tion number of one active unit was reported. Notwithstand-
ing, a high superposition rate does not seem to be mandatory
in biological systems, and may even make for inefficient
memory systems, see e.g. Rolls (1989) for a discussion on
sparse coding and the advantages of avoiding interference
between different dynamical patterns). Still, due to the
importance of the possibility of pattern overlap, we consider
that it should be given priority in further development of the
model. We believe that further investigation should
commence by a search of more adequate parameter values,
especially concerning numerical stability, so that at least
moderate pattern overlap be made possible. We only
provide examples of learning featuring the breaking of exci-
tatory associative connections. However, the model is also
able to reunite patterns by re-establishing excitatory links
between them. A mechanism of reunification is useful e.g. to
remedy accidental segmentation caused by strongly
“anomalous” input. The law of synaptic change includes
the possibility of creating or even “rebuilding” excitatory
links between groups of neurons. As it comes, the parameter
region that we considered in the examples is more favorable
for segmentating than it is for reuniting patterns. A more
balanced behavior could be obtained by considering other
regions of parameter space. In particular, the importance of
external stimuli could be enhanced in situations where inter-
nal dynamics tends to preclude the re-binding of patterns.
Overall, the re-binding mechanism necessarily has a
Hebbian, statistical nature, and depends upon stimuli
sequences with adequate properties. Specifically, excitatory
links will be allowed to “grow” between patterns that
repeatedly and consistently are stimulated together for a
long enough period of time. This will be interpreted as the
elementary patterns really being part of a same pattern. The
fact that a sub-pattern has appeared isolated in the past will
be regarded as a spurious phenomenon, “corrected” by more
normal stimulus history at a later time.

We believe that the discussion in this paper could help
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clarify important aspects of the primary and intermediate
stages of sensory processing and pattern recall.
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