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ABSTRACT 

Identifying SECIS sequences in the genome is an essential step in Selenoprotein discovery. We use a competition neural 
network in a pre-processing stage to encode potential SECIS sequences, and a multilayer perceptron trained with 
backpropagation to predict SECIS. We thus propose a new approach within SECIS studies by combining more classical 
bioinformatics techniques with the learning and generalization capabilities of neural networks. Selenoproteins are thought 
to be responsible for most biomedical effects of dietary selenium and are essential to mammals. They play an important 
role in cancer prevention, immune function, aging, male reproduction, and other physiological and pathophysiological 
processes. Their prediction and study are of undeniable value. The ability of artificial neural networks to be fault tolerant, 
to adapt easily to new environments without specialized programming and to handle fuzzy, probabilistic, noisy or 
inconsistent data allowed us to provide an alternative to stricter pattern matching and score based methods. Our results 
compare well with the ones obtained with previously available methods. 
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1. INTRODUCTION 

Selenium is a micronutrient found in proteins on the eubacterial, archaeal and eukaryotic domains of life. It is 
present in selenoproteins in the form of Selenocysteine (Sec), the 21st amino acid (Hatfield and Gladyshev, 
2002).  

It is known that supplementation of the human diet with Selenium potentially offers effective means of 
preventing or diminishing human maladies. Dietary Selenium plays an important role in cancer prevention, 
immune function, slowing the aging process, male reproduction and other physiological and 
pathophysiological processes (Kryukov et al., 1999).  

Selenium deficiency results in decreased levels of selenium-containing proteins (Kryukov et al., 2003) 
which are associated with decreased survival rates of HIV-infected patients (Kryukov et al., 2003), white 
muscle disease –a degenerative disease of the cardiac and skeletal muscles, mostly a veterinary problem but 
seen occasionally in malnourished people– and endemic juvenile cardiomyopathy (Gu et al., 1997). In 
human clinical trials, increasing the dietary supplement of Selenium reduced the rate of prostate, lung and 
colon cancer incidence in 48-63%. Selenium is also essential for mammalian development. For example, 
disruption of the mouse Sec-tRNA gene results in early embryonic lethality (Kryukov et al., 1999).  



It should be noted that the functions of the majority of selenoproteins are not known. Characterization of 
their function is an obvious direction in selenoprotein research. (Hatfield and Gladyshev, 2002) 

Unfortunately, it is especially difficult to predict selenoproteins, since Selenocysteine is the only amino 
acid genetically coded. The fact that UGA serves as a stop as well as Sec codon, raises an important question: 
How can the cells’ translational machinery distinguish these two functions? Something has to tell the 
translational machinery of the cells to continue and not terminate translation at the UGA codon. This is the 
function of the stem-loop structure in the 3’ untranslated regions of eukaryotic mRNAs that encode 
selenoproteins, known as Selenocysteine Insertion Sequence (SECIS) elements (Kryukov et al, 2003; 
Castellano et al., 2001). 

Gene prediction programs rely on the standard stop codons. Because of the non-standard use of the UGA 
codon, they are unable to identify selenoproteins (Castellano et al., 2001). One solution for this problem 
could be to search for occurrences of SECIS structural patterns (Castellano et al., 2004). But these patterns 
are too common in genomic material and searches produce large number of predictions (Castellano et al., 
2001 and 2004). The distance between a SECIS element and a UGA codon influences whether the UGA is 
read as a stop or a Selenocysteine codon. However, this is not the only factor that affects the interpretation 
(Gu et al., 1997). Yet another example is the fact that rodent and sheep selenoprotein W and Schistosoma 
GPX mRNAs are known to use UGA codons to specify both selenocysteine and termination (Gu et al., 
1997). However, SECIS still provides an identifier that can help in the annotation of uncharacterized 
selenoprotein genes (Hatfield and Gladyshev, 2002). 

As depicted in Fig. 1, SECIS elements are composed of two helices separated by an internal loop. An 
additional ministem may appear, if the apical loop is large enough. This seemingly stabilizes the SECIS 
element. Furthermore the SECIS elements are classified as form 1, if without ministem, and form 2 
otherwise. The SECIS core structure, Quartet, is located at the base of the second helix. Preceding it, in the 
majority of cases, we can find in the apical loop two Adenosine nucleotides (Hatfield and Gladyshev, 2002).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: SECIS element consensus structure (Hatfield and Gladyshev, 2002). 
 
 
SECIS elements have different structures in eukaryotes, archaea and bacteria. Nevertheless, when 

searching for potential Selenoprotein genes, it is known that the SECIS elements are located in the 3´-
untranslated regions of all eukaryotic and archaeal Selenoprotein genes. In bacteria they are located in the 
coding regions immediately downstream of the UGA codons (Hatfield and Gladyshev, 2002). 

 



The Selenoprotein prediction protocol using classical methods is illustrated in Fig. 2. 
 
 

 
Figure 2: Selenoprotein prediction protocol overview. 

 
 
For the computational prediction of selenoproteins the first step is to find potential SECIS by providing 

PatScan with a pattern and sequence files in FASTA format (Pearson et al, 1988). Since a mere pattern is not 
sufficient to identify positively a SECIS element and the SECIS patterns are too common in genomes, it is 
necessary to use other methods to improve PatScan results, such as applying RNAFold to the PatScan output 
in order to assess the thermodynamic stability of each potential SECIS, using the protocol described in 
(Kryukov et al., 1999). The thermodynamically stable SECIS location and Geneid are used to predict genes 
that may be interrupted by in-frame TGA codons. The putative distance between the SECIS element and the 
potential selenoprotein coding gene has changed over time. For Drosophila Melanogaster 500bp downstream 
was used in (Gu et al., 1997), but this may be too restrictive. In mammals, distances larger than 4000bp are 
possible (Castellano et al., 2001). From the genes found, one removes those that are already known, those 
that are incompatible with expressed sequence tags, those that have unlikely structures and anything that to 
the best of your knowledge cannot possibly code a selenoprotein. Whatever is still left in the end may be a 
selenoprotein and should request further analysis in a laboratory. 
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SECIS prediction 

Gene prediction 

Lab Testing 

Selenoproteins 

Use a program like PatScan (Dsousa et al., 1997) to search 
for the SECIS patterns in a genome; 
use a program like RNAFold (Hofacker et al., 1994; Zuker 
and Stiegler, 1981; McCaskill, 1990) to assess the 
thermodynamic stability of the previous results. 

With the potential SECIS found as a starting reference, use a 
program like Geneid (Blanco et al., 2002; Blanco et al., 
2001; Parra et al., 2000; Guigó, 1998; Guigó et al., 1992) to 
find genes with an in-frame TGA; 
remove, from the results, already known genes, check for 
incompatibility with expressed sequence tags, strange 
secondary structures, etc. (Castellano et al., 2001) 

If, after all the computational analysis, the researcher 
believes there is nothing more he/she can do to prove that the 
predicted genes do not code for selenoproteins, then send the 
results to the laboratory for confirmation and labeling. 



The first step of the protocol presented in Figure 2 still results in many false predictions, revealing that the 
simple thermodynamic evaluation may not be enough to restrict the false predictions to a minimum possible, 
and may even be excluding some potential SECIS that should suffer further investigation.  

The complexity of this problem demands a system that is robust, fault tolerant, easily adaptable to new 
environments without specialized programming, and which can deal with fuzzy, probabilistic, noisy or 
inconsistent data. In view of this, we have used the neural computation paradigm to build a successful 
alternative in the prediction of SECIS elements. The neural network approach does not necessarily replace 
RNAFold usage, but it may complement it. Indeed, the neural protocol would enter the diagram of Fig. 2 at 
about the location of RNAFold in that diagram. 

2. METHODS 

2.1 Materials 

The materials used were: 
a) 35876 potential SECIS extracted from the first 19 large genome scaffolds of Drosophila 

Melanogaster (Castellano et al., 2001); 
b) 1415 thermodynamically stable potential SECIS extracted from the previous ones using RNAFold 

(Castellano et al., 2001; Hofacker et al., 1994; Zuker and Stiegler, 1981;McCaskill, 1990); 
c) 267 several species real SECIS from RFam (Griffiths-Jones, 2003); 
d) 14182 potential SECIS extracted from the fourth revision of the Drosophila Melanogaster genome, 

the latest version at this time; the genome was obtained from the Berkeley Drosophila Genome 
Project web site (http://www.fruitfly.org/); 

e) 46625 potential SECIS extracted from the human mRNA assembled at GenBank and available at the 
UCSC Genome Bioinformatics site (http://hgdownload.cse.ucsc.edu/goldenPath/hg17/bigZips/).  

 
The potential SECIS on d) and e) were extracted following the recommendations expressed in (Castellano 

et al., 2001) using PatScan (Dsouza et al., 1997) with the patterns: 
 
r1={at,ta,gc,cg,tg,gt} p1=5...15 p2=1...7 a tga n p3=9...12 p4=0...2 aa p5=6...17 r1~p3[2,1,1] n gan p6=3...9 r1~p1[2,1,1] 
 

2.2 Test Set Preparation 

Two types of tests were made, one using a test set ―herein called abridged test set― with just 9600 
sequences mainly extracted from the first version of the Drosophila Melanogaster genome, and the other 
with the latest releases of full genomes. A slight variation of the abridged test set was also considered 
originally, consisting in deleting from it the 267 real SECIS from several species. This shorter test set was 
also used in the first type of tests. 

 
The abridged test set was build with: 
- 1415 Drosophila Melanogaster thermodynamically stable SECIS; 
- 3 real Drosophila Melanogaster SECIS; 
- 7915 Drosophila Melanogaster thermodynamically unstable SECIS; 
- 267 real SECIS from several species, where the 3 real Drosophila Melanogaster SECIS appear once 

again, but actually originate 4 entries since one of the Drosophila M. SECIS is associated with two 
different selenoproteins. 

 
The abridged test set and the test sets built from full genomes were split into 14 columns. Each column 

represents one of the PatScan patterns and originates a test sub-set.  
From these 14 test sub-sets the third and fourth are discarded since they only contain fixed values. The 

first and last test sub-sets are also discarded since the results of thousands of tests revealed us a negative 



impact on the neural networks predictions. This is probably because the beginning and end of the SECIS 
sequences change far too much. 

Using a small script, the nucleotide symbols of the remaining 10 test sub-sets are then substituted by the 
Hydrogen bonding symbols, S for strong bondings and W for weak ones. A standard sparse coding is adopted 
at this early encoding stage.  

This still results in an input vector that is too large, affecting the learning ability of the neural network 
used in the prediction. Furthermore, the data must be in an adequate numerical format. Hence, the 10 test 
sub-sets are fed into 10 independent competition neural networks (see e.g. pages 217-221 of Hertz et al., 
1991) for encoding and compression using GenEncode (a competition neural network program created for 
this work ; available on request) with the following configuration per network: 

 
PatScan Pattern Qty.Neurons Learning Epochs 

2 2 30 
5 2 30 
6 1 30 
7 2 30 
8 1 30 
9 2 30 

10 2 30 
11 2 30 
12 2 30 
13 2 30 

 
All the remaining program options were left with default settings.  
 
GenEncode produces 10 encoded test sub-sets. The encoded values represent the distances between the 

final neuron weight vectors and each of the input vectors. If a pattern features sequences with up to 14 
nucleotides in length, and these are represented by only 2 neurons, this provides a high compression ratio. 

Using JoinSECIS (a script used to join the text columns from different files into a single one; available on 
request) we join all the 10 encoded test sub-sets into a single test set, the final one, which is to be fed into a 
multilayer perceptron (MLP). 

 
With unsupervised learning, the competition neural network must find for itself features, regularities, 

correlations, or categories in the input and code for them in the pre-processed output which is the MLP’s 
input.  

Unsupervised learning is only useful here because there is redundancy in the data. Otherwise data would 
look like random noise (see pages 197-199 of Hertz et al., 1991).  

 

2.3 SECIS Predictions 

The power of multilayer networks was realized long ago (see page 115 of Hertz et al., 1991), since they have 
the capacity to compute a wide range of functions (see pages 149-171 of Rojas, 1996) and are able to 
generalize over training examples both in approximation and classification tasks (see e.g. Anderson, 1996). 
The lack of a good training method for these networks and the demonstration of the limitations of single-
layer neural networks was a significant factor in the decline of interest in neural networks in the 1970s. The 
discovery by several researchers independently and widespread dissemination of an effective general method 
of training a multilayer neural network, played a major role in the reemergence of neural networks as a tool 
for solving a wide variety of problems. The main method is known as Backpropagation (of errors) (Hertz et 
al., 1991; Rojas, 1996; Fausett, 1994). 

The Backpropagation algorithm looks for the minimum of an error function in neuron weight space using 
the method of gradient descent. A combination of weights which minimizes the error function is considered 
to be a solution of the learning problem. Since this method requires computation of the error function’s 
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gradient at each iteration, we must guarantee the continuity and differentiability of the error function (see 
pages 149-171 of Rojas, 1996).  

We use a multilayer perceptron in the task of predicting which input vectors –originated from DNA or 
RNA sequences that have been selected through a previous pattern matching process– correspond to real 
SECIS elements. Recall that the input to the MLP is prepared with the help of a separate competition 
network. As explained in Section 2.2, the input vectors to the MLP are sequences from the encoded set 
produced by GenEncode. 

The Backpropagation learning algorithm is used to train the MLP. The actual architecture we adopt for 
the MLP is illustrated in Fig. 3. 
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Figure 3: Multilayer Perceptron architecture. Here ξ is the input vector, w and W are connection weights, and O is 

the output vector. For clarity, only a few connections are labeled by the respective weights. Sigmoidal activation 
functions are used for all neurons. 

 
During training, the network is taught to respond (O1 = 0, O2 = 1) if the input stimulus’ target is a SECIS, 

and (O1 = 1, O2 = 0) otherwise. At each iteration, the connection weights are updated according to the 
Backpropagation algorithm. Once learning has stopped, the weights become fixed and the network can be 
tested for classification performance. For each input stimulus, either seen during training or not, the 
respective output is given by the activities of neurons O1 and O2. These outputs are then subjected to a 
Euclidean distance calculation between them and the two possible “perfect” answers, (0,1) for predicted 
SECIS, (1,0) otherwise. The smallest distance wins, meaning that if the output is closer to (0,1) then the input 
vector is considered to correspond to a SECIS; otherwise it is classified as non-SECIS.  
 

All scripts and programs, as well as the neural networks described, are available on request.  

3. RESULTS 

The selenoprotein prediction protocol presented in Figure 2 was developed over the years through 
international cooperation of several researchers, and features what are believed to be the best tools for the 
task. Therefore when we compare our results with those of RNAFold we are comparing them with the best 
available. The two methods are quite different, since RNAFold is used to assess the thermodynamic stability 
of the sequences while the MLP is used to classify the sequences through biological knowledge acquired 



from the sequences during the learning process. A direct comparison between the two cannot be fully 
undertaken with presently available data. Our evaluation falls on which method provides the least amount of 
false positive predictions while finding all the real SECIS as well as on the possibility of improving the 
existing results by finding new real SECIS that had been discarded by previous methods. 

Prior to running the learning algorithm, learning parameters have to be chosen. In our implementation, we 
used the following default settings: learning rate of 0.1; momentum 0.9; uniform [0,1] weights initialization. 
Furthermore, learning sets have to be prepared. This is done following the same procedure as outlined in 
Section 2.2 for the test set preparation. 

Reaching the proper encoding procedure, as presented in Section 2.2, and neural network architecture, as 
presented in Section 2.3, was a computational intensive process. Hence we started to test the learning 
procedure with a sample of 9333 potential SECIS, the same as described in Section 2.2 for the abridged test 
set but without the 267 real SECIS from several species, from the materials used in (Castellano et al., 2001). 
These were used as a first test set.  

With a learning set constituted by 263 real SECIS from several species, not including Drosophila M., and 
300 thermodynamically unstable SECIS (as predicted by RNAFold) from Drosophila M., the MLP was able 
to predict 773 potential SECIS from within this first test set, including the 3 real ones from Drosophila M.. 
For comparison, RNAFold predicted 1415 SECIS, also including the 3 real ones from Drosophila M.. 

However, given that until now only three real SECIS were found on Drosophila M. and therefore this 
constitutes a rather thin statistical argument, we decided to add 267 real SECIS from several species into this 
sample, creating a new test set with 9600 sequences as described in Section 2.2 ―the so-called abridged test 
set. Using this new test set and a new learning set constituted by 120 thermodynamically stable SECIS from 
Drosophila M. (as predicted by RNAFold), not including the 3 real Drosophila M. SECIS, and 300 
thermodynamically unstable SECIS (as predicted by RNAFold) from Drosophila M., the MLP was able to 
predict 1155 potential Drosophila M. SECIS including the 3 real ones from Drosophila M. and 194 real 
SECIS from several species. This means that 74% of the real SECIS on the test set were found while keeping 
a low rate of false predictions.  

Furthermore, in both tests around 40% of the potential SECIS predicted by MLP are different from those 
predicted by RNAFold, revealing in this way a new space with potential for discoveries.  

 
 We have also started to test the encoding and neural network techniques with full genomes. Using a 

learning set constituted by 263 real SECIS from several species, not including Drosophila M., and 300 
thermodynamically unstable SECIS (as predicted by RNAFold) from Drosophila M., with the following 
results: 

- 2248 potential SECIS predicted against 1415 predicted by RNAFold on the first release of 
Drosophila M. genome; 

- 904 potential SECIS predicted on the latest version of Drosophila M. genome (4th release); 
- 3146 potential SECIS predicted by MLP on the latest version of the human genome (see Section 2.1). 
 
Using a learning set constituted by 280 thermodynamically stable SECIS (as predicted by RNAFold) and 

300 thermodynamically unstable SECIS (also RNAFold-predicted) from the first version of the Drosophila 
M. genome, applied to the abridged test set, 1726 input vectors were predicted as SECIS; among them, 224 
were from other species (not Drosophila M.). Note that 267 real SECIS from other species were included in 
the representative test set. 

Our tests were iterated several thousand times with varying learning parameters and starting conditions, 
but only a selection of the most interesting results is shown here. All other results are available on request. 

This is ongoing work, and therefore we expect to release more detailed results and comparisons as soon 
as possible. However, the work done until know already allows some insight on the potential of this method. 
We are currently applying RNAFold to potential SECIS extracted from other genomes in order to improve 
our comparison with MLP. We are also awaiting lab results. 

 
 
 



4. CONCLUSION 

 
The results show that the Multilayer Perceptron is able to ascertain the biological information needed to 
provide good predictions from the encoded input data. Furthermore, a detailed analysis reveals that a very 
significant amount of the predictions do not match those from RNAFold, which increases the potential for 
new discoveries, while remaining low in the quantity of false positive SECIS predictions. Even though for 
the first version of the Drosophila M. genome the MLP generated more false predictions than RNAFold, 
those predictions were qualitatively different. Furthermore, the first version of the Drosophila M. genome is 
very different from the latest release, since it has twice as much sequences as the latest release. This suggests 
that there may be many errors in it that could have misled the MLP. The tests with the latest version of the 
Drosophila M. genome are much more promising and we continue to carry them on.  

 
Regarding cross-species predictions, the MLP taught with only Drosophila M. SECIS and non-SECIS (as 

predicted by RNAFold) was still able to find 74% of the real SECIS from the RFam database which contains 
other species (see Griffiths-Jones, 2003, for the database). Notably, by relaxing the obligation of finding all 3 
real SECIS from Drosophila M., the MLP actually found 84% of the real SECIS from the RFam database. In 
the latter case, only 2 of the 3 Drosophila M. SECIS were detected. Reciprocally, the usage of other species’ 
real SECIS in the learning process of the MLP to identify Drosophila M. sequences also revealed the good 
potential of this method for cross-species predictions. The neural networks shown here brought out their 
potential to outperform RNAFold in the prediction of potential SECIS even when taught by the results of 
RNAFold itself. 

The potential of neural networks for assisting in the identification of new selenoproteins is evident, but 
there is still much work to be done. Encoding improvements, more biological information about the potential 
SECIS sequences, better understanding of what the neural network uses from the potential SECIS sequences, 
and multilayer perceptron learning process improvements, are just a few aspects that can still be looked at. 
As SECIS research proceeds at a steady pace, we should also expect more feedback from the labs in the 
process of assessing the quality of the bioinformatics predictions described above. 
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