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Abstract

In this report we study the m-calculus with polyadic synchronization: an extension of
the m-calculus that generalizes the synchronization mechanism by allowing channels to be
sequences of names. In particular, we extend the m-calculus with polyadic synchronization
with cryptographic primitives and then prove the last can be encoded in the regular 7-
calculus with polyadic synchronization. Further, we prove that the proposed encoding is
sound and complete with respect to barbed congruence which we show coincides with early
congruence.
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Introduction

The m-calculus with polyadic synchronization proposed in [10] is an extension of the 7-
calculus in [1] that generalizes the synchronization mechanism by allowing channel names
to be composite. The model of interaction among processes is, as in the m-calculus, based
on handshaking, i.e., the simultaneous execution of input/output actions. The fact that
in the m-calculus with polyadic synchronization communication is only established if the
channel vectors match element-wise, enhances its expressive power with respect to the 7-
calculus. In particular, in [10] it is shown that the matching construct can be encoded in
the m-calculus with polyadic synchronization but not in the m-calculus. In addition, it is
also proven that the higher the degree of synchronization (i.e. the maximum length of the
channel vectors), the higher the expressive power of the calculus.

The cryptographic 7-calculus with polyadic synchronization introduced in [10] is an exten-
sion of the m-calculus with polyadic synchronization with cryptographic primitives. Much
like the spi-calculus introduced in [12] - an extension of the m-calculus with constructs
that allow for encryption and decryption of messages - the cryptographic w-calculus with
polyadic synchronization can be used to model security protocols.

Goals and Contribution of the Report

The main goal of the present work is to prove that the w-calculus with polyadic syn-
chronization is sufficiently expressive to model security protocols. In order to achieve this
goal, we study the m-calculus with polyadic synchronization, extend it with cryptographic
primitives, and then prove that we can encode the last calculus in the first. Further, the en-
coding we propose is sound and complete with respect to barbed congruence. We structure
the presentation of our approach to the problem at hand in the following manner:

e In Chapter 1 we introduce the syntax and late labelled transition semantics of the
m-calculus with polyadic synchronization as first proposed in [10]. In Section 1.3 we
define for the m-calculus with polyadic synchronization four known notions of equiv-
alence in the m-calculus: ground, late, early and open bisimilarity. In addition, we
compare these notions and reach an equivalent result to that known in the literature
for the m-calculus. Also in Section 1.3 we introduce the notions of barbed bisimilarity,
equivalence and congruence, and conclude the last coincides with early congruence.
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Although relying on a similar result obtained for the m-calculus in [16], the proof
of the coincidence of the notions in the w-calculus with polyadic synchronization
requires several adjustments and is, to our knowledge, an original result.

e In Chapter 2 we study the spi-calculus originally introduced in [12], but we rely
on the syntax and operational semantics of the spi-calculus proposed in [23]. Our
aim is to understand this calculus, used to model and reason about cryptographic
protocols, so as to have some leverage to study the cryptographic m-calculus with
polyadic synchronization. We synthesize some of the results in [23] and [24], add a
few relevant examples, and conclude our analysis with a diagram relating contextual
equivalences with bisimilarity notions. In particular, we study the idea behind the
proof of the coincidence of barbed equivalence with alley bisimulation.

e In Chapter 3 we introduce the notion of encoding and correctness. In Section 3.2
we study in great detail the encoding of the match construct in the m-calculus with
polyadic synchronization in [10]; this constitutes a separation result between the 7-
calculus and the m-calculus with polyadic synchronization. In Section 3.3 we extend
the m-calculus with polyadic synchronization with cryptographic primitives as pro-
posed in [10]. In addition, we give an operational semantics of the new calculus (to
our knowledge, this had never been done before), and analyse in detail a crypto-
graphic protocol. We rely on a proposal in [10] for the encoding of the cryptographic
constructs in the m-calculus with polyadic synchronization and prove that a similar
encoding is both sound and complete with respect to barbed congruence. To our
knowledge, this result is original; and it constitutes evidence that the 7w-calculus with
polyadic synchronization can be used to model security protocols.

Outline of the Report

The report is divided in four chapters concerning:
- the study of the w-calculus with polyadic synchronization;
- the study of the spi-calculus;

- the encoding of the matching and cryptographic constructs into the m-calculus with
polyadic synchronization;

- the conclusions of the report and the identification of possible avenues for the future
development of the work done so far.



Chapter 1

m-calculus with polyadic
synchronization

The m-calculus with polyadic synchronization as introduced in [10] is a variant of the
m-calculus where the channels can consist of sequences of names and communication is
establish if and only if the channel vectors match element-wise.!

1.1 Syntax

In this section we introduce the syntax of the calculus in detail and also mention some of
the main differences between this and the m-calculus. These differences will be explained
in further detail in subsequent sections throughout this chapter.

Definition 1.1.1 Processes

Let N be a countable set of names and x,xq, ..., x,y range over N for some k € N.
The class of processes Pg, ranged over P, Q) is defined by the following grammar:
P:=0 maction

| 7.P prefix
P replication
| (vx)P  restriction
| P|P parallel composition
| P+ P choice
where the prefives m are given by:
T =T silent action
|2y -2 (y)  input
| Z7 TRy output

Decreasing order precedence of operators follows that of the definition, where the prefix
operator has the highest precedence.

"We call m-calculus with biadic synchronization to the particular case of the m-calculus with polyadic
synchronization where the composite channels have at most two names.
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Action | Description fn(a) bn(a) n(a)
T internal action 0 0 0
uy freec output | n(uw)U{y} | 0 | n(u)U{y}
u(y) | bound output n(u) {y} | n(uw)U{y}
u(y) input n(u) {y} | n(w)U{y}
Table 1.1: Actions
Process Description fn(P) bn(P) n(P)
0 inaction 0 0 0
™.Q prefix fn(m) U (fn(@)\bn(m)) | bn(m) U bn(Q) | n(m) Un(Q)
Q replication fn(Q) bn(Q) n(Q
(vy)Q restriction Sn(@)\{y} {ypun(@) | {y}Un(@Q)
(Q1]Q2) | parallel composition fn(Q,Q2) bn(Q1, Q2) n(Q1,Q2)
(@1 + Qo) choice fn(Q1, Q2) n(Q1, Q2) n(Q1, Q2)

Table 1.2: Processes

Note that we use the notation a for .0, and that we use (vz,w)P for (vz)(vw)P.

All operators used here are also present in the m-calculus and their behaviour is as
expected. Nonetheless, note that restriction is made on names as in the m-calculus and not
on composite channels: this allows for partial restriction.

One should also note that in the m-calculus with polyadic synchronization we do not
need to include the match operator since it can be encoded in the calculus. This is not
possible in a ‘sensible’ manner using the original 7-calculus that, therefore, takes the match
operator as a primitive. This separation result between the two calculi was proven in [10];
we refer to it again in detail in Section 3.2.

As in the m-calculus, there are four possible kinds of actions « in the present calculus
as seen in Table 1.1. We let bn(a) denote the set of bound names in «, fn(«) the set
of free names in a and n(«a) the set of all names in a. We let u = z - ... - 23 and
u =7 ... X, where k € N, represent respectively the input and output channel vectors.
Then, fn(u) = fn(w) = n(u) = n(w) = {x1, ..., 21}, and bn(u) = bn(u) = (.

The notions of bound and free names in a process P, denoted by bn(P) and fn(P)
respectively, follow those of the m-calculus. We now represent that definition in Table 1.2,
where n(P) represents the names in the process P. Note that we use the following notation:

fn(Pr, Py) = fn(P)U fn(Py), bn(Py, Py) = bn(P)Ubn(Py) and n(Py, Py) = n(Py) Un(P,).
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Substitution and a-convertibility are defined as in the w-calculus [3], though we now
require that the latter takes into account the possibility of composite channels. Nonetheless,
we provide the formal definitions next.

Definition 1.1.2 Substitution

Let w & bn(P) where P € Pg. The substitution o = {w/z} applied to process P, written
Po or P{w/z}, is the process obtained by replacing each free occurrence of z in P by w.
The simultaneous substitution o = {wy, ..., w,/x1, ..., x,} for distinct z; applied to process
P where wyq,...,w, & bn(P), also written Po, is the process obtained by simultaneously
replacing each free occurrence of x; in P by w; where 1 <1 <n andn € N.

Note that given a substitution ¢ = {w/z} we denote the result of applying o to z as
o(z). In this case, we then have that o(z) = w.

Definition 1.1.3 «-convertibility

Letu = xq-...-xp where k € N. A change of bound names n a process P is the replacement
of a subterm u(z).Q of P by u(w).Q{w/z} or the replacement of a subterm (vz)Q of P by
(rw)Q{w/z} where in each case w does not occur in Q.

Two processes P and @) are a-convertible, written P =, Q, if @ can be obtained from P
by a finite number of changes of bound names.

Note that substitution may imply the renaming via a-conversion of bound actions to
avoid unwanted captures of free names. We now present an example that shows the danger
of performing the substitution ¢ = {w/z} in a process P such that w € bn(P).

Example 1.1.4 Let P = w(w)wz. By definition of substitution P{w/z} =,
(w(v).vz){w/z} = w(v).vw where we have performed the renaming of bound names so
as to respect the conditions of substitution. We easily notice that the occurrences of w are
still free, so the former z was not captured. However, if we do not perform the renaming
operation, we have that P{w/z} = w(w).Ww and the former z is now bound.

The following examples show how a-convertibility can be established.

Example 1.1.5 Let P = (vy)(y-z(a)|z(y))|Za. Then we can obtain through a-convertibility
the process Q@ = (vw)(w - z(a)|z(y))|[Za where we replaced the subterm (vy)P' of P with
(vw)P'{w/y}, where P' =y - z(a)|z(y) and w is new.

Example 1.1.6 Let P =z -y(a).a(b)|z-yz. Then we can obtain through a-convertibility
the process Q = x - y(c).c(b)|T-yz where we replaced the subterm x - y(a).P" of P with
x-y(c).P'{c/a} where P' = a(b) and c is new.

The importance of a-convertibility is illustrated in the Example 1.2.3 provided after
the introduction of the labelled transition relation of the 7-calculus with polyadic synchro-
nization because only then can we fully understand the relevance of a-convertibility in the
evolution of a process.
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1.2 Late Labelled Transition Semantics

In this section we introduce the late labelled transition semantics of the m-calculus with
polyadic synchronization. In addition, we provide some examples that reflect the differences
between this and the 7-calculus.

Definition 1.2.1 Late labelled transition relation
Let w = x1 - ... - x, where k € N. The late labelled transition relation — C Pg x Py,

where a is a possible action, is the smallest relation generated by the set of rules in Table
1.%%.

The rules follow in a straightforward manner those of the m-calculus where we now
consider vectors of names as channels. Note once again that in the restriction rule, RES,
we consider singular and not composite names. This characteristic of the calculus and the
fact that we enforce an all-or-nothing behaviour, that is, we require the match of all the
names in the vector channel to allow synchronization, we can define the notion of partial
restriction. The following example reflects the consequences of this type of restriction.

Example 1.2.2 Let P = (vxq)zy - 22(y) and Q = x1 - x5(y). Then, P cannot perform
the input action because of the restriction in one of its channel names (although the other
is free), while Q can. Also note that this example can be generalized to channel vectors
composed of n names, i.e., where u = xq - ... - x,, P = (va;)u(y) and Q = u(y). Because
of the restriction on the channel name x; where i € {1,....n}, P is unable to perform the
mput action.

Now that we have introduced the labelled transition relation for processes in the -
calculus with polyadic synchronization, we can once again reflect on the importance of
a-convertibility. The following example accounts for the relevance of this operation.

Example 1.2.3 Let P = (S|Q)|R where S = x - 2(y).y(b), Q = z-y(b) and R = T~ zc.
We expect S to synchronize with R in such a way that P — (c(b)|z-w(b))|0, but in order

for this to be achievable we need to perform an a-conversion, else the side condition of the
PARI rule is not satisfied.

PREFIX

I

CONV

(
(b) .
(

I

- 2(a).a(b
( ) y(b PARl ————— PREFIX
- 2(y)-y(b)|z - y(b a(b)|z - y(b) Tz 250

)

) z-2(a)
) —
P — (c(b)|z - y(b))|0

COMM

2Note that not included in the table are four rules: the symmetric form CH2 of CH1 which has Q + P
instead of P 4+ @, and the symmetric forms PAR2, COMM?2 and CLOSE2 of PAR1, COMM1, CLOSE1
in which the roles of the left and right components are swapped.
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- PP
(PREFIX) — (CH1) ———
a.P — P P+Q - P
@ /
(PAR1) P T P where bn(a) N fn(Q) = 0
P|Q — P'|Q
@ /
(RES) P 7} P where y & n(a)
(vy)P — (vy) P’
PP
(REP-ACT) ~ ——
P % PP
pp pXpr
(REP-COMM)

\P T (P'|P"{y/z})|'P

ﬁ(y) / U(y) 7
(REP-CLOSE) r T P PP yhere y & fn(P)
P — (vy)(P'|P")|\P

P p
(OPEN) ;ﬂ() where y & n(u)
(vy)P == P’

P p oM oy

(CLOSE1) -
PlQ — (vy)(P'|Q")
P p Qg
(COMM1) -
P|lQ — P'|Q{y/z}
@ /
(CONV) PT>—P if Q =, P
Q— P

Table 1.3: Late transition rules
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Note that if we had not performed the a-conversion and had disrespected the side con-
dition of the PAR1 rule then P would have evolved through a T action into ¢(b)|z - ¢(b).

1.3 Observational Semantics

In this section we seek to introduce different notions of bisimulation: a technique that
allows us to equate processes in the m-calculus with polyadic synchronization. We define
these notions of bisimulation following those known in literature [1, 4] for the m-calculus
with the necessary adjustments.

The first notion we will consider is that of ground bisimulation where there is no name
instantiation.

Definition 1.3.1 Ground bisimilarity
A binary symmetric relation S is a ground bisimulation if PSQ implies:

- if P -5 P’ where bn(a) N fn(P,Q) = 0 then there is a Q' such that Q —~ Q' and
P'SQ.

Two processes P and () are ground bisimilar if PSQ) for some ground bisimulation S.
Ground bisimilarity, written ~,, is the largest ground bisimulation®.

The notion of ground bisimilarity is very simple since a process merely has to imitate
the other in its possible transitions and vice versa without considering name instantiation.
Unfortunately, as in the m-calculus, a consequence of this is that ground bisimilarity is
not preserved by the parallel composition operator as seen in the following example. We
generalize this example to channel vectors of n names, where n € N in Example 1.3.3.

Example 1.3.2 Let P = (va)(z(w).a-wcla-y(b)) and Q = z(w). Then both P and Q) are
ground bisimilar since after performing the input action they both become inactive.

Let S = Zy and consider P = P|S and Q' = Q|S. Then P’ can perform an internal action
through synchronization between P and S and evolve into (va)(a~ycla-y(b)) which can also
perform an internal action. Thus P’ can perform two consecutive internal actions while
Q' can only perform one internal action and then becomes inactive. We can then conclude
that although P and Q) are ground bisimilar, P' and Q' are not ground bisimilar.

Example 1.3.3 Let u = x1 - ... - x,, P = (va;)(z(w).w-wc|u - y(b)) where i € {1,...,n},
and @ = z(w). Then both P and @) become inactive after performing the input action, and
so P~y Q. Let S =7Zy and consider P' = P|S and Q' = Q|S. Then P’ can evolve into
(va;)(@w-yclu-y(b)) which can perform another internal action, while Q' can only perform
one 7 action. Thus, although P ~4, Q, we have that P #4 Q.

3The existence and uniqueness of a largest bisimulation is a direct result of the Knoster-Tarski’s Fixed
Point Theorem.
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In the following example we show that ground bisimilarity is not preserved by repli-
cation. Note that in the definition of P we use polyadic CCS-like prefixes a-w and a -y
where no item is being sent or expected to be received. We do this to highlight the fact
that what could be transmitted is irrelevant, the problem lies on the synchronization of
the composite channels. Thus, in general, w. P will be used as shorthand for wy.P for some
y, and u.P will be used as shorthand for u(y).P where y & fn(P).

Example 1.3.4 Let P = (va)(z(w).a-wla-y).Zx + Zy and Q = z(w) + Zy, where w and
y are distinct. Then P ~, Q, but |P 7£,1Q since two copies of P and two copies of Q) can

synchronize and the resulting processes are not bisimilar. In detail, \P —»—5=% P’ but

no descendant of \Q) can ever perform an output action Zx.

Nonetheless, ground bisimilarity is preserved, just like in the m-calculus, by some oper-
ators as stated and proved in Proposition 1.3.6.

Lemma 1.3.5 ~ is preserved by the restriction operator

ProOOF: Let P, Q € Pg such that P ~, (). We establish the proof by performing
a case analysis on the rule used to infer an action for (vx)P, where we assume that

bn(a) N fn(P,Q) = 0.
e Application of rule RES where = & n(a):

P = P
(vr)P = (va)P'

By definition of ~,, since P — P’ we have that @ — Q' and P’ ~, Q'. Therefore,
by application of rule RES, (v2)Q — (vz)Q’ where = & n(a).

e Application of rule OPEN where @ = 77 - ... - 7 for some k € N and x ¢ n(u):
P p
(vz)P o) pr
By definition of ~, since P X, P’ we have that Q e, Q" and P’ ~, Q)'. Therefore,
by application of rule OPEN, (vz)Q E) Q' where = & n(u).
O

Proposition 1.3.6 ~, is preserved by all operators except parallel composition and repli-
cation.

Proor: We split the proof into three parts, reflecting the preservation of ground bisimi-
larity by each of the three operators.
If P, P', Q € Pg such that P ~, @) then:
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o T.P ~, m.() where 7 is a prefix: similar to proof in [1]
o P+ P ~,Q+ P’ similar to proof in [1]
o (vz)P ~y (vx)Q: proven in Lemma 1.3.5

Examples 1.3.3, 1.3.4 prove that ground bisimilarity is not preserved by parallel com-
position nor by replication.

(Il
Thus the congruence properties appear to steam directly from those of the m-calculus.
However, it was also proven in [9, 14] that ground bisimilarity was a full congruence in
the asynchronous m-calculus without match and this result does not hold if we consider
the asynchronous 7w-calculus with polyadic synchronization as seen in Example 1.3.3. The
reason why this result does not hold is related to the fact that match does not need to be
considered as a primitive in the 7-calculus with polyadic synchronization (synchronous or
asynchronous) since it can be derived.

Before we introduce other notions of bisimilarity, we state the following result which is
used in the proofs ahead together with the notion of ‘bisimulation up to’ which we introduce
next. Note that the first lemma concerns the commonly denoted structural properties which
are preserved by the notion of bisimilarity.

Definition 1.3.7 Structural congruence

Structural congruence, written =, is the smallest congruence on the processes that satisfies
the following axioms where P, QQ, R € Ps and z, w € N. Any two processes related by
these axioms are called structurally congruent.

e P+ (Q+R)=(P+Q)+R
e P+Q=Q+7P

e P+0 =P

P|(QIR) = (PIQ)IR
PlQ = Q[P

e PO=P

(vz)(vw)P = (vw)(vz)P = (vw, z) P

(vz)0 =0

(v2)(P|Q) = P|(v2)Q if = & fn(P)
P = P|IP



1.3. OBSERVATIONAL SEMANTICS 13

Lemma 1.3.8 * Let P, Q € Ps. If P=Q then P ~, Q.

The notion of bisimulation up to follows that introduced for CCS in [7] and so does the
result presented as 1.3.10.

Definition 1.3.9 °Ground bisimulation up to ~,
A binary symmetric relation S is a ground bisimulation up to ~, if PSQ implies:

- if P25 P" where bn(a) N fn(P,Q) = O then there is a Q' such that Q —~ Q' and
Py Sy Q)

Proposition 1.3.10 ¢ If PSQ where S is a ground bisimulation up to ~, then PS'Q
where 8’ is a ground bisimulation.

PRrROOF: The proof follows that in [7] with the necessary adjustments since we are con-
sidering the 7-calculus with polyadic synchronization. The proof can be split into proving
firstly that ~;, & ~; is a ground bisimulation and secondly that S is included in ~; S ~y.

(I

Note that we take for granted the reader remembers these notions since we use the

Lemma 1.3.8 combined with Proposition 1.3.10 so as to simplify many of the proofs
throughout the report.

We now introduce the notions of late and early bisimilarity which differ in their treat-
ment of name instantiation for input actions.

In late bisimilarity we require that the derivative of a process simulates the derivative
of the other process (and vice versa) for all possible instantiations of the bound parameter.
It is called late because the choice of the name instantiation is made after the choice of the
derivative.

Definition 1.3.11 Late bisimilarity
Let w=xy-... -z, where k € N.
A binary symmetric relation S is a late bisimulation if PSQ) implies:

- if P %5 P" where a = uy,u(y) or 7 and bn(a) N fn(P,Q) = O then there is a ('
such that Q - @' and P'SQ’.

-if P W P where y & fn(P,Q) then there is a Q" such that Q ) Q' and for each
w, P{w/y}SQ{w/y}.
4The same result holds for all the notions of bisimilarity presented in this section.

5An analogous definition can be presented for all notions of bisimilarity introduced in this section.
6The same result holds for any of the notions of bisimilarity presented in this section.
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Two processes P and () are late bisimilar if PSQ for some late bisimulation S.
Late bisimilarity, written ~y, s the largest late bisimulation.

In early bisimilarity we require that under the same possible name instantiation there
is a derivative of each of the processes that simulates the other and vice versa. It is
named early because the choice of the name instantiation is made before the choice of the
derivative.

Definition 1.3.12 Farly bisimilarity
Let uw=1xy-... x5, where k € N.
A binary symmetric relation S is an early bisimulation if PSQ) implies:

- if P %5 P where a = uy,u(y) or 7 and bn(a) N fn(P,Q) = O then there is a @
such that Q = Q' and P'SQ’.

-if P “9) p where y & fn(P,Q) then for each w there is a Q)" such that Q) we) Q'
and P{w/y}SQ'{w/y}.

Two processes P and @) are early bisimilar if PSQ for some early bisimulation S.
Early bisimilarity, written ~., is the largest early bisimulation.

Similarly to what happens in the m-calculus, in the m-calculus with polyadic synchro-
nization both late and early bisimilarity are not preserved by input prefixing. This is
evidenced by the following example where we consider processes in the w-calculus with
biadic synchronization.

Example 1.3.13 Let P = (va)(a-zc|la-y(b)) and @ = 0. Since both P and @) are unable

to perform any action, we have that P and Q) are late and early bisimilar. Now consider the
processes P = z(y).P and Q" = z(y).0. Then P’ W) poand Q' L) , but for w =z we

have that P{w/y} —— while 0 4. Thus, P’ and Q' are neither early nor late bisimilar.

We can now generalize the previous example for the m-calculus with polyadic synchro-
nization, by considering channel vectors of n names, where n € N.

Example 1.3.14 Let u = zy - ... - x,,, P = (va;)(uw-zc|u - y(b)) where i € {1,...,n} and
Q = 0. Since both P and Q) are inactive, we have that P ~, Q) and P ~; Q). Now consider

the processes P' = z(y).P and Q" = z(y).0. Then P’ Y, p and Q' W g , and for w =z
we have that P{w/y} —— while 0 /—. Thus, P' o; Q" and P’ . Q'.

As in the 7-calculus, late and early bisimilarity are preserved by all other operators as
shown in the following propositions.

Proposition 1.3.15 ~; is preserved by all operators except input prefiring.
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PRrOOF: The proof follows that in [1] for the output prefixing, choice and parallel compo-
sition operators and [15] for the replication operator. Example 1.3.14 proves that ~; is not
preserved by input prefixing.

Proposition 1.3.16 ~. s preserved by all operators except input prefizing.

PRrROOF: The proof is similar to that of Proposition 1.3.15 and Example 1.3.14 also shows
that ~. is not preserved by input prefixing.

([

In the original 7m-calculus congruences for late and early bisimilarity were achieved by

closing the equivalences over all name substitutions [1]. We now introduce similar notions
for the m-calculus with polyadic synchronization and get similar results.

Definition 1.3.17 Late congruence
Let P, (Q € Ps. The two processes are late congruent, written P ~; Q, if for all substitu-
tions o we have that Po ~; Qo.

Definition 1.3.18 Farly congruence
Let P, Q € Ps. The two processes are early congruent, written P ~. Q, if for all substi-
tutions o we have that Po ~, Qo.

The relation between the notions of late bisimilarity and late congruence, and of early
bisimilarity and early congruence, are shown in the following propositions.

Proposition 1.3.19 ~; C ~;

PrOOF: The inclusion follows directly from the definitions of late bisimilarity and late
congruence because for P, Q) € Pg, if P ~; () then for all substitutions ¢ we have that
Po ~; Qo. In particular, this is true for the identity substitution, that is, P ~; Q.

The following example is evidence of the strictness of the inclusion. Let P, ) € Ps and
distinct z, y, z, w € N. If P = (vw)(w-za|w - y(b)) and @ = (vw)(w-za|w - z(b)), then
P ~; @ since both processes are inactive. Nonetheless, for 0 = {y/x}, Po can perform a
T action, but Qo remains inactive. Thus, Po #; Qo, and so P %; Q.

Proposition 1.3.20 ~, C ~,

PRrOOF: The inclusion follows directly from the definitions of early bisimilarity and early
congruence and is similar to that of Proposition 1.3.19. The same example given in Propo-
sition 1.3.19 can be used to prove the strictness of the inclusion, since P ~, @) but P 2. Q.
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(Il

The notion of open bisimilarity for the m-calculus was introduced in [4] and proven to be

a congruence relation in that calculus. We now present the same notion for the m-calculus
with polyadic synchronization.

Definition 1.3.21 Open bisimilarity
A binary symmetric relation S is an open bisimulation if PSQ implies for every substitu-
tion o:

- If Po -5 P’ with bn(a) N fn(Po, Qo) = () then there is a Q' such that Qo —— Q'
and P'SQ)'.

Two processes P and () are open bisimilar if PS(Q) for some open bisimulation S.
Open bisimilarity, written ~,, is the largest open bisimulation.

Proposition 1.3.22 ~, is preserved by all operators

PRrROOF: The proof follows that in [4].

(I

We now analyse the relationships between the bisimulation relations previously defined

and present a general diagram that summarizes these results in Corollary 1.3.29. The re-
sults and proofs are similar to those presented for the w-calculus [1, 5].

In order to prove that the largest open bisimulation is itself a late bisimulation, which
is enough to prove that ~, C ~;, we first introduce the following lemma.

Lemma 1.3.23 The relation {(Po,Qo) : P ~, Q}U ~,, where o is a substitution, is an
open bisimulation.

PrRoOOF: Let P, = Po; and Q1 = (Qo; where oy is a substitution.

By hypothesis P ~, @ and for some substitution o, we have that Po, — P’. Since
P ~, @, by definition of open bisimilarity, we know that there is a @’ such that Qoy — Q'
and P’ ~, @'. Also, note that the composition of two substitutions is itself a substitution,
so by definition of open bisimilarity, if P ~, Q and Poy0s — P’ then there is a @’ such
that Qo102 — @' and P’ ~, Q'.

Proposition 1.3.24 ~,C ~,

ProOOF: We split the proof in two parts, first proving that ~, is itself a late bisimulation
and then the strictness of the inclusion.
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- Let u =2y - ... - xp for some k € N, and let P, () € Pg such that P ~, Q.
By definition of open bisimilarity we know that for every substitution o if Po — P’
then there is a @’ such that Qo —— Q" and P’ ~, (). Considering the substitution o
as the identity, ~, immediately satisfies the first condition to be a late bisimulation.

Similarly, if P "% P/ where y ¢ /n(P,Q) then there is a Q' such that Q % '
and P’ ~, @ (using the identity substitution). By Lemma 1.3.23 we have that
P'o ~, Qo for every substitution o. In particular, P'{w/y} ~, Q'{w/y} for all w.

- In order to prove the strictness of the inclusion, consider the following processes
P = (vz)(z-y(a)|z=2b) and Q = (vy)(z-y(a)|Z=yb). Then P and @ are late bisimilar
because both processes are inactive. However, P and () are not open bisimilar since
for o0 = {z/y} we have that Po —— but Q =, Q' = (vk)(z-k(a)|z - kb) and Q'c /—
(note that we could not apply o directly to @ because y occurs bound in Q).

O
We shall now prove that open bisimilarity is not only a late bisimulation but also a late
congruence.

Proposition 1.3.25 ~, C >~

Proor: We split the proof in two parts: first proving that ~, is itself a late congruence,
and then proving the strictness of the inclusion.

- Let P, Q € Ps and P ~, Q.
By definition of open bisimilarity we know that for every substitution o if Po —— P’
then there is a Q' such that Qo —— Q' and P’ ~, )'. By Lemma 1.3.23 we know
that P'o ~, Q'o, and by Proposition 1.3.24 we have that P'c ~; Q'o. Thus, for
every substitution o we have that Po ~; Qo, that is, P ~; Q.

- In order to prove the strictness of the inclusion, consider the following processes
P =c(a).(rr+ 1) and Q = (vz)c(a).(r.1 + 7+ 7.(Z-alz - b).7). Then P and @ are

late bisimilar since if @ oa) (vz)(rT+ 7+ 7.(z7alz - b).7) then P = 7.7 + 7 and

for w # b Q{w/a} ~; 7 or Q{b/a} ~; 7.7. In addition, P and @ are late congruent
since the only relevant substitutions would be 0 = {b/a} or o = {a/b} but these are

impossible because a is bound in (). Nonetheless, P and () are not open bisimilar.

If Q Ao -, (vz)((z+alz - b).7) then P do) v, Pl =71or P Ao 0, Py = 7; but

for w # b then Q{w/a} 7L> but P{{w/a} —, and Q{b/a} — but Py{b/a} 7L>
Thus it does not hold that for all substitutions o if Qo — Q' then Po - P’ and
P ~, Q.

(I
We now prove that late bisimilarity is itself an early bisimulation and present an ex-
ample that proves the reverse does not hold.
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Proposition 1.3.26 ~; C ~,

Proor: We split the proof in two parts, first proving that ~; is itself an early bisimulation
and then the strictness of the inclusion.

- Let u =21 ... - xp for some k € N, and let P, () € Pg such that P ~; Q.
The first condition of early bisimilarity is identical to that of late, so we need only
concern ourselves with the input clause.

By definition of late bisimilarity, if P “W P and y & fn(P,Q) then there is a @
such that @Q ) Q' and for all w we have that P{w/y} ~; Q{w/y}. Then, if

P ) P’ with y ¢ fn(P,Q) then for each w there is a )’ such that @ “) Q' and
P{w/y} ~; @{w/y} which corresponds to the second condition of the definition of
early bisimulation.

- In order to prove the strictness of the inclusion, consider the following processes
P =z(y).7+xz(y) and Q = P+x(y).(y-u(a)|z-ub). Then, Q ), Q' =y-u(a)|zub
and P o) Pl=r1orP =) Pj = 0. So, on the one hand, we have that P and @) are
not late bisimilar because for w # z we have that P[{w/y} — but Q{w/y} 7L>,

and for w = z we have that Q'{w/y} — but Py{w/y} /—. On the other hand, we
have that P and @ are early bisimilar since for w = z we have that Pj{w/y} can
match Q'{w/y}, and for w # z then both Q'{w/y} and Py{w/y} are inactive.

O
The same result holds if we consider the notions of late and early congruences instead
of late and early bisimilarity, as shown in the following proposition.

Proposition 1.3.27 ~; C ~,

ProOOF: The inclusion follows directly from the definitions of late and early congruences
as well as from Proposition 1.3.26. The strictness of the inclusion is shown by the ex-
ample provided in the proof of Proposition 1.3.26. The processes P = z(y).7 + x(y) and
Q =P+ z(y).(y - u(a)|z=ub) are not only early bisimilar but also early congruent. Since
the processes P and @) are not late bisimilar, by Proposition 1.3.19 P %, Q).

O
Our last result shows that if two processes are early bisimilar then they are also ground
bisimilar. In addition, we provide an example that proves the reverse does not hold.

Proposition 1.3.28 ~.C~,

ProOOF: We split the proof in two parts, first proving that ~ is itself a ground bisimulation
and then the strictness of the inclusion.
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- Let u=x1-... -z for some k € N, and let P, Q) € Ps.
The first clause of early bisimulation is identical to that of ground so we need only
concern ourselves with the input clause.

By definition of early bisimilarity we have that if P *W) pr where y & fn(P,Q) then

for each w there is a )’ such that ) Q' and P{w/y} ~. Q'{w/y}. In particular,
if we let w = y the second clause is identical to the one for ground bisimilarity in the
case of input.

- In order to prove that the inclusion is strict, consider the following processes
P = (va)(z(w).awcla - y(b)) and @ = z(w). Then, P and @ are ground bisimi-

lar because both become inactive after performing the input action. Nonetheless, P
z(w)

and @ are not early bisimilar since P — P’ and ) 2w Q' but P'{y/w} can perform
an internal action while Q’{y/w} can not.

(I

In this section we have introduced the observational semantics of the 7-calculus with

polyadic synchronization, presented several definitions of bisimulation and established the

correspondence between these relations. We now summarize these results in the following
diagram where — stands for strict inclusion C.

Corollary 1.3.29

~o —_— ~ —_— ~e — Ng
N T T/
~ — ~

We now prove that the contextual equivalence coincides with early bisimilarity; we rely
on a similar result obtained for the 7-calculus in [16].

Definition 1.3.30 Barbs
A barb is an input or output channel. The predicate P exhibits barb 3, written P |g, is
defined by:

- P |, if P can perform an input action on channel u

- P |3 if P can perform an output action on channel u

Note that the predicate just defined concerns only visible and immediate actions, as
seen in the following example.

Example 1.3.31 Let all considered names be distinct, P = (x-y(a)|Z-yb).Zc+w - xc and
Q = (vx)(z-y(a)|z-yb).Zc. Then, P |yy, P lzg, P lwz but P [z. Further, Q) exhibits no

barbs.

We now introduce the notion of barbed bisimilarity as proposed in [21].
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Definition 1.3.32 Barbed bisimilarity
A binary symmetric relation S is a barbed bisimulation if PSQ) implies:

- if P |g then Q | for each barb (3
- if P — P’ then there exists a Q' such that Q — Q' and P'SQ’

Two processes P and () are barbed bisimilar if PSQ for some barbed bisimulation S.
Barbed bisimilarity, written ~y, is the greatest barbed bisimulation.

The following example shows the difference between barbed bisimilarity and the notions
of bisimilarity introduced.

Example 1.3.33 Let P = mn.mn and (Q = mn. Then, P and Q) are barbed bisimilar
since their only barb is m. However, P and () are not ground, nor late, nor early nor open
bisimilar since P = P' and Q —> Q' but P’ and Q' = 0 are not bisimilar since P’ can
still perform an output action while ()’ is inactive.

Note also that barbed bisimilarity is not a congruence since it is not preserved by parallel
composition, nor by replication, nor by substitution as seen in the following examples.
Example 1.3.36 is a proposed exercise in [3].

Example 1.3.34 Let P = mn.mn, Q = mn and R = m(x). As seen in the previous
example P ~y Q, and trivially R ~, R. Nonetheless, P|R o, Q|R since P|[R — P' = mn
and P' | but QIR — 0.

Example 1.3.35 Let P = mn.ab+ m(x), Q = mn.ba +m(x) and a, b be distinct names.
Then, P and Q) are barbed bisimilar since they exhibit exactly the same barbs: m and m.
Nonetheless, |P and !Q) are not barbed bisimilar since two copies of P and two copies of

Q can synchronize but the resulting processes do not exhibit the same barb, i.e., |\P —— P’
and P' |z but 'Q —— Q" and Q' |5.

Example 1.3.36 Let P =mm|n and Q = m.n+n.m. Then, P and Q are barbed bisimilar

since they have the same barbs. We only analyse the case when P starts: if P | then
Q lm and if P |, then Q |,. However, if we consider the substitution o = {n/m}, we

have that Po and Qo are not barbed bisimilar, since Po —— but Qo +—.
Nonetheless, barbed bisimilarity is preserved by some operators, as shown next.

Proposition 1.3.37 ~y is preserved by prefizing, restriction and choice operators.

PRrOOF: Let P, ), R € Ps be such that P ~, @), and let v = x1 - ... - , where n € N.
Then:
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e a.P ~y a.Q) since by applying the rule PREFIX we can conclude that i) if o = u(y)
or uy we have that both P |, and @ |, or both P |z and @ | respectively; ii) if
a = 7 we have that 7.P —— P and 7.Q — @ and by hypothesis P ~; Q.

o (vx)P ~y (vz)Q since by applying rules RES or OPEN we have that (vz)P |z if
and only if (v2)Q |g. In addition, if by applying RES (vx)P —— (vx)P’ then we
had that P — P’ and since P ~, Q we would also have that Q — @’ and hence
(vr)Q — (vz)Q' where P’ ~, Q' and so (vz)P' ~, (vx)Q' as expected.

e P+ R ~, @+ R since P+ R exhibits a barb g if and only if so does P or R.
Analogously, @) + R exhibits a barb ( if and only if so does () or R. Since by
hypothesis we have that P ~; ), we can conclude that P+ R and () + R exhibit the
same barbs.

O

Therefore, the notion of barbed congruence was put forth in [21] while the less demand-

ing notion of barbed equivalence was presented in [16]. Note that barbed equivalence and

barbed congruence do not coincide, as shown in Example 1.3.36 since the referred processes
are barbed equivalent but not barbed congruent.

Definition 1.3.38 Barbed equivalence

Two processes P and () are barbed equivalent, written ~.,, if for every process R we have
that P|R ~, Q|R.

In order to define barbed congruence we must first introduce the notion of context.

Definition 1.3.39 Context
A context is obtained when the hole [-] replaces a process in P € Ps. The process obtained
by replacing the [-] in C by P, where C' is a context and P a process, is denoted by C[P)].

Definition 1.3.40 Barbed congruence
Two processes P and @) are barbed congruent, written ~y, if for each context C|-| it holds

that C[P) ~, C[Q].

We now extend the result that establishes an alternative definition of barbed congruence
in the m-calculus as done in [3] to the 7-calculus with polyadic synchronization. The proof
of Lemma 1.3.41 relies heavily on the one presented in [3].

Lemma 1.3.41 P ~;, Q) if and only if Po ~yq Qo for any substitution o
PROOF:

(=) Let P, @ € Pg be such that P ~, Q. Also, let v = x1 - ... - 1, where k € N
and x1, ...,z are fresh, and 0 = {§/Z} be a substitution where § = vy, ..., y, and
Z=z1,..2p. Given C = uy;..uy, | u(z1)...u(2,).[-] | R we know that C[P] ~, C[Q)]
since both processes exhibit the same barbs. In addition, by performing n internal
actions C[P] —— ... —— Po|R, and the only process that does not exhibit barb % to
which C[Q)] reduces in n steps is Qo|R. Thus Po|R ~, Qo|R, that is, Po ~ye, Q0.
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(<) Let P, Q € Ps and o be a substitution such that Po ~., Qo, that is, Po|R ~, Qo|R
for any R. Since =~ is the largest congruence in ~y it suffices to show that for any
context C' we have that C[Plo|R ~, C[Q]o|R. The proof is done by induction on C'
and we consider only the relevant transitions.

- C = u(y).C" where v = 1 - ... - and k& € N. If by application of rules
PREFIX and PAR1 C[P]o|R "“Y ¢'[Plo|R, then C[Qlo|R "“% ¢'[Qlo|R
and by induction hypothesis C'[P]o|R ~;, C'[Q]o|R. If by application of rule
COMM C[P]o|R - C'[Plo{z/y}|R' (where we assume R — R'), then
C[Qlo|R — C'[Q]o{z/y}|R' and by induction hypothesis C'[P]o{z/y}|R' ~y
C'[Qlo{z/y}|R. If by application of rule CLOSE C[P]¢|R — (vy)C'[P]o|R’
(where we assume R ) R'), then C[Q]o|R = (vy)C'[Q]o|R’; by induction
hypothesis C'[Plo| R ~;, C'[Q]o|R" and by Proposition 1.3.37 ~y, is closed under
restriction, so (vy)C'[Plo|R ~y (vy)C'Qlo|R'.

The other cases can be handled in a similar way (for C' =!C" check [3]).

O

In [16] an alternative characterization of barbed equivalence was obtained by proving

it coincided with the notion of early bisimulation. We now extend that proof in order to

establish a similar result for the 7-calculus with polyadic synchronization. Also, note that

we only establish the strong result; we believe the weak can be established also following
the proof in [16] and the one for the strong case we will present.

Before we establish the result, we will first introduce some auxiliary lemmas about
countable sets which we will rely upon but not prove. Note that we consider a set to be
countable if it is either finite or has the same cardinality as N.

Lemma 1.3.42 Countable Sets
e Fvery subset of a countable set is again countable.

e The countable union of countable sets is countable

In order to begin the proof, we must define the following three sets which we will use.

Firstly, let F' be a finite set of pairs of names, F} = m(F) and Fy = my(F) where 7y, 7o
represent respectively the projection of F' on the first and second component of the pairs.
Also, let F} include the free names of two processes P and () and a finite set of names
represented by {z}, that is, fn(P,Q)U{z} C F;. Also note that (a,a’) € F' if and only if
a € Iy and d € F,.
Secondly, let Y a countable infinite set of pairs of names, Y} = m(Y) and Yy = m(Y) be
such that (y,9') € Y if and only if y € Y] and ¥/ € Y5. Also, ¥; must be composed of
names not present in F, that is, if we let n(F) and n(Y’) denote the set of names which
occur in F and Y respectively, then n(Y) Nn(F) = 0.
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Thirdly, let H(F') be a set of pairs of channels built from the names in F}; we will prove
H is countable. In addition, let H; = m(H) and Hy = me(H) be such that (¢,¢”) € H
if and only if ¢ € Hy; and ¢’ € Hy . The set H; is the union of the composite channels
built from all possible permutations of subsets of F; which are denoted by !P(F}), i.e.,
Hy = Uaerp(mymake—channel(A) where make—channel(as, ..., a,) = a;1-...-a,. By Lemma
1.3.42 every subset of F} is countable (because F) is countable) and P(F}) = Uacp A is
also countable since it is a countable union of countable sets. Thus, H; is a countable set
of composite channels.

Theorem 1.3.43 ~. coincides with ~pe,

PROOF:

(=) We prove that ~, is a barbed bisimulation. Let u = x; - ... - x,, where n € N and let
P, ) € Ps be such that PS(Q where S is an early bisimulation. Then, if:

1. P ) P’ then P |, and since P and @) are early bisimilar for each w there is a

(' such that @ ) Q' and P{w/y}SQ'{w/y}. Thus, since @ ) Q', we have
that Q |,.

2. P % P' where a = Uy or U(y) then P | and since P and Q) are early bisimilar
there is a Q' such that Q —— @’ which implies that Q |4

3. P — P’ since P and @ are early bisimilar there is a Q' such that Q — Q'
(and P'SQ’). Note that to P’ and @)’ we can apply the same reasoning as to
the P and @) we started from till a visible action is performed by both processes
(or their descendants) like in case 1 or 2, or till both processes are inactive.

Therefore, we can conclude that P and @) are barbed bisimilar. Since early bisimu-
lation is preserved by all operators except input prefixing (Lemma 1.3.16), we have

that for any R, P|R ~. Q|R, and thus P|R ~;, Q|R. We then comply with the
necessary requirements of barbed equivalence and establish that P ~., Q.

(<) Given S = {(P,Q) : F,Y, % exist such that (vi)CHY[P] ~, (vZ)CFY[Q]} where 7,
F, H(F),Y are related as explained before, we prove that S is an early bisimulation.
The context C[-] is defined as C[-] = [-]| V(F,Y) where:

V(F,Y) =

> S @V +in+ VIFU (5 y), Y\5:9)) (1.1)

(e, )EH(F) (b,b")EFU(y,y")

+ Y ) (Y Fout+VIFU(y, ), Y\(y, y) +(wt) Y (E-blt-y) b (1.2)
(c,c)eH(F) (bp)eF
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The first 1.1 and second 1.2 summands are used to test respectively the input and
output actions of P or Q7. Note in 1.1 that all possible inputs are considered in the
inner summation just like early bisimulation requires. In 1.2 the last term in the
summation concerns the case of bound output in which the outputted name will not
be found in H, as opposed to the case of free output. Further, notice that the names
in, out are not in n(P, Q)), these names are used to show which type of action (input
or output, respectively) was performed.

The relation between F' and Y can now be further analysed, since the names taken
from Y are used to augment F' (and hence H) via name-communication. Note that
on the definition of V(F,Y") the pair (y,y’) is drawn from Y.

We now prove the core of the theorem by splitting the proof into the four possible
actions of P.

1. If P - P', then we can infer that (v7)C"Y[P] = (v3)(P|V(F,Y)) ——
(vz)(P'|V(F,Y)) = R. Since by hypothesis (vz)CTY[P] ~, (vz)CFY[Q]},
then (v)C*Y[Q] —— T, and R may have as barbs only ¢ such that ¢ € Hj,
and so should T'. Note that (v2)CFY[Q] could have performed a 7 action by )
interaction between V' (F,Y’) and process ) where ) performed an input action;
i1) interaction between V(FY') and process () where @) performed an free or
bound output action; #ii) there is no interaction with V(F,Y) and @ performs
a 7 action by itself. Both ¢) and 47) are impossible since at least T" |;, or T' |,us
and {in,out} N Hy = 0. Thus, (v3)C*Y[Q] = T = (vZ)(Q'|V(F,Y)), that is
Q@ and (P',Q)€S.

2. 1f P L P then we can infer that (vZ)CFY[P] = (wa)(P|V(EY)) —
(vz)(P'{b/y}|V1) = R where V} = ¢"+V +in+V(FU(y,y"),Y\(y,v')). Then, R
has as barbs at least ¢, b', and in. Note that (vz)C*Y[Q] could have performed
a 7 action by the i), i) and i) reasons mentioned in case 1. The situation i)
where () performed a free or bound output is impossible since in that case
T out but R [ou:. The situation i) is impossible since in that case, e.g., T' [y.
The only possible situation is then if () performed an input action of the type
a = c1(by). Note that the following equalities have to hold ¢; = ¢ and b = b so

that T' |.» and T | as does R. Thus, we have that if P ), P’ then for every
possible b we have that @ W), Q' and R ~, T, that is, (P'{b/y},Q'{b/y}) € S.

3. If P =5 P, then we can infer that (vi)CPY[P] = (vi)(P|V(F,Y))
(vz)(P'|Va) = Rwhere V, = "+2'+out+V(F,Y)+(vt) Z(bjb,)eF(mH-y).b’ and
t is fresh, while z € fn(P) C Fy. Then, R has as barbs at least ¢’, 2’ and out.
Since by hypothesis (vZ)CTY[P] ~, (vZ)CFY[Q]}, then (v7)CTY[Q] = T
and T should have the same barbs as R. Note that (vz)CTY[Q] could have

performed a 7 action by the i), i7) and 7i7) reasons mentioned in case 1. The

"Note that the summations in 1.1 and 1.2 are finite.



1.3. OBSERVATIONAL SEMANTICS 25

situation 7) is impossible since T |;, but R J;,,, and the situation i) is impossi-
ble since, e.g., T' [». Then we are in a situation where @) has to do an output on
the same channel as P (so it has ¢ as a barb too), but we must still prove the
output has to be free. This happens because since P performed a free output,
R can do a 7 action from the last summation in V5 and the resulting process has
as an unique barb z’. However, if () performs a bound output, the summation
in V4 is an inactive process, and even if (v2)CFY[Q] performs a 7 action by the
cases 1), 11) and 7i7), in both i) and #ii) the resulting process would have either
in or out as a barb. In the case of i) then there would be no interaction with
V(F,Y), and so the resulting process would not have 2z’ as a barb. Thus, @) has
to perform o = ¢z as did P.

4.1 P 2 P then we can infer that (vZ)CFY[P] = (v&)(P|V(EY)) —
(vz)(vy)(P'|V3) = R where V3 = ' + ' + out + V(F U (y,v), Y\(v,v)) +
(vt) z(bjb,)eF(ﬁu -y).b'. The rest of the proof is very similar to case 3 where
the difference between bound and free output is analysed.

Corollary 1.3.44 ~, coincides with >~

PROOF: Let P, Q € Ps.

(=) If P ~, @ then by Definition 1.3.18 Po ~, Qo for any substitution o. By Theorem
1.3.43 we know that Po ~., Qo, and by Lemma 1.3.41 P ~;, Q.

(<) If P ~, @ then by Lemma 1.3.41 we know that Po ~y,., Qo for any substitution o.
By Theorem 1.3.43 we have that Po ~. QQo, and therefore P ~, Q).
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Chapter 2

Spi-Calculus

The spi-calculus was introduced in [12] as an extension of the 7-calculus with cryptographic
primitives, and it is designed to model and analyse security protocols.

2.1 Syntax

In this section we introduce the syntax of a variant of the spi-calculus that was originally
presented in [12]. The spi-calculus used is the one in [23] following that presented in [24].
We start by defining the set of messages, expressions, and decryption-free expressions, and
by explaining their role in the spi-calculus syntax.

Definition 2.1.1 Messages
Let N be a countable set of names ranged over a, b, c,..., k, I,..., x, y, z. The set of
messages M ranged over M, N is defined by the following grammar:
M ::= a name
|[{M}r shared-key encryption

Note that the names are untyped and so can be used as channels, keys, variables or
cipher texts. In order to simplify our examples, we often let a, b, ¢ represent channels or
cipher texts, k, [ represent keys, and x, y, z represent variables. Also note that although
we allow nested encryption, we require that on the encryption of the cipher text M under
the key n, n is a name. As an example, we do not allow messages of the type {a}y,-

Definition 2.1.2 Ezpressions
Let N be a countable set of names. The set of expressions & ranged over n,  is defined
by the following grammar:
ni=a name
{1}y encryption
| dec,(n)  decryption
The set of decryption-free expressions D ranged over d, € is defined by the following gram-

mar:
0 = a name

|{0}s encryption

27



28 CHAPTER 2. SPI-CALCULUS

Note that when considering expressions these may be the result of arbitrary encryptions
and decryptions, while messages are decryption-free and the encryption is done under a
key (name). The introduction of decryption-free expressions allows us to ensure that de-
cryption constructs occur only in the ‘let” operator of processes (See Definition 2.1.4).

We now introduce the set of logical formulae which are used as Boolean guards for spi-
calculus processes - a generalization of the matching construct present in the m-calculus.

Definition 2.1.3 Formulae
Let z € N and n, ( € €. The set of logical formulae ® ranged over ¢, v is defined by the
following grammar:

¢ = tt true
| name(n) name predicate
[[n= (] equality
|letz =nin¢ decryption
lo Ao conjunction
| ¢ negation

The name predicate name(n) checks whether the argument 7 is or not a plain name.
The decryption operator let z = nin ¢, binds the value of n (calculated through the rules
in Table 2.1) to z within ¢.

Definition 2.1.4 Processes
Letn, z € N, 0 € D, ( € € and ¢ € ®. The class of processes Psy; ranged over P, Q) is
defined by the following grammar:

P =0 inaction
| m.P prefic
P replication
| (vn)P restriction
| P|P parallel composition
|P+ P choice
| P Boolean guard

|letx = (in P decryption
where the prefives m are given by:
m o= 0(x) input

|06 output

As a brief explanation of some of the constructs not present in the m-calculus, note
that, as would be expected, the process ¢ P behaves as P if and only if ¢ evaluates to true.
In addition, note that if the evaluation of ¢ fails in a process like let x = (in P ! the whole
process is stuck. Also note that x is bound in let x = (in P; the other constructs behave

'The reader already familiar with the spi-calculus should note that the ‘let’ construct is equivalent to
the originally proposed ‘case of’. Thus, processes like let x = decy,(M)in P and case M of {x} in P are
the same.
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exactly as in the m-calculus.

In the spi-calculus we consider three possible actions: the internal action 7, the free
input action aM and the output action (vb)a(M) where {a,b} C N and M € M. When-
ever {b} = () we write @(M) instead of (vb)a(M). We will also note that only names are
allowed as channels, otherwise the process performing the action is stuck.

The notion of substitution follows that of the m-calculus with the sole difference that
instead of considering substitutions as mappings of N' to N/, we consider mappings of N’
to M, where N is the set of names and M the set of messages. The formal definition of
substitution is presented in Section 2.3. The notion of a-conversion follows that presented
in Chapter 1 for the m-calculus with polyadic synchronization.

2.2 Late Labelled Transition Semantics

In this section we introduce the early labelled transition semantics following [23] instead
of [24]. This choice is based on the fact that while in [24] two sets of operational semantics
(one for the processes and one for the environment) are developed, in [23] the environment
behaviour is built into the definition of bisimulation, following the work in [22].

In order to establish a transition relation based on a set of rules, we must first be able
to evaluate expressions and Boolean guards. Following [23], the evaluation function for
expressions e(-) : € - M U{L} and formulae e(-) : & — {tt, ff} is defined recursively
according to Table 2.12.

We now introduce the early labelled transition relation for the spi-calculus.

Definition 2.2.1 Farly labelled transition relation
The early labelled transition relation —— C Pg x Py, where o is a possible action, is the
smallest relation generated by the set of rules in Table 2.2.

Most of the rules come straightforwardly from the w-calculus. The rules S-GUARD
and S-LET establishing the behaviour of process of the type ¢ P and let z = (in P have
been described in Section 2.1 when we introduced these constructs.

2.3 Observational Semantics
In this section we present a notion of bisimulation that takes into account the behaviour

of the environment. Although several notions of bisimulation have been put forth, we rely
on that of alley bisimulation since it was proven it coincides with barbed equivalence [See

2Tt should be clear that the first three rules correspond to the evaluation of expressions and the rest to
the evaluation of formulae.
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e(a) =a
- {0 st v
e(decec(n)) = { Jf ftfl(eZiV;e{M}k eMande(l()=keN
e(tt) = tt
(o A1) =e(9) Ne(y)
e(—¢) = —e(d) |
e(letz=_Cing) = { j”(}b{M/Z}) ftlel(eavzeM e M
e(name(¢)) = { ?f i)ftlclefw./;ge

it ifC=neM

e([¢ =nl) = { ff otherwise

Table 2.1: Evaluation in the spi-calculus

Corollary 2.3.27]. In order to introduce this notion, we must first describe in detail the
environment, so as to be able to compare the processes.

We rely on a set of assumptions that are generally accepted and referred to in the
literature (e.g. [24, 23]) and which we now enumerate.

1. A message {M}, can only be decrypted using k, and can only be produced by
encrypting M under k. If k is kept secret, then no attacker can guess or forge k.

2. There is enough redundancy in the structure of messages to tell whether the decryp-
tion of a message with a given key has actually succeeded or not.

3. There is enough redundancy in the structure of messages to tell their role (name or
compound cipher text).

4. The only way to form a new key is to get a fresh name from a primitive set of names.

Note that Assumption 3 is necessary since, as mentioned earlier, we only allow channels
to be names.

We now present concepts that are important to understand the role of the environment.
We start by formally introducing the definition of substitution and other useful notation.

Definition 2.3.1 Substitution

A substitution o is a finite partial map from the set of names N to the set of messages M.
The domain and codomain of substitution o are written dom(c) and range(o) respectively.

We write c{M/x} for o U {(x, M)} where x ¢ dom(o).
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(S-OUT) T o (S-INP) Y;
am.p™™ p a(z).P == P{M/x}
PP PP
(S-CH1) — (S-CH2) R ————
P+@Q — P Q+P— P
@ / @ /
(S-PAR1) P — P (S-PAR2) P — P where bn(a) N fn(Q) = 0
PIQ - PIQ QP = QIP'
@ /
(S-RES) P 7} P where m & n(«)
(vm)P — (vm)P’
@ /
(S-REP-ACT) PQ;P where bn(a) N fn(P) = 0
P 2 PIP
(v)ym(M) / m(x) 7
(S-REP-COMM) r — r rP—>r where 1 & fn(P)
P " ((vR)(P'|P")|\P
(wva)ym(M) -,
(S-OPEN) P (7)(5) where k ¢ {m,n}, k € n(M)
(vk)yp T pr
iym(M) ., m(M) -, waym(M) ., m(M) -,
s.commn) L - P Q=@ scomm L — P’ Q=@ Ghere ¢ fn(Q)
PlQ — (vn)(P'|Q) QP — (va)(Q'[P")
@ /
(S-GUARD) ﬂ if e(¢) = tt
P . pr
@ /
(S-LET) Ple(9)/z} —; P if e(¢) # L
letz=(CinP — P’
@ /
(S-CONV) r—=r ifQ=,P
Q= P

Table 2.2: Early transition rules
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Following the idea in [24] that it is possible to obtain an irreducible message after
decrypting it using known keys, we present the notion of analysis, irreducibility and of
core as introduced in [23]. Any set of messages, in particular the messages in the codomain
of a substitution, may be reduced via decryption using the notion of analysis. The set of
irreducibles contains only the messages that cannot be further reduced.

Definition 2.3.2 Analysis / Irreducibility
Let S C M, where M is the set of messages. The analysis A(S) is the smallest subset of
M containing S and satisfying

{M}r € A(S) ke A(5)
M e A(S)

(SET-DEC)

The irreducibles Z(S) are defined as Z(S) = A(S)\{{M}«: k € A(S)}.

Definition 2.3.3 Core
Let o be a substitution, and Z(o), A(c) be shorthand for Z(range(o)) and A(range(o)).
Then, for each message M,

| core (M) if M ={M'}, and a € Z(0)
coreo(M) = { M otherwise

Also, we introduce the following notation by letting C(o,x) = core,(o(x)).

Note that with the auxiliary notion of C(o,x), we can define the irreducibles in an
alternative way: Z(o) = {C(0,z) : « € dom(o)}.

In the following examples we show how the concepts just introduced work in practice.

Example 2.3.4 Let S = {k,{{a}}r, {{0}n}r, {{c}x}n, {k}x}, wherea, b, ¢, h, k € N.
Then, A(S) = S U {{a}x, a,{b}n, k} = {k, {{a}r}x: {{0;n}r, {{c}utn, {k}r: {a}n, @, {O}n}
and T(S) = AN\ {H{atebn, ({03n 3, (ke {adn } = {k; {{c}itn, a, {b}n}

Example 2.3.5 Let 0 = {k/xy, {{a}r}r/xo, {{0}n}r/x3, {{c}x}n/xa, {k}r/2x5}. Then,
coreq (k) =k, core,({{a}r}tr) = core,({a}r) = core,(a) = a, core,({{b}n}r) = core,({b}r)
{b}n, core,({{c}x}tr) = {{c}x}tn and core,({k}r) = core,(k) = k. Therefore, (o) =
Z(range(o)) ={C(o,z;) : x; € dom(o)} = {k,a,{b}n, {{c}r}n}

We now introduce the definition of consistency based on the notion that two substitu-
tions are consistent if they decrypt messages in precisely corresponding ways. In addition,
we consider a stronger notion of consistency also proposed in [24]. The notions of consistent
and strongly consistent environments lead to the notions of alley and trellis bisimulation
respectively, which we will introduce afterwards.
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Definition 2.3.6 Consistent environments
A pair of substitutions (o, p) is consistent, written o ~ p if and only if

1. dom(o) = dom(p) = {z1,...,x,} where n € N
2. C(o,x;) € N if and only if C(p,x;) € N
3. C(o,x;) = C(o,z;) if and only if C(p,x;) = C(p, x;)

4. for each i =1,2,...,n there is a tuple 1 = 11, ...,1, such that
O'(ZC@) = {{C(O’, xl-)}g(w%)...}C(U@Zm)
p(z:) = {..AC(p,zi) o) cpam)

Definition 2.3.7 Strongly consistent environments
A pair of substitutions (o, p) is strongly consistent, written o ~s p if and only if o ~ p
and whenever C(o,x;) € N or C(p,z;) € N then C(o,x;) = C(p,x;).

We now compare with respect to consistency several environment, the first three are
cited from [23].

Example 2.3.8 Consider the following environments:
o1 ={a/x1, {b}a/2, {{c}a}i/s}
o2 = {a/x1, {b}a/@2, {{d}r}r/ 23}
o3 = {a/z1,{c}a/@2 {{c}}r/3}
o4 = {d/w1,{b}r/22}
o5 = {a/o1, {{b}v}r/2}

e 01 ~ 0y since 1. dom(oy) = dom(oy) = {1,
C(og,21) = a € N and C(al,xg) b e N & Cog,23) = b e N; 3 not
applicable; 4. o1(x1) = a = oa(x1), o1(x2) = {b}a = {0(01712)}0(01@1) and
o2(2) = {b}a = {C(02,22)}C(0201) 01(553) = {{c}a}r = Clor, 23) and oa(xs) =
{{d}r}x = C(o2,23). Note that zf both oy and oy acquire knowledge of k, i.e.,

oy = o{k/xs} and oy = o9{k/x4}, then o o« of. The problem resides on the

fact that oy (x3) = {{c}a}r = {{C(01, 23) }c(o),20) Fo(opan) but 05(x3) = {{dtute =
HC (0%, 23) Y (ohwa) YO(oy (@), that is the decryptions are not made in the same way,
thus violating condition 4.

2,1‘3},’ 2. 0(01,1'1) =a < N g

e 0, ~ 03 since 1. dom(oy) = dom(o3); 2. C(oy, 1) =a €N & Cloz,x1) =aeN
and C(o1,22) = b € N & Cloz,x2) = c € N; 3. not applicable; 4. o1(x1) = a =
o3(x1), o1(22) = {b}a = {C(01,22)}c(o1.01) and o3(22) = {c}a = {C(03,22)}c(05,01)
o1(z3) = {{cta}r = Clo1,x3) and o3(x3) = {{c}x}r = C(o3,23). Note that if
both o1 and o3 acquire knowledge of k, i.e., oy = o1{k/xs} and of = o3{k/z4},
then o ¢ k. The problem resides on the fact that C(o%, x9) = C(0%,x3) = ¢ but
C(oy,x2) =b# c = C(o1,x3), thus violating condition 3.
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e 0y ~ 03 since 1. dom(oy) = dom(os); 2. C(og,21) =a €N & Cloz,x1) =a €N
and C(og,22) = b € N & Cloz,x2) = c € N; 3. not applicable; 4. os(x1) = a =
o3(x1), 02(22) = {b}a = {C(02,22)}C(onar) and o3(22) = {c}a = {C(03,22)}(05,01)
oa(z3) = {{d}r}r = Clo2,23) and os(x3) = {{c}r}x = C(o3,23). Note that if
both oo and o3 acquire knowledge of k, i.e., ol = oo{k/xs} and of = o3{k/x4},
then o) ¢ k. The problem resides on the fact that C(o%, x9) = C(0%,x3) = ¢ but
C(ah,x9) =b# d = C(0h,x3), thus violating condition 3.

e 04~ 05 since 1. dom(oy) = dom(os); 2. Clog,x1) =a €N & Clos,21) =d e N;
3. not applicable; 4. 04(x1) = a and 05(x1) = d, 04(x2) = {b}r and o5(x2) = {{b}s}-
Note that if both o4 and o5 acquire knowledge of k, i.e., oy = oy{k/x3} and of =
os{k/x3}, then oy # of. The problem resides on the fact that C(c},x2) =b € N but
C(ot,x9) = {b}y € N, thus violating condition 2.

o 0y 0y, 04 F 09, 04 03, 05 F 01, 05 F 0g, 05 # 03 since dom(oy) = dom(os) #
dom(oy) = dom(oq) = dom(o3), thus violating condition 1.

Note that for two environments to be consistent it is not necessary that their knowledge
of names is identical as seen in Example 2.3.8 in the case where o, ~ o5, whereas for two
environments to be strongly consistent it is so. Therefore, of the environments considered
in Example 2.3.8, 01 ~; 09 but 01 4 o3 and oy 4 03 since C(oq,x2) = C(09,x9) = b #
¢ = C(o3,72). It is immediate that o4 o5 05. In addition, note that if o % p then o %, p
by definition of consistent and strongly consistent environments.

We now introduce the notion of synthesis of consistent environments as in [23] which
will be used in the definition of alley bisimulation.

Definition 2.3.9 Synthesis

If o ~ p we write (0,p) B M — N if and only if there is a ¢ such that n(¢) C dom(o),
e(a(¢)) = M and e(p(C)) = N. The synthesis of a consistent pair of substitutions (o, p) is
defined as S(o,p) = {(M,N): (o,p) F M < N}.

We now present the notion of consistent and strongly consistent alley relation, which
will allow us to define the notions of alley bisimulation and trellis bisimulation used to
compare processes.

Definition 2.3.10 Consistent alley relation

Let (0,p) be a substitution pair, and P, () € Ps,. An alley process pair is a triple
((o,p), P,Q) with dom(o) = dom(p). An alley relation R is a set of alley process pairs. We
write (o, p) F PRQ if ((o,p), P,Q) € R. An alley relation R is consistent if (o, p) - PRQ
implies that o ~ p, and strongly consistent if (o, p) = PRQ implies that o ~ p.

Unlike what was done in Chapter 1, here we introduce the weak versions of the equiv-
alence relations. Therefore, we must abstract from the internal actions of processes by
considering transitions of the type = which represent an unbounded number of succes-
sive 7 actions (possibly zero), and == which represent the transition(s) =
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Definition 2.3.11 Weak alley bisimilarity
A consistent symmetric alley relation R is an alley bisimulation if (o, p) = PRQ implies:

- if P - P’ then there is a Q' such that Q => Q' and (o, p) - P'RQ’

-if P M P and there are ¢, b, b such that e(o(¢)) = M with (o,p) F a — b,
{b} = n({)\dom(o) and {b} N fn(P,Q,o,p) =0, then there exist ¢, Q" with {¢} C N,

&} = |{B}], {&} Ndom(e) = 0 such that Q "L Q' and (o{b/e}, p{b/e}) - PRQ’

- if P COT P yith fn(P,o)N{c} =0 and (0, p) F a < b then there are Q', N, d,
z with fn(Q,p) N{d} =0 such that Q (N Q' and (c{M/z},p{N/x}) F P RQ’

Given a pair of substitutions (o, p), two processes P and @) are weakly alley bisimilar if
PRQ for some alley bisimulation R. Alley bisimilarity, written =,, is the largest alley
bisimulation.

With respect to the definition of alley bisimulation just presented, note that when an
internal action is performed nothing is revealed so the environments remain unchanged,
when an input action is performed the environments are extended with the new names
created, and when an output action is performed the environments are extended with the
new messages.

Definition 2.3.12 Weak trellis bisimilarity

A weak trellis bisimulation is a strongly consistent alley bisimulation. Given a pair of
substitutions (o, p), two processes P and Q) are weakly trellis bisimilar if PRQ for some
trellis bisimulation R. Trellis bisimilarity, written =, is the largest trellis bisimulation.

Note that since strongly consistent environments are also consistent, then whenever
two processes are trellis bisimilar they are also alley bisimilar. The opposite is not true, as
seen in the Example 2.3.14.

We now examine some of the examples mentioned in [23]* and in [24].

Example 2.3.13 Leto = p={a/x1}, P = (vn,k,)a{{n}x}i.P" and Q = (vn, k)a{n};.Q’
where P = Q' = (vm)am. An alley bisimulation relating P and Q is given by

R ={((o,p), P,Q),

(o {{n}tehi/22}, p{{nte/22}), P, Q'),

((o{{{ntrti/we, m/xs}, p{{n}r /22, m/25}),0,0)}.

In other words, if P b aliinid) pr g (o,p) F a < a then Q v Q' and

the r’esultmg environments are consistent since neither k nor | are known. In addition,
(vm)a(m)
Pl

k)a {n}k

Vm)a . . . .
and Q' O and the resulting environments are once again consistent.

3The examples proposed are used to differentiate the notion of hedged bisimulation therein introduced
(and proven to coincide with alley bisimulation) from other notions of bisimulation introduced for the
spi-calculus.
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Further, note that the pairs of environments considered are actually strongly consistent,
whereby the relation presented is not only an alley bisimulation but also a trellis bisimula-
tion.

Example 2.3.14 Let 0 = p = {a/x1}, P = (vm,k,)a{{m};}x.(@m + al) and Q =
(vm, k)a{m}r.am. An alley bisimulation relating P and Q is given by

R =A{((0,p), P,Q),

((f{{{m}i}r/22}, p{{m}r/22}), @m +al, am),
((oc{{{m}i}n/2, m/xs}, p{{m} /22, m/23}),0,0),
((U{{{m}l}k/x%l/x3}>p{{m}k/x2’m/x3})7070)}' ) 20

In particular note that, given P’ =am + al and Q) = am, whether P’ %o or P 2

it can be matched by Q' o 0 since l and m can not be distinguished by the environment

(this because k is kept secret). Nonetheless, P %y Q since the environments resulting from

the transitions P’ LA 0 and Q) i 0 are not strongly consistent because m # [.

Example 2.3.15 Let 0 = p = {a/x1}, P = (vk,n)a{n}y.P" where P’ = (vm)am, and
Q = (vk,n)a{n},.Q" where Q' =an and n # a. An alley bisimulation relating P and @ is
given by

R ={((o,p), P,Q),

((o{{n}n/z2}, p{{n}te/22}), P, Q'),

((o{{n}r/z2,m/xs}, p{{n}e/2x2,n/75}),0,0)}.

Note that the two processes are alley bisimilar since the environments do not distinguish
between the cipher text n (since k is not revealed) and name m. Nonetheless, the two
processes are not trellis bisimilar since the environments are not strongly consistent because
m #n.

The next three examples were proposed in [24] in order to highlight certain particular-
ities of the introduced notion of alley bisimulation.

Example 2.3.16 Leto = p = {a/x1,b/x2,c/x3} wherea, b, ¢ are distinct, P = (vk)a{b}y.ak

and Q = (vk)a{c}r.ak. Then P and Q are not alley bisimilar since P CREO) pr _ Gk and

Q (Ejattoh) Q' = ak where (o0, p) is extended to (o', p') = (c{{b}x/x4}, p{{c}x/x4}). Note

that so far there is no inconsistency in the environments. However, when k is revealed, i.e.,
P 0 and Q' W0 then (o', p) is extended to (o”,p") = (o'{k/x5}, p'{k/x5}) which

is no longer consistent. Although dom(c”) = dom(p”) and fori € {1,....,5} C(¢",x;) e N
if and only if C(p",x;) € N, it is not true fori, j € {1,...,5} that C(o”,x;) = C(0”, x;) if
and only if C(p",z;) = C(p", x;). In particular, C(c",x2) = C(c",x4) = b but C(p", x9) =
b # c = C(p' xq); this is caused by the revelation of the cipher texts once the key k is
known.

Example 2.3.17 Let 0 = p = {c¢/x1}, P = (va,k)e{k}r.ca and Q = (va, k)e{{k}.}r.ca.
A consistent alley bisimulation relating P and @) is given by
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R ={((0,p), P,Q),

((o{{k}r/22}, p{{{F}a}i/22}), (va)ca =q (vb)eb, Ca),
((o{{k}r/22, b/ x5}, p{{{k}a}r/ 22, a/75}),0,0)}.

Since the ‘external’ encryption key k is not revealed, the consistency of the environments is
preserved. Also, note that we did an a-conversion on the process resulting from the output
transition of P: P' = (va)éa =, (vb)eb so as to distinguish the name a (renamed to b)
which occurs restricted in P from that which appears free in Q' = ca.

Example 2.3.18 Leto = p = {c/x1}, P = (va, k)é{k}i.ca.ac and Q = (va, k)e{{k}.}r.ca.ac.
A consistent alley bisimulation relating P and Q) is given by

R = {((0,). P.(Q) )

(o {{k}x/z2}, p{{{k}atr/72}), (va)ea.ac =, (vb)eb.be, ca.ac),

((o{{k}r/22, b/ x5}, p{{{F}a}r/ 22, a/ x5}, be, ac),

((o{{k}r/22, b/ x5, ¢/xa}, p{{{k}a}r/ 22, a /25, ¢/24},0,0)}.

Once again, note that we did an a-conversion on the process resulting from the output tran-
sition of P: P' = (va)ca.ac =, (vb)eb.bc so as to distinguish the name a that is restricted

in P from that which appears free in () = ca.ac.

We now introduce the notions of weak barbed bisimilarity and weak barbed equivalence
in a similar way as these were introduced in Chapter 1. A generalized version of the latter
was shown to coincide with weak early bisimulation for the spi-calculus in [24]. Note that
P |, or P |y if P == where a = u(y) or a € {uy,u(y)} respectively.

Definition 2.3.19 Weak barbed bisimilarity
A binary symmetric relation S is a weak barbed bisimulation of PSQ) implies:

- if Plg then Qg for each barb (3
- if P — P’ then there is a Q' such that Q = Q' and P'SQ’

Two processes P and @) are weakly barbed bisimilar if PSQ) for some weak barbed bisim-
ulation §. Weak barbed bisimilarity, written =y, is the largest barbed bisimulation.

Definition 2.3.20 Weak barbed equivalence
Two processes P and () are weakly barbed equivalent, written P =4, @, if for every
process R we have that P|R =~ Q|R.

Note that, as with the strong versions, ~%., C /% but the opposite inclusion does not
hold. In addition, note that ~e, C ~ype, and ~j, C =, that is, two processes (strongly)
barbed equivalent [resp. bisimilar| are also weakly barbed equivalent [resp. bisimilar].

We now introduce the notion of generalized barbed equivalence and prove that it coin-
cides with the notion of barbed equivalence under certain conditions, following the result
mentioned in [24].
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Definition 2.3.21 Generalized barbed bisimilarity

Let P, Q) € Psyi and (o, p) = ([M;/i)ier, [M]/x:]icr) be a consistent pair of substitutions.
Let N; = C(o,2;) and N} = C(p,x;) for each i € I. A binary symmetric relation S of
processes is a (o, p)-barbed bisimulation if PSQ implies:

- if P [N, then Q {n; for eachi € I
- if P — P’ then there is a Q' such that Q = Q' and P'SQ’

Two processes P and @ are (o, p)-barbed bisimilar, written (o,p) b P =, Q, if PSQ
for some (o, p)-barbed bisimulation S. (o, p)-barbed bisimilarity is the largest (o, p)-barbed
bisimulation.

Note that there are significant differences between the notions of barbed bisimulation
and generalized barbed bisimulation. Namely, only the names known to the environments,
N;’s and N/’s, are checked. Second, the names N; and N/ are not required to be equal.
Also note that & is only closed under the contexts that can be obtained via instantiation
with o and p.

Definition 2.3.22 Generalized barbed equivalence
Two processes P and Q) are (o, p)-barbed equivalent, written (o, p) b P /ey Q, if for every
process R with fn(R) C dom(o)we have that (o, p) = P|Ro =~ Q|Rp.

The following proposition relates the notions of barbed equivalence and generalized
barbed equivalence and was proposed in [24]. Note that oy = {x}/x1,..2),/z,} if
V ={z],...,2),} where n € N.

Proposition 2.3.23 P =, Q if and only if (oy,0p) - P Xy Q for some V' containing
fn(P,Q).

We only provide the idea behind the proof of this result, which relies on the following
considerations: i) the processes P and ) being compared perform every visible action com-
pared on the same channel, else condition 3. for a consistent environment [See Definition
2.3.6] is violated. i) the environments can not be extended by output actions from P and
Q@ with a and b where a # b and a,b € fn(P, Q) since a process put in parallel with both
P and @ distinguishes them. As an example, let P = ¢a and @ = ¢b; if R = ¢(x).T then
P|R |z and Q|R —|; but a # b. 4ii) the environments can not be extended by output
actions from P and @ with a and b where a # b and a € fn(P) or b € fn(Q) exclusively,
since a process put in parallel with both P and () distinguishes them. As an example, let

P =ta and Q = (vb)eb; if R = c¢(x).T then P|R |5 but Q|R — J4.

We now introduce the notion of structurally image-finite processes so we can present
the main result of [24]: the coincidence between alley bisimulation and barbed equivalence.
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Definition 2.3.24 Structurally image-finite process
A process P € Py, is structurally image-finite if for each visible trace s* the set of equiv-

alence classes {P': P == P'/_} is finite, where the structural equivalence = was defined
in Definition 1.3.7.

Proposition 2.3.25 Let P, Q) € Py, and o, p be consistent environments. If (o,p)
P =, Q then (0,p) = P =peq Q (soundness). If P, Q are structurally image-finite processes,
whenever (o, p) b P Ry, Q then (o,p) F P ~, Q) (completeness).

Note that, in particular, the following result holds since if o = p, (o, p) is a consistent
environment-pair:

Corollary 2.3.26 Let P, () € Py be structurally image-finite processes such that
fn(P,Q) CV. Then, (oy,ov)F P =, Q if and only if (ov,ov) F P ey Q.

The following result is a combination of Corollary 2.3.26 with Proposition 2.3.23.

Corollary 2.3.27 Let P, Q € Py be structurally image-finite processes such that
fn(P,Q) CV. Then, (ov,ov) F P =, Q if and only if P ~pq Q.

We now recall Example 2.3.16 and analyse it with respect to barbed equivalence. Note
that we consider this particular example because P ., () which is easy to prove when
recurring to the definition of barbed equivalence. An arbitrary proof that P ~%., () requires
quantification over all processes R € P, which is difficult to accomplish. Thus, the more
important is the result in Corollary 2.3.27 which establishes the coincidence of barbed
equivalence with the more tractable notion of alley bisimulation.

Example 2.3.28 Following Example 2.5.16, let oy = {a/x1,b/xs,c/x3}, P = (vk)a{b}y.ak
and Q = (vk)a{c}r.ak. Then P %, Q since if R = a(z).a(y).let z = decy(x).Z then
P|R 55 but QIR ———>|z and b # c.

The following diagram exhibits the relations between the notions presented for the
spi-calculus, where — stands for strict inclusion C, and « for coincidence.

~p — %beq

I (UV 9JV)

%(l «— %t

1A trace is a sequence of visible actions ay, ..., p, ... such that for all i # j, bn(a;) Nbn(a;) = 0 and
for all j <1, bn(a;) N fn(a;) = 0. (These conditions are to ensure that the bound names of the trace are
fresh).
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Chapter 3

Encodings

3.1 Correctness of Encodings

In this section we introduce the notion of encoding and study some measures of correctness
proposed in the literature. We start by formally presenting the definition of encoding.

Definition 3.1.1 Encoding
An encoding is a function [|.|] : S — T where S represents the source calculus which is
being encoded in the target calculus T'.

Encodings are extremely important to determine the expressiveness of a calculus in re-
lation to another; if a calculus represents the target language of an encoding of the source
calculus then it is considered at least as expressive as the source language.

In this section, following the work in [17, 11, 18], we attempt to provide a definition of
‘good’ encoding. We rely on some notions already known but also on a certain amount of
intuition.

Definition 3.1.2 Semantic equivalence
A source term S and its translation [|S|| are semantically equivalent if S =< [|S|] where <
denotes a notion of equivalence.

The former definition has two requirements that are not easily (if at all) satisfied: that
the direct comparison between term and translation is possible, and the existence of an
applicable ‘good’ equivalence relation. Intuitively, the stronger the employed equivalence,
the stronger our belief that the encoding is correct. Several possible equivalence relations
were introduced and studied in the previous sections [See Section 1.3 and Section 2.3[;
nonetheless many more equivalence relations have been presented (See e.g. [16]), some of
which can be more adequate as a choice of correctness requirement for an encoding for a
certain problem.
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If a direct comparison between term and translation is not possible, it is useful to
consider the notion of full abstraction following [16]; the full abstraction problem was first
studied in [19, 20].

Definition 3.1.3 Full abstraction

Let Sy, Sy be two elements of the source language and [|S1|], [|S2|] be their respective
encodings into the target language. Then full abstraction requires that S =<, So if and
only if [|S1]] =¢ [|S2]] where =g and =; are equivalence relations in the source and target
languages respectively.

The reflection of equivalence - adequacy - provides behavioural soundness, while the
preservation of equivalence provides behavioural completeness.

In the case when full abstraction cannot be achieved for any known equivalence re-
lation, certain requirements like compositionality and the preservation of some intended
semantics may be enough to ensure the ‘quality’ of the encoding. The notions of uniform
and reasonable encoding were presented in [11], and those of strongly uniform and sensible
encoding in [10].

Definition 3.1.4 Uniform encoding

Let o be a substitution, Sy, Ss be two elements of the source language and [|S:|], [|S2|] be
their respective encodings into the language target. The encoding is uniform if the following
properties hold:

o [|S1|Sal] = [ISul] [ ]|S2]]
o [[Siof] = [|Si]]o

The encoding is strongly uniform if the second condition of the uniform encoding accounts
for arbitrary substitutions, i.e., the second condition reads Vo 30 [|S10|] = [|S1]]6.

Definition 3.1.5 Reasonable encoding

An encoding is reasonable if it preserves a reasonable semantics: a semantics which dis-
tinguishes two processes P and () whenever in some computation of P the actions on a
certain intended channel are different from those in any computation of Q).

Definition 3.1.6 Sensible encoding
An encoding is sensible if it is (strongly) uniform, reasonable and distinguishes deadlocks
from livelocks.
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3.2 Encoding of Match

Encodings are not only meaningful as a way of determining the expressivity of a calculus,
but also in establishing which operators should be considered primitives of a certain cal-
culus and which can be derived.

In this section, we prove that the match operator can be encoded in the m-calculus
with polyadic synchronization; thus, unlike in the m-calculus, it does not need to be taken
as a primitive. This fact results directly from the possibility of partial restriction in the
m-calculus with polyadic synchronization.

Note that, following [10], we do not consider the usual match operator [x = y| but
[z = y|7 instead. In this sense, a process P = [z = y|7.P" can evolve, if indeed z and y
are equal, by means of an internal action into P’; the rule MATCH is then replaced by
T—MATCH.

r— 5 " waren ——— 7~ MATCH
[t =2x|P — P’ [z =zx]T.P — P

This definition of match has the advantage of not only making the encoding simpler, but
also that the observability of actions depends of the structure of the process and not on
the set of bindings between names and channels as seen in [10]. Thus, in the m-calculus
with the match operator [x = y|r, any process P for any name x and any substitution o,
can perform the action x(y), Ty or Z(y), if and only if Po can perform the action o(x)(y),
o(x)y or o(x)(y) respectively. This property also holds in the m-calculus with polyadic
synchronization.

Proposition 3.2.1 Encoding of match with respect to late congruence!

Let P € Pg such that z € fn(P). If [|[x = y|T.P|]| = (v2)(Z-Z|z - y.P), then [x = y|T.P
and [| [x = y|7.P|] are late congruent.

PROOF: Let Q = [z = y|7.P and R = (vz)(Z-%|z - y.P), where P € Pg such that
z & fn(P), and o be an arbitrary substitution. We show that Po ~; Qo.
We split the proof according to the behaviour of ¢ on z and on y.

e o(x) # o(y): both processes Qo = [o(z) = o(y)]7.(Po) and Ro = (vz)(z-o(x)|z -
o(y).(Po)) are inactive; in the first the match is unsuccessful, and in the latter the
synchronization is not possible because the channel vectors do not match element
wise.

e o(z) = o(y): both processes Qo = [o(z) = o(y)]7.(Po) and Ro = (vz)(z - o(x)|z -
o(y).(Po)) may perform a deterministic 7 action and evolve into Po; in the first the
match is successful, and in the latter the 7 action results from the synchronization

"'We could prove the same result resorting to an even stronger notion of equivalence: open bisimilarity.
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of the vectors. Actually, Ro —— (vz)(0|Po) ~; Po since we may assume that

z & fn(Po).

Therefore, by definition of late congruence, we have that () ~; R, that is we have that
[z =ylr = [[ [z =y]7.P]].

(I

Note that the restriction on z in Proposition 3.2.1 is crucial since it prevents the input

and output transitions through z -y and Z- =z, respectively, of R = (vz)(Z-z|z-y.P). Thus,

the process R can only perform the internal communication referred to in the proof of the
proposition.

We could also have opted to consider the following encoding of the match operator:
[|[x = y]P|] = (vz)(Z-Z|z - y.P) and prove that [z = y]P and its respective encoding
were weakly late congruent. However, it was proven in [4] for the m-calculus that the
intuitive weak version of late bisimilarity was no longer an equivalence relation. The same
result also holds for the m-calculus with polyadic synchronization since it corresponds to
the particular case of the calculus when the channel vectors are unitary. The fact that
the intuitive notion of weak late bisimilarity is not a transitive relation is also true for the
intuitive notion of weak late congruence. The example provided in [4] presents not only
weak late bisimilar processes but also weak late congruent processes such that although
Py ~; Py and P, ~; Ps, it does not hold that P, ~; P; [See Appendix].

The definition of an alternative notion of weak late bisimilarity and subsequently of
weak late congruence only add to the complexity of the proof of Proposition 3.2.1 and
this is the reason why we prefer to follow [4] and present instead the alternative notion of
match operator.

In [10] it was also proven that the match operator cannot be derived in the m-calculus
since there was no sensible encoding of that operator. In addition, in [10] it was shown
that there is no sensible encoding of the m-calculus with polyadic synchronization into the
m-calculus? which yields the following result.

Corollary 3.2.2 The m-calculus with polyadic synchronization is more expressive than the
m-calculus.

PRrROOF: The m-calculus is embedded in the 7-calculus with polyadic synchronization with
the match operator. Following Proposition 3.2.1, we know that the match operator can
be derived in the m-calculus with polyadic synchronization, and thus needs not be consid-
ered as a primitive. The encoding described in that proposition is not only sensible with
respect to late congruence, which would be enough to establish the expressiveness relation
between the calculi, but the source term in the m-calculus and its respective encoding in

2 Actually, the result is even stronger stating that the higher the degree of synchronization of a language
- the maximum length of the composite channels - the more expressive the calculus.
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the m-calculus with polyadic synchronization are semantically equivalent with respect to
late congruence.

The lack of a sensible encoding of the 7-calculus into the 7-calculus with polyadic synchro-
nization serves to prove that the latter is (strictly) more expressive than the first, that is,
that the expressivity of the calculi cannot be the same.

3.3 Encoding of Cryptographic Primitives

In this section we prove that cryptographic primitives can be encoded in the m-calculus
with polyadic synchronization; thus proving that this calculus does not need to be ex-
tended with those primitives. In Chapter 2, we analysed the spi-calculus: an extension
of the m-calculus with cryptographic primitives in order to understand the importance
and particularities of encryption and decryption of messages. The relation between the
m-calculus and spi-calculus was studied in [25] from an innovative perspective, which re-
sulted in the establishment of an encoding of spi-calculus into w-calculus with respect to

may-testing equivalence?.

To our knowledge, the first mention of a possible encoding of a calculus with crypto-
graphic primitives into a calculus with polyadic synchronization was put forth in [12]. The
idea can be summarized in the following way: the sending of a message m encrypted under
a key k over a channel a can be seen as a - km.P. In order to receive this message, the
other party needs to know the channel where the message is being transmitted and the key,
which could be represented as a - k(m).P. There are several problems with this approach
[12, 10]; an example is that one cannot represent nested encryptions.

A solution for a different encoding of the cryptographic m-calculus with polyadic syn-
chronization into the m-calculus with polyadic synchronization was proposed in [10]. The
proposed encoding is a homomorphism, except for the following new constructs:

[[encryptm &% zin P|] = (va)(lz-km|[| P]])

[| decrypt x " min P|] = x - k(m).[| P|]

Note that the constructs just presented are more expressive than those proposed in [12]
since the encrypted messages are represented as names which can still be encrypted, sent
or used as keys®, and that the encryption is nondeterministic (encrypting the same message

3In particular, the spi-calculus processes are viewed as objects with a number of predefined methods,
and where encryption corresponds to creating an object with a special method for decryption.

4In may-testing equivalence, the basis for comparing processes is the result of experiments in which
the processes are tested by composing them with special processes. As mentioned in [25] the notion of
equivalence employed is rather weak, so we will not concern ourselves with its detailed analysis.

®Note that in the spi-calculus studied in Chapter 2 we did not consider messages of the type {a}, -
We follow the same restriction here.



46 CHAPTER 3. ENCODINGS

P2 p

(ENC)
encrypt m % xin P -2 encrypt m =* xin P’

where if a € {uy,u(y),u(y)} then x & n(u) and o # ux

p 2, p

(ENC-OPEN) =
encryptm &k xin P — x - km| P’

where x & n(u)

(DEC) -
decrypt x &F yin P ) p

Table 3.1: Late transition rules for the cryptographic constructs

under the same key yields different results). The first construct, encrypts the cipher text
m under k and returns the encrypted message as the fresh name = to be used in all the
scope embraced by P. The decryption of message = through the key k (used to encrypt the
message) binds the name m in the continuation of P to the original message. Nonetheless
we rely on a slightly different and simpler encryption construct:

[[encryptm &=* zin P|] = (va)(z - km|[| P|])

Consequently we require that encrypted messages stop being ‘available’ as soon as decryp-
tion is done. Thus, whenever we want to encrypt a certain message m under a key k twice
we have a process like P = encrypt m &F 1 in encrypt m =% zqin P'.

The transition semantics of the cryptographic m-calculus with polyadic synchronization
includes, besides the rules of the m-calculus with polyadic synchronization in Table 1.3, the
rules in Table 3.1. We now explain the reasoning behind the inclusion of each of the rules
in Table 3.1, and reiterate the side conditions of these rules.

e The rule ENC determines that an action of P is also an action of encryptm 9-*
xin P, thus implying that messages can be encrypted at any time. This rule has as
side conditions that if v € {uy,u(y), u(y)} then x & n(u), and o # ux. The last case
is handled by the rule ENC-OPEN.

e The rule ENC-OPEN determines that when an encrypted message is sent over a
channel its scope is opened to include the process that receives it (via application of
rule CLOSE). Also note that once the encrypted message z is sent, the possibility
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of decryption is assured since any process with knowledge of x and the key used to
encrypt it k can synchronize with it and get hold of the original message m. This
rule has as side condition that = & n(u).

e The rule DEC shows that a process with knowledge of the encrypted message z and
encryption key k awaits for the sending of the original cipher text on the channel z -k
to evolve.

The notion of structural congruence presented in Definition 1.3.7 can be extended to
make use of the new constructs with the following rules:

encryptm F zinP = encryptm G-k xin@ if P=Q

decrypt x - min P = decrypt t " minQ if P=Q

The notions of bisimilarity introduced in Section 1.3 can be adjusted to consider pro-
cesses in the cryptographic m-calculus with polyadic synchronization. We assume that the
notion of early congruence in the cryptographic m-calculus with polyadic synchronization
can be obtained in the same manner as in Definition 1.3.18 and that the result in Corollary
1.3.44 can be extended to the cryptographic m-calculus with polyadic synchronization.

Before we attempt to prove the soundness and completeness of the encoding, we first
analyse a cryptographic protocol proposed in [10] from the source and target language view
points.

Example 3.3.1 Consider the processes:

P = (vk)securek.public(y).decrypty &% win R

Q = (vm)secure(z).encrypt m &% xin publicx.S

and the cryptographic protocol defined as (vsecure)(P|Q)|A where A is a possible attacker.
Intuitively the attacker can never have access to the key k since the transfer of the knowl-
edge of the key is done on a secure channel, thus we will not concern ourselves with the
process A. Obuviously, we consider in the target language the following processes:

[| P|] = (vk)securek.public(y).y - k(w).[| R ]

[| Q] = (vm)secure(z).(va)(T=z(m)|publicz.[| S|])

We split the analysis in two, first considering the transitions in the source language and
then in the target language.®

e Source Language: Cryptographic m-calculus with polyadic synchronization

& The key is transmitted: (vsecure)(P|Q) —— (vsecure, k)(P'|Q"), where
P’ = public(y).decrypty &F win R
Q' = (vm)encrypt m & xin publicz.S

SWe do not include the a-conversions on the derivation trees so as to make them more legible. These
are implicit.
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Q)1 = secure(z).encrypt m % xin publicz.S

Q) = encryptm % xin publicx.S
This transition corresponds to the following derivation tree:

— ————— PREFIX ~eecure(s) . PREFIX
securek.public(y).decrypty &F win R 5" P Q1 — Q)
secure( k) OPEN secure(z) RES
P = (vk)securek.public(y).decrypt y &% win R P Q —  Q CLos
LOSE1

P|lQ — (vk)(P'Q)
(vsecure)(P|Q) —— (vsecure, k)(P'|Q")

RES

¢ The encrypted message 15 transmitted:
(vsecure, k)(P'|Q") — (vsecure, k,m)(encrypt m &% xin (P"]S)), where
P" = decrypt x &F win R
Q" = (vm)(z - kmlS)

This transition corresponds to the following derivation tree:

PREFIX
ublicx
publicz.S P50 S
) ENC-OPEN
—_— public(z
__ encrypt m & xin publics.S " — = - km|S
T pblic®) PREFIX pblic(z) RES
public(x public(x
Pl P/l Q/ Q//
P”Q’ - (V:C> (P”‘Q”) CLOSE2
RES

(vsecure, k)(P'|Q') — (vsecure, k,z)(P"|Q")

¢ The encrypted message is decrypted:
(vsecure, k, z)(P"|Q") — (vsecure, k,z,m)(R|(0|S)) = (vsecure, k,z,m)(R|S).

This transition corresponds to the following derivation tree:

PREFIX
z-km
z-km =20 PARI
z-km
— x-km|S T2 0|8
7( ) DEC ( OPEN
z-k(m -k m)
PN R Q” 20 |S
LOSE2

P"|Q" — (vm)(R|(0]S))
(vsecure, k, z)(P"|Q") — (vsecure, k,z,m)(R|S)

RES
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e Target Language: m-calculus with polyadic synchronization

& The key is transmitted: (vsecure)([| P|]|[| Q1)) — (vsecure, k)(P'|Q"), where

P = public(y).y - k(w).[| R|]

Q = (vm,x)(z -k km|publzca: [ S1])

Q1 = secure(z).(vx) (T~ zm|publicz.[| S])

Q) = (vx)(Tzm|publicz.[| S])

This transition corresponds to the following derivation tree:

- PREFIX —() PREFTX
mkpUblZC< ) Y- k( )R ka p Ql Seﬂz Qll
Secure k) OPEN secure(z) RES
[Pl P PR
P ” | H Q H SN (yk)(Pl‘Q/) CLOSE1
H RES

(vsecure)([| P [| Q1)) — (vsecure, k)(F'|Q')

¢ The encrypted message 18 transmitted:

(vsecure, k)(P'|Q") — (vsecure, k,x)(x - k(w).[| R|] | (vm)(x - km|[|S]]))
This transition corresponds to the following derivation tree:

= PREFIX
publicz.[|S]] =57 [19]] PAR2
publzcm
o~ o [publicz. [|S]) " -~ z - k(5] RES
pu cr
S — i e K s GG
Ipu el ) /pu /Lcm
P z -+ k(w).[[R] Q (vm)(@-Em|Sl)

RES

(z-k
PQ" — (va)(x - k(w).[|R|||(vm)(x - km|[|S])))
(vsecure, k)(P'|Q) — (vsecure, k,z)(x - k(w).[|R|]|(vm)(x - km|[|S]]))

¢ The encrypted message is decrypted:
(vsecure, k, x)(z-k(w).[| R|]| (vm)(z - km|[[| S|])) — (vsecure, k,z, m)([| R[] [[| S])
This transition corresponds to the following derivation tree:



90 CHAPTER 3. ENCODINGS

PREFIX
T em o AR
—_— z-km
. TRmlls) o ys)
P PREFIX o
oo k) (RS R m)@ RS Y sy

z - k(w).[|R[]|(vm)(z - km|[|S]]) — m)([|RI[S])
(vsecure, k, z)(x - k(w).[|R[]|(vm)(z - km|[|S]])) — (vsecure, k,z,m)([|R|]|[|S]])

RES

Before we prove the soundness and completeness of the proposed encoding, we first
introduce the following lemma.

Lemma 3.3.2 [| Po|] = [| P|lo, for any substitution o

Proor: We split the proof according to the constructs in the cryptographic m-calculus
with polyadic synchronization. The only relevant cases are those of the new constructs.

- If P = encryptm % xin P’ then [| P|] = (va)(x - km|[| P'|]). Let o = {m'/m}".
Then, Po = encrypt m’ &F xin P'{m'/m} and || Po || = (va)(z - kn'| [| P"{m’/m} |])
and we have that [| Po || = (vz)(x - km/|[| P"|[{m//m}).

In addition, [| P |]lo = ((vz)(z - km|[| P'|]))o = (vz)(x - km!|[| P" |[{m'/m}).

- If P = decryptx &% yin P’ then [| P|] = z - k(y).[| P'|]. Let 0 = {2'/x}®. Then,
Po = decrypt ' &% yin P'{2'/z} and [| Po || = o' - k(y).[| P'{2'/x} || and we have
that [| Po|] = o' - k(y).[| P'[[{z'/x}.

In addition, [| Pllo = (z - k(y).[| P'|])o = 2" - k(y).[| P’ ||[{z'/z}.

O
In order to prove the soundness and completeness of the encoding with respect to barbed
congruence - a contextual equivalence -, which we proved in Corollary 1.3.44 coincides with
early congruence, we build on successive auxiliary results. Note that we will consider as
a target language a sub-calculus of the m-calculus with polyadic synchronization without
summation (as we just saw cryptographic protocols do not necessarily make use of this
construct). We shall consider this calculus with and without cryptographic primitives (en-
coding the first in the second) because the proof is lighter.

The following lemmas show there is an operational correspondence between the actions
of the encoding and those of the process.

"The other cases are handled in an analogous way. Note that if e.g. ¢ = {2/m} then we would have to
perform a-conversion.

8The other cases are handled in an analogous way. Note that if e.g. o = {y/k} then we would have to
perform a-conversion.
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Lemma 3.3.3 If P is a process in the cryptographic w-calculus with polyadic synchroniza-
tion and [|P|] is its respective encoding, then®:

- if [|P]] ., Q then for some Py, Py and some i such that n(u)Nn{n} =0, P=
(vn)(uy. P1|Py) where [|P|] = (vi)(uy.[[Po|] | [| P2|]) and Q@ = (vi)([[P]] || P2]]). We
can also_have that P = (vi)(encryptm & zinTy.P|Py) where x # y, [|[P|] =
(vn)(z - k‘mmy-UPlH [[[P2]]) and Q@ = (va)(z - km | [|A[] [ Pa]])-

- if [|P|]] — Q then for some Py, Py and some @ such that n(u) N {n} = 0 and
y # v, P = (vi,y)(uy.-Pi|Py) where [|[P|]] = (vn,y) @@y [|PA[][[|P]]) and Q =
(wn)([|P] 1| Pl]). We can also have that P = (vn,y)(encrypt m ©F zinTy.Pi|P,)
where [|P[] = (vi,y, x)(x - km[uy[[Po|] [ [ P2]]) and Q@ = (v, 2)(x - km | [ PL] | Po]).-
If © = y we can also have that P = (vi)(encryptm %% yinTy.Pi|P,) where
P[] = (vi,y)(y - km[ay [| P[] [[|P]]) and @ = (v)(y - km [ [[ ][] P2]])-

- if [|P|] “) Q then for some Py, Py and some n such that n(u) N {n} =0, P =
(vn)(u(y)- P Py) where [[Pl] = (vn)(u(y)-[[Po|] [ [[P2]]) and Q@ = (va)([[Pu]] [ Pl]).
We can also have that P = (vii)(encryptm F zinu(y).Pi|P,) where [|P|] =
(i, z) (@ - kmlu(y). [P} [[[P2]) and Q = (vi, x)(z - km | [|[A[][[|P]]). Ifw =2 -k,
we can also have that P = (vi)(decryptx &% yin Pi|Py), where [|P|] = (vi)(x -

k() [1A][[[P2]]) and @ = (vR)([[ P | [|P2l])-
Proor: Follows directly from the definition of processes in the cryptographic m-calculus

with polyadic synchronization and from the transition rules.

O

Lemma 3.3.4 For any process P in the cryptographic m-calculus with polyadic synchro-
nization we have that if || P|] —— Q then there is a P’ such that P —— P’ and [|P']] = Q.

PROOF: The proof is done by induction on the inference of the transition of [| P|] —— Q.

1. @ =uy. By Lemma 3.3.3 we have that:
i) P = (vn)(uy.Pi|P,) in which case P W, p = (vn)(P1|P,) and [|P'|] =
ii) P = (vi)(encryptm %% xintuy.P|P,) in which case P M, p = (v )(P1|P2)
and [|P'|] = Q.

2. o =7(y). By Lemma 3.3.3 we have that:

i) P = (vii,y)(a@y.P,|R,) in which case P "% P! = (vii)(P,|Py) and [|P']] = Q.

ii) P = (vn,y)(encrypt m &% xinty.Py| P;) in which case P W pr— (vi)(encrypt m 9-*

$Z7’LP1|P2) and HP’H = Q
iii) P = (vi)(encrypt m & yinuy.Py|P;) in which case P ) pr— (vn)(y - km|Py|Py)
and [|P'|] = Q.

9Note that the notion of structurally equivalent processes, denoted by =, was presented in Definition
1.3.7.
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3. @ =u(y). By Lemma 3.3.3 we have that:
i) P = (vn)(u(y).P1|P,) in which case P — P’ = (vn)(Pi|P,) and [|P']] = Q.
ii) P = (vi)(encrypt m &% xinu(y).Py|Py) in which case P “W) pr = (vi)(encrypt m -+
xin Pi|Py) and [|P']] = Q.
iii) u = x -k and P = (vi)(decryptx &% yin Pi|P,) in which case P MY pr—
(vi)(P1|P,) and [|P'[] = Q.

u(y)

4. o« = 7. The most relevant cases in which a process can perform a 7 action is by
apphcatlon of rules COMM or CLOSE. In the first case, P|Q —— P'|Q'{y/z} if

P P and Q ue) Q'. By pomts 1 and 3 we know there exist Py, P|, @1, @}

such that [|P1[) = P, [|Q1]] = Q, Py > P| where [|P{]] = P/, and Q; “*> ") Q' where

Q1] = Q. Thus, P|Q: —— Pj|Q} {y/z} and by Lemma 3.3.2 [|P]|Q{y/z}|] =
P 11Q1Ky/2} = P'|Q{y/z}. The remaining cases follow in a similar manner.

O

Lemma 3.3.5 For any process P in the cryptographic m-calculus with polyadic synchro-
nization we have that:

-if P Yy P’ then for some Py, P, and some n such that n(u) N {n} = 0, P
(vi)(uy.Pi|Py) or P = (vi)(encrypt m &% xin (uy.Pi|P)) where y # x and P’
(vi)(Py|Py) or P' = (vi)(encrypt m & xin (P|Py)) respectively.

i p 2 L P’ then for some Py, Py and some n such that n(u) N {n,y} =0, P =
(Vn)(uy.Pl\Pg) or P = (vi,y)(encrypt m &% xin (uy.P1|P)) and P’ = (vi)(P|P,)
or P' = (vi)(encrypt m &% xin (P|Py)) respectively. In addition, we can also have
that P = (vi)(encrypt m &F yin (U(y).Pi|P)) and P' = (vi)(x - km|Pi|Py).

-if P “Wpr then for some Py, P, and some n such that n(u) N {n} = 0, P =
(vi)(u(y).Pi|P2) or P = (vi)(encrypt m % xin (u(y).Pi|P)) and P’ = (vi)(Py| P)
or P' = (vi)(encrypt m &% xin (P|Py)) respectively. In addition, we can also have
that u = x - k, P = (vi)(decrypt x &% yin (P1|P,)) and P’ = (vi)(Py|P).

Proor: Follows directly from the definition of processes in the cryptographic m-calculus
with polyadic synchronization and from the transition rules.

([
The following Lemma establishes a strong operational correspondence between the ac-
tions of a process and the actions of its encoding.

Lemma 3.3.6 For any process P in the cryptographic mw-calculus with polyadic synchro-
nization, if P - P’ then [|P|] = [|P'|]
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PRrROOF: The proof is done by induction on the inference of the transition P —— P’.

1. If « = 7wy, by Lemma 3.3.5 we have that P = (vn)(uy.Pi|P,) or

P = (vi)(encryptm &F win (uy.P)|P,)) where y # z and P’ = (vi)(P|P)
or P' = (vn)(encryptm &* xzn(P1|P2)) respectively. In the first case, [| P|] =
(va) (@y.[|Pa[] [ [1P]]) and [| P[] = (va)([IP[] | [IP]]) = [| P[] In the second case,
H Plhz (vii, @)(x - kml[ay.[|Po[]| (| P2]]) and [| P[] =5 (vii, @)(x - km| [P} [[P2]]) =
P’

2. If @ = u(y) the reasoning is analogous, except if P = (v7)(encrypt m &k yin (u(y). P Py))
and P' = (vi)(y-km|Pi|P,); then [|P|] = (vi,y)(y - kmluy.[| P |]|[| P.|]) and

1P 2 )y Fml | PP ) = 1P

3. If @« = u(y), by Lemma 3.3.5 we have that:
i) P = (vn)(u(y).P1|P;) and P’ = (vn)(P1|P,). Then P =[|P|] and P' =[| P[] so
it P "% P so does [| P[] “ [ P/
ii) P = (vit)(encrypt m &% xin (u(y).P|P)) and P’ = (vi)(encrypt m &% zin (P|Py)).
FIIDG’T]H P} = (vit, )@ K(m) u(y). [ P[] | [ Pol]) and [| P[] 2 (v, 2) @ F(m)| [ ]| | P2]]) =
i1i) P7E (vi)(decrypt x - yin Pi|P,) and P’ = (vi)(P;|P,). Then P MY prand
aif]lseuﬂ Pl = i)z k()-[ P[] | [|P2]]) we have that [| P[] % (va) ([|Pr] | [| P2[}) =

4. If a = 7 many rules may have been applied; we consider only the case when the rule
COMM was applied (the others are analogous). Note that P|Q T PQ{y/z} if

P ™, P and Q “Z (. By points 1 and 3 we have that [IP]) =2 [|P)] and [|Q) *2 v
IQ']] and by application of rule COMM [|P|]|[|Q[] — [|[P'|]|[|Q'[[{y/=} and by

Lemma 3.3.2 we have that [[P'|][[|Q"[[{y/2} = [Pl [ [|Q{y/=}] = [I[P'|Q"{y/=}].

Lemma 3.3.7 If[| P[] ~. [|Q]] then P ~. Q

ProOOF: We prove that R = {(P,Q) : [| P|] ~¢ [| @]} is an early bisimulation. We split
the proof according to the possible transitions of [| P |]

- o € {uy,u(y)} Where bn(a) N fn(P,Q) = 0. If P % P’ then by Lemma 3.3.6 we
have that [| P|] — [| P"|]. Since by hypothesis [| P || ~. [| @[] then there is a @’
such that [|Q|] - Q' and by Lemma 3.3.4 we have that there is a Q” such that
Q = Q" where [|Q"|] = @'. By definition of ~, we have that [| P'|] ~. [| @"|] and
therefore P"RQ)".
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= u(y) where y € fn(P,Q). If P - P’ then by Lemma 3.3.6 we have that
[|P|] = [| P'|]. Since by hypothesis [| P|] ~. [|Q|] then there is a @’ such that
[[Q]] = Q" and by Lemma 3.3.4 we have that there is a Q" such that Q —— Q"
where [| Q" || = Q. By definition of ~, we have that [| P’ |[{w/y} ~. [|Q"|][{w/y}
and by application of Lemma 3.3.2 we know that [| P'{w/y}|] ~. [| @"{w/y}|]. Thus,

P{w/y}RQ"{w/y}.

- a=r1. If P2 P’ then by Lemma 3.3.6 we have that [| P|] - [| P’|]. Since by
hypothesis [| P[] ~. [| @] then there is a Q' such that [|Q|] - @’ and by Lemma
3.3.4 we have that there is a Q" such that Q@ — Q" where [| Q" |] = Q. By Lemma
1.3.8, definition and transitivity of ~, we have that [| P'|] ~. [| Q" |] and therefore
P'RQ".

-«

Lemma 3.3.8 If [| P|] ~peq [| Q] then P ~pey Q

PRrROOF: Follows directly from Lemma 3.3.7 and Theorem 1.3.43 where it was proven that
early bisimulation coincides with barbed equivalence.

O

Theorem 3.3.9 Soundness
If[| P] = [|Q]] then P~ Q

Proor: If [| P|] ~ [|@]] then for any substitution o we have that [| P|]o ~, [| @[]0
By Lemma 3.3.2 we then know that [| Po || ~pe, [| @0 |], and by Lemma 3.3.8 we have that
Po ~peq Qo

|
Lemma 3.3.10 If P ~. Q then [| P|] ~. [|Q]]

ProoF: We prove that R = {([| P|],[|Q]]) : P ~e Q} is an early bisimulation. We split
the proof according to the possible transitions of P.

- a € {uy,u(y)} where bn(a) N fn(P,Q) = (. If [|P|] — P’ then by Lemma
3.3.4 we have that there is a P” such that P -+ P” and [| P"|] = P’. Since by
hypothesis P ~, @Q there is a @’ such that Q - @’ and by Lemma 3.3.6 we have
that [|Q|] —— [|Q'|]. By definition of ~, we have that P’ ~, Q" and therefore

| PIRIQ)-

- o = u(y) where y ¢ fn(P,Q). If [|P|] = P’ then by Lemma 3.3.4 we have
that there is a P” such that P ——~ P” and [|P"|] = P'. Since by hypothe-
sis P ~, @ there is a @' such that Q —— @’ and by Lemma 3.3.6 we have that
Q] = [|Q"]]. By definition of ~, we have that P'{w/y} ~. Q{w/y} and there-
fore [| P'{w/y} [|R[| @{w/y} |]. By Lemma 3.3.2 we have that [| P' [{w/y}R[| Q" [[{w/y}.
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- a=r71. If [|P|] % P’ then by Lemma 3.3.4 we have that there is a P” such that
P % P” and [|P"|] = P'. Since by hypothesis P ~, Q there is a @’ such that
Q — Q" and by Lemma 3.3.6 we have that [|Q|] — [|Q'|]. By definition of ~,
we have that P’ ~, Q' and by Lemma 1.3.8 and transitivity of ~. we have that

I PHIRIQ )

Lemma 3.3.11 If P ~p, Q then [| P|] ~peq [| @]

PrOOF: Follows directly from Lemma 3.3.10 and Theorem 1.3.43 where it was proven that
early bisimilarity coincides with barbed equivalence.

Theorem 3.3.12 Completeness
If P~, Q then [| P|] ~ [| Q]]

Proor: If P ~;, () then for any substitution ¢ we have that Po ~., Qo. By Lemma
3.3.11 then [| Po|] ~pey [|Qo|] and by Lemma 3.3.2 we know that [| P|lo ~, [| @ |0,

ie, [|P]] = [|Q]]
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Chapter 4

Conclusions and future work

We have studied in detail the m-calculus with polyadic synchronization proposed in [10]
where channels are vectors of names. We formally defined and compared some notions of
bisimilarity and contextual equivalences in the m-calculus with polyadic synchronization,
which to our knowledge had not been done until now.

We have studied the spi-calculus originally proposed in [12] as a model of a calculus
which is used to reason about security protocols.

We have extended the m-calculus with polyadic synchronization with cryptographic
primitives by defining the syntax and operational semantics of the calculus. Following
[10] we proposed an encoding of the new constructs for encryption and decryption of mes-
sages into the m-calculus with polyadic synchronization. Further, we proved that such
an encoding is sound and complete with respect to barbed congruence (which we also
proved coincides with early congruence). We therefore concluded that the m-calculus with
polyadic synchronization was expressive enough to be used to model security protocols,
which strengthens the hypothesis that an encoding of the spi-calculus into the 7-calculus
with polyadic synchronization is possible. In addition, we could, as future work, study if
and how the m-calculus with polyadic synchronization can express properties of crypto-
graphic protocols such as authenticity and secrecy.

o7
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Appendix

In the Appendix we prove that the intuitive weak version of late bisimilarity is not an
equivalence relation as mentioned in Section 3.2.

Definition 1 (Intuitive) weak late bisimilarity
Letu=x1-...-xp where k € N and P, () € Ps.
A binary symmetric relation S is a weak late bisimulation if PSQ implies:

- if P -2 P where a = uy,u(y) or 7 and bn(a) & fn(P,Q) then there is a Q' such
that Q == Q' and P'SQ’.

-if P “W) pr where y & fn(P,Q) then there is a Q" such that Q u:(y; Q' and for each
w, P{w/y}SQ{w/y}.
Two processes P and ) are weakly late bisimilar if PSQ for some weak late bisimulation

S.

Weak late bisimilarity, written ~;, is the largest weak late bisimulation.
The corresponding definition of weak late congruence is as follows.

Definition 2 Weak late congruence
Let P, Q € Ps. The two processes are weakly late congruent, written P =; ), if for all
substitutions o we have that Po ~; Qo.

We now resort to a similar example to that given in [4] which shows that in the weak
late congruence relation defined above transitivity does not hold.

Example 1 Let P, = c(a).P' +c(a).(1.P" + Ta_d+_7') and Py = c(a).(1.P' +7.dd+7) and
Py = c(a).(1.dd + 7), where P = (vz)(z - alz-b).dd. We have that P, ~; P, because if

Py 29 P othen Py T P! In addition, Py ~y Py since if Py % 7.P' + .dd + 7 then

Py a) 7.dd 4+ 7 and whether we consider the substitution {b/a} or {c/a} where c # b, the

derivatives are weakly late bisimilar. Nonetheless, Py %, P3 because if P; ﬂ P’ then Py

cannot match it. If Py A9 1 dd + 7 then (v2)(z-alz-b).dd % T.dd + 7; if P A Gd then
(v2)(z - alz - b).dd 3 dd; and finally if Py 22 0 then ((v2)(z - alz - b).dd){b/a} 3, 0 {b/a}.
Note that P, =; Py and P, =; P also since the only relevant substitution would be of the

sort 0 = {b/a} or o = {a/b} and these are not possible because a is bound in Py, P and
Ps. Since Py %, P3, we also have that P; %; Ps.

29
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Alternative notions of weak late bisimilarity that are equivalence relations were put
forth and we now present one of these (in e.g. [4]). Weak late congruence is defined as
before, resorting to the (new) definition of weak late bisimilarity.

Definition 3 Weak late bisimilarity
Let u=1xy-...-x, where k € N and P, ) € Ps.
A binary symmetric relation S is a weak late bisimulation if PSQ implies:

- if P25 P where a = uy,u(y) or 7 and bn(a) & fn(P,Q) then there is a Q' such
that Q = Q' and P'SQ’.

-if P u:(y; P’ where y & fn(P,Q) then there is a Q' such that Q u:(y; Q' and for each
w, P{w/y}tSQ{w/y}.
Two processes P and () are weakly late bisimilar if PSQ for some weak late bisimulation

S.

Weak late bisimilarity, written =, is the largest weak late bisimulation.
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