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Abstract

We address the issue of declassification in a language-based security approach. We introduce, in a
Core ML-like language with concurrent threads, a declassification mechanism that takes the form
of a local flow policy declaration. The computation in the scope of such a declaration is allowed to
implement information flow according to the local policy. This dynamic view of information flow
policies is supported by a concrete presentation of the security lattice, where the confidentiality
levels are sets of principals, similar to access control lists. To take into account declassification,
and more generally dynamic flow policies, we introduce a generalization of non-interference, that
we call the non-disclosure policy, and we design a type and effect system for our language that
enforces this policy.

1. Introduction

This paper addresses the issue of declassification in a language-based security approach. We are
therefore more generally concerned with the confidentiality aspect of security. It has often been
argued (see [11, 19, 31, 38] for instance) that the standard techniques used for access control are
not enough to fully protect confidential information. Ideally, one would like to have a way of
controlling how this information is used by subjects having the required clearance. Indeed, it
is useless to restrict access to confidential information if one does not have some guarantee that
the authorized subjects will not publicly disclose a significant part of this information. In other
words, one should be interested in how information flows in a computer system, especially when
the “subjects” are programs roaming over the web, that are not easily amenable to non-disclosure
agreement.

Since Bell and La Padula and Denning’s pioneering works [3, 11], the classical approach to secure
information flow is to use a lattice of security levels (see for instance the survey [40] for the use of
security lattices). The objects of a system are then labelled by security levels, and information is
allowed to flow from one object to another if the source object has a lower confidentiality level than
the target one. That is, the ordering relation on security levels determines the legal flows, and a
program is secure if, roughly speaking, it does not set up illegal flows from inputs to outputs. This
was first formally stated via a notion of strong dependency by Cohen in [9], and is also referred to
as non-interference according to the terminology used by Goguen and Meseguer in [16].

(*) Work partially supported by the CRISS project of the ACI Sécurité Informatique. The first author is supported
by the PhD scholarship POSI/SFRH/BD/7100/2001.
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A lot of work has been devoted to the design of methods for analyzing information flow in
programs (see for instance [2] for early references), even though this has not always been related to
a security property like non-interference by a soundness result. Some of these methods consist in
run-time checks, and have been criticized for various reasons, like for the fact that they generally
suffer from the “label creep problem” (see [38]). More importantly, the failure of a run-time
check can serve as a covert channel [11, 30]. As an alternative, static analysis methods have been
developed for information flow. One can highlight the use of type systems, which started with
the work of Volpano, Smith and Irvine [50]. Although they offer only approximate analysis, type
systems have well-known advantages, like in preventing some programming errors at an early stage.
Indeed, in the context of a security policy like the one provided by a flow lattice of security levels,
it is an error not to comply with the policy, and a type safety result should in this case establish
that well-typed programs are secure. Type systems for secure information flow have been designed
for various languages (see e.g. [6, 10, 17, 33, 42, 43, 47, 50, 54], and further references in [38]),
culminating with Jif (or JFlow, see [29]) and Flow Caml [41] as regards the size of the language.
In this paper we shall base our study on Core ML [28, 51], a call-by-value λ-calculus extended with
imperative constructs that we enrich with concurrent threads.

The classical non-interference property has been a matter of debate from various points of
view (see [36]). A fundamental observation, which was made very early (e.g. in [18]), is that non-
interference rules out, by its very definition, programs that deliberately declassify information from
a confidential level to a more public one. These programs are quite common and very useful,
making it hard to use non-inteference in practice. A standard example is a password checking
procedure, which delivers to any user the result of comparing a submitted password with secret
information contained in a database, thus leaking a bit of confidential information. Another one
is encryption, where secret information is encoded into a ciphertext that can be read by anyone.
Besides these classical security issues, some new circumstances where downgrading information is
required arise in the context of networked systems. A typical example is the one of a service selling
electronic information, like articles in a journal for instance. The contents of an article have to be
kept secret from the client of such a service until he has paid for it, or has identified himself as a
subscriber. Then the designer of the electronic purchase service has to provide a procedure that
dynamically declassifies information, depending on informations provided by the client. To support
this kind of programming, it would be useful for the programmer to have means to check that his
code implements only the intended information flows. Our goal here is to provide the programmer
with such a support.

The incompatibility of information flow security (in its current setting) with declassification is
a challenging problem that has motivated a lot of work. We will comment on this later. This paper
intends to contribute to its solution by proposing a turn on how the problem is set. Our view is
that there are two different issues to be considered:

1. How may we justify that a program is allowed to declassify information, i.e. that it is
not actually revealing “too much”?

2. How may we accept such programs in a language-based security setting, while still pre-
serving some secure information flow property?

To illustrate this distinction, let us imagine for a while a password checking procedure that returns
the root password, instead of a “yes/no” answer. Although the first is most probably wrong,
the two programs are no different from the point of view of information flow: they both disclose
information from the security level of the secret password database. One should therefore be able to
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reject the first by a semantical program analysis, while the second should be accepted in a language
supporting downgrading facilities.

There is clearly a quantitative aspect to the first question. Indeed, some researchers who have
studied it have proposed to quantify the amount of information that a program may leak, or to
use complexity-theoretic or probabilistic arguments to establish that it is not feasible to exploit
the allowed information leakage (see [7, 12, 21, 22, 46, 49], to mention just a few recent papers).
Justifying declassification is a very interesting research problem which is by no means easy – in
fact, justifying practically sound encryption mechanisms is a whole research domain – and seems
to be beyond the reach of static analysis techniques. However, in our view, it is the programmer
who has responsibility for solving the first question, of what, or how much information he intends
to declassify in his program, whereas the (designer of the) programming language has to provide
an answer to the second question above. This is the language design issue that we address.

Given that deliberately downgrading programs are validated by the programmer, the program-
ming language should be as flexible as possible in expressing them. To this end, we introduce in
our core language a programming construct for directly manipulating flow relations, namely a flow
declaration construct (flow F in M) where F is a flow policy, i.e. a binary relation on security
levels, and M is any expression of the language. The meaning is that M is executed in the context
of the current flow policy extended with F , and after termination the current policy is restored,
that is, the scope of F is M . For instance, if we have security levels A(lice) and B(ob), then –
using the ML notation !x for dereferencing, and xA, yB for memory locations with confidentiality
level A and B – a program like:

(flow A ≺ B in yB
.. !xA) (1)

is legal, since in the context of the relation A ≺ B, information is allowed to flow from A to B.
With respect to the current flow policy, this is a declassification operation – unless, obviously, the
current policy already says that information may flow from A to B. Moreover, this expression
appears to read at the confidentiality level B for the rest of the program. Then the expression
yB

.. (flow A ≺ B in !xA) is also legal, and has the same meaning as the previous one. It should
be clear, on the other hand, that a statement like yB

.. (flow C ≺ B in !xA) is not legal, unless
the current policy allows information to flow from level A to C (or B). Another example is

(flow A ≺ B in M) ; (flow B ≺ C in N)

that shows a way to achieve a kind of non-transitive flow relation (see [4, 34, 35]).
A similar construct for introducing flow policies exists in Flow Caml, but with an important

difference: there it adds the flow relation F to the global security policy, whereas in our case the
declaration is local. Such a construct has been mentioned in [44] under the name of “delegation”, but
it was not formally studied there. The operation declassify(M, `), that is used in some languages (see
[29, 39] for instance) to downgrade the value of M to the confidentiality level `, may be represented
as (flow H ≺ ` in M), where H is a security level that is higher (w.r.t. the current flow policy) than
any other one. This interpretation of the declassification operation as a local operator on the flow
policies seems to have never been pointed out. Furthermore, the flow declaration construct allows
us to express more precise ways of declassifying, by specifying the levels from which information
may flow.

We should point out here that, contrarily to most studies concerning security for functional
languages (with the exception of [10]), we do not regard values as having a security level – there is
no “secret 0” or “public 100” for instance. Our standpoint is that confidentiality levels are associated
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with the objects in which information is stored (or the channels on which it is communicated), like
files, libraries, databases or references in the case of ML, and that what is to be controlled is the
access to the object (typically read or write). This is consistent with most studies dealing with
imperative languages, and has the pleasant consequence that the security type system is just a
standard type and effect system [26], with flow constraints, where the security levels play the role of
regions (as noted in [10]). In the construct (flow F in M), only the effects of M , and the resulting
confidentiality level of the expression are concerned with the flow relation F ; the final value of M ,
which has no confidentiality status, is not.

Once declassification is permitted in the language, a question is: what kind of security property
do we have that takes declassification into account? And what means could we have to ensure that
programs have this property? Not surprisingly, here the answer to this second question will be: a
type and effect system. To answer the first one, we must find an alternative to non-interference. In
the language-based security approach, and more specifically in concurrent settings, this property is
often based on the small-step semantics, where one specifies transitions (P, µ) → (P ′, µ′) between
successive states of the program and the memory. This is well suited for our approach, where
declassification is based on a dynamically evolving structure of the lattice of confidentiality levels.
Indeed, the scope of a local flow policy is only a portion of the computation, and this has to be
reflected in the semantics in order to state a security property. The way we do this is by decorating
each transition with a label, recording the flow policy in the scope of which this particular step is
performed:

(P, µ) −→
F

(P ′, µ′) (2)

The intuition is that, as regards information flow, the memory µ should be considered from the
point of view of the current flow policy extended with F . That is, if F says that information is
allowed to flow from level ` to level `′, what is read at level ` at this step may be regarded as having
level `′. Then our new confidentiality property, which is a generalization of non-interference that
we call the non-disclosure policy, roughly says that a program P is secure if at each (small) step
it satisfies non-interference with respect to the flow policy that holds for this step. More precisely,
given that P performs the transition (2) above under the memory µ, and given that ν is a memory
which only differs from µ regarding confidential information with respect to the current flow policy
extended with F , then there is a transition (P, ν) −→

F ′
(P ′′, ν ′) from P under memory ν such that ν ′

is again equal to µ′ as regards public information. Moreover, since we have to check this at every
possible step, we shall also require that the programs P ′ and P ′′ have similar behaviours, from the
confidentiality point of view. For instance, program (1) satisfies this property, since the reference
xA may be considered as having the level B under the flow relation A ≺ B.

The main technical contribution of this paper is a proof that the type and effect system we design
for our core language with declassification enforces the non-disclosure policy. We thus provide a
direct generalization of the standard result regarding type systems for information flow. We shall
start by introducing dynamic flow policies, which provide a way to deal with declassification that,
up to our knowledge, has never been formally explored before. This is supported by a specific notion
of security (pre-)lattice, which is also new. These will appear in the next section, where we present
the language and its operational semantics. Then, in Section 3, we introduce our generalization of
non-interference, namely the non-disclosure policy, that takes into account dynamic flow policies.
A sound type and effect system is given for the language in Section 4, featuring the notion of a
“termination effect” that allows us to deal with a strong notion of security, while still providing a
flexible type system. Section 5 is devoted to the proof of type soundness. We then briefly discuss
related work and conclude.
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2. The Language

2.1 Security (pre-)lattices

As we said in the Introduction, we will use dynamically evolving flow relations for dealing with
declassification. However, the security levels associated with references that appear in the expres-
sion M are the same as those in (flow F in M) – it is only the flow policy that changes. We are
then faced with the issue of maintaining a (varying) lattice structure over a given set of security
levels, since we shall use the meet and join operations in the type system, as usual. As a matter of
fact, a “pre-lattice” structure turns out to be more convenient for our purpose. We call pre-lattice
a pair (L,�) where � is a preorder on L, that is a reflexive and transitive (but not necessarily
anti-symmetric) relation, such that for any x, y ∈ L there exist a meet x f y and a join x g y for x
and y, satisfying

x f y � x x � x g y

x f y � y y � x g y

z � x & z � y ⇒ z � x f y x � z & y � z ⇒ x g y � z

Now we will define our security pre-lattices, where the set of security levels is fixed, and only the flow
relations may vary. We assume given a set P of principals, ranged over by p, q . . . A confidentiality
level is any set of principals, that is any subset ` of P. The intuition is that whenever ` is the
confidentiality label of an object, i.e. a reference, it represents a set of programs that are allowed to
get the value of the object, i.e. to read the reference. From this point of view, a reference labelled
P (also denoted ⊥) is a most public one – every program is allowed to read it –, whereas the label
∅ (also denoted >) indicates a secret reference, so secret that no one is allowed to read it. We
can interpret the reverse inclusion of security levels as indicating allowed flows of information: if a
reference x is labelled `, and ` ⊇ `′ then the value of x may be transferred to a reference y labelled
`′, since the programs allowed to read this value from y were already allowed to read it from x.

The dynamically varying information flow policies are determined by relations on principals.
This is slightly different from what we informally presented in the Introduction, where, for sim-
plicity, a flow relation was assumed to relate security levels. However, as we shall see, a relation
on principals induces a preorder on security levels. A flow policy is a binary relation over P. We
let F , G . . . range over such relations. A pair (p, q) ∈ F is to be understood as “information may
flow from principal p to principal q”, that is, more precisely, “everything that principal p is allowed
to read may also be read by principal q”. We must point out here that, since we are dealing with
confidentiality (and not integrity) a flow policy will only affect the reading capabilities of programs
(and not their writing capabilities). As a member of a flow policy, a pair (p, q) will most often be
written p ≺ q. We denote, as usual, by F ∗ the preorder generated by F (that is, the reflexive and
transitive closure of F ). Then we introduce the preorder on confidentiality levels determined by
the flow relation F :

` �F `′ ⇔def ∀q ∈ `′. ∃p ∈ `. p F ∗ q

which is denoted � (instead of ⊇) when F = ∅. We shall use without notice the fact that

G ⊆ F & ` �G `′ ⇒ ` �F `′

It is not difficult to see that the preorder �F induces a pre-lattice structure on the set of confiden-
tiality levels, where a meet is simply the union, and a join of ` and `′ is

{ q | ∃p ∈ `. ∃p′ ∈ `′. p F ∗ q & p′ F ∗ q }
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M, N . . . ∈ Expr .... W | (if M then N else N ′) | (MN) expressions

| M ; N | (ref`,θ N) | (!N) | (M .. N)
| (thread M) | (flow F in M)

W ∈W .... V | %xW pseudo-values

V ∈ Val .... x | u`,θ | λxM | tt | ff | () values

Figure 1: Syntax

This observation justifies the following definition.

Definition (Security Pre-Lattices) 2.1. A confidentiality level is any subset ` of the set P
of principals. Given a flow policy F ⊆ P × P, the confidentiality levels are pre-ordered by the
relation

` �F `′ ⇔def ∀q ∈ `′. ∃p ∈ `. p F ∗ q

The meet and join, w.r.t. F , of two security levels ` and `′ are respectively given by ` ∪ `′ and

` gF `′ = { q | ∃p ∈ `. ∃p′ ∈ `′. p F ∗ q & p′ F ∗ q }

2.2 Syntax and operational semantics

The language is a call-by-value λ-calculus extended with the imperative constructs of ML, con-
ditional branching and boolean values. We also introduce the possibility of dynamically creating
concurrent threads, and of declassifying computations. Clearly, the latter is the main novelty, and
one could probably deal with other programming paradigms in a similar way, by adding local flow
declarations. The syntax is given in Figure 1, where x is any variable, F is any flow policy that is
most often written as a list p1 ≺ q1, . . . , pn ≺ qn of pairs of principals, and u`,θ is a triple made of a
memory address u – or location, or reference –, a type θ (see Section 4 below) and a label ` which is
a confidentiality level. The label `, most often written p1, . . . , pn instead of {p1, . . . , pn}, is similar
to an access control list. We use locations explicitly decorated with types and confidentiality labels
for the purpose of the proof of type soundness. However, as we shall see, these annotations do
not have any role in the operational semantics, and therefore they do not have to appear in an
implementation (although in a mobile code setting, one would like to keep these annotations in
order to perform security checks when loading a piece of code). We denote by loc(M) the set of
decorated locations occurring in M . These addresses are regarded as providing the inputs of the
expression M .

For typing reasons, we do not regard sequential composition as a derived construct, and we do
not regard the imperative constructs ref, ! and .. as first-class functions. Indeed, the typing of
(ref`,θ N) will generally be different from the typing of (λx(ref`,θ x)N) for instance. Applying the
construct ref`,θ to a value V creates a new reference with initial value V . Here, as we shall see,
the value is assumed to be of type θ, and the confidentiality level ` will be assigned to the created
reference. While the type θ could probably be inferred, as in ML, it seems natural for security
purposes to explicitly assign a confidentiality level to the created reference. In a pure type and
effect inference approach, with an unlabelled ref function, we would only get constraints that this
level should satisfy. The construct %xW , which is a binder for the variable x in W , provides a way
to deal with recursive values. As a matter of fact, given that the set of values is quite limited in
our core language, the only interesting case is that of recursive functions, i.e. %fλxM , which could
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((if tt then M else N), µ) −→
∅

(M,µ)

((if ff then M else N), µ) −→
∅

(N,µ)

((λxMV ), µ) −→
∅

({x 7→V }M,µ)

(V ; N,µ) −→
∅

(N,µ)

((ref`,θ V ), µ) −→
∅

(u`,θ, µ ∪ {u`,θ 7→V }) u fresh for µ

((!u`,θ), µ) −→
∅

(V, µ) µ(u`,θ) = V

((u`,θ
.. V ), µ) −→

∅
((), µ[u`,θ

.. V ])

(%xW, µ) −→
∅

({x 7→%xW}W,µ)

((flow F in V ), µ) −→
∅

(V, µ)

(M,µ) −→
F

(M ′, µ′)

(E[M ], µ) −−−−→
F∪dEe

(E[M ′], µ′) (E[(threadM)], µ) −→
∅

((E[()] ‖ (flow dEe in M)), µ)

(P, µ) −→
F

(P ′, µ′)

((P ‖ Q), µ) −→
F

((P ′ ‖ Q), µ′)

(P, µ) −→
F

(P ′, µ′)

((Q ‖ P ), µ) −→
F

((Q ‖ P ′), µ′)

Figure 2: Operational Semantics

be denoted (let rec f = λxM in f) in an ML-like notation. We denote by loop the expression %xx,
and we may use the following standard abbreviation:

(while M do N) =def (%yλx(if M then N ; (yx) else x)())

We let fv(M) be the set of variables occurring free in M , and we denote by {x 7→W}M the capture-
avoiding susbtitution of W for the free occurrences of x in M , where W ∈ W. The evaluation
relation is a transition relation between configurations of the form (P, µ) where P is a process,
written according to the following syntax:

P, Q . . . ∈ Proc .... M | (P ‖ Q)

and µ, the memory (or heap), is a mapping from a finite set dom(µ) of decorated references to
values. The operation of updating the value of a reference in the memory is denoted, as usual,
µ[u`,θ

.. V ]. We say that the name u is fresh for µ if v`,θ ∈ dom(µ) ⇒ v 6= u. To define the
operational semantics, we introduce evaluation contexts:

E .... | F[E] | (flow F in E)
F .... (if then M else N) | ( N) | (V )

| ; N | (ref`,θ ) | (! ) | ( .. N) | (V .. )

and we denote by dEe the flow policy enforced by the context E. This is defined as follows:

d e = ∅
dF[E]e = dEe

d(flow F in E)e = F ∪ dEe
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The labelled transition rules are given in Figure 2. As one can see, the transitions do not depend on
the types and labels of memory locations. Observe also that the flow label F of the transitions plays
no role in determining the resulting configuration. To evaluate (flow F in M), we simply evaluate
M , until termination (that is, when M is a value). Then (flow F in M) is operationally the same as
M , and the context (flow F in ) should disappear at compile time. We denote somewhat abusively
by → the relation given by

(P, µ) → (P ′, µ′) ⇔def ∃F. (P, µ) −→
F

(P ′, µ′)

and we let ∗→ denote the reflexive and transitive closure of the relation →. We shall actually
only consider transitions from well-formed configurations: a configuration (P, µ) is well-formed if
loc(P ) ⊆ dom(µ) and for any u`,θ ∈ dom(µ) we have loc(µ(u`,θ)) ⊆ dom(µ). It is easy to see that
well-formedness is preserved by transitions.

To conclude this section, we introduce another kind of transitions which will be useful for the
proof of type soundness. These transitions, denoted (M,µ) N−→

F
(M ′, µ′), should be read as follows:

the expression M , in the context of the memory µ, performs a step, assuming the local flow policy
F , and resulting in the new expression M ′ and memory µ′, while possibly spawning the expression
N as a new thread to execute (with N = () if M actually does not spawn any thread). This
formalizes the evaluation steps of an expression M as the “main thread”. Formally, this is defined
as −→

F
, with N = (), except for:

(E[(thread N)], µ)
(flow dEe in N)−−−−−−−−−−→

∅
(E[()], µ)

The following lemma relates these transitions with the ones that we have used to describe the
operational semantics:

Lemma 2.2.

(i) If (M,µ) N−→
F

(M ′, µ′) then either N = () and (M,µ) −→
F

(M ′, µ′) or (M,µ) −→
F

((M ′ ‖ N), µ′).

(ii) If (M,µ) −→
F

(P, µ′) then either P is an expression and (M,µ)
()−→
F

(P, µ′) or (M,µ) N−→
F

(M ′, µ′)

for some M ′ and N such that P = (M ′ ‖ N).

Next we show a simple but crucial property stating that, if the evaluation of an expression M differs
in the context of two distinct memories while not creating two distinct references, this is because
M is performing a dereferencing operation, which yields different results depending on the memory.
Apart from non-deterministically choosing new references, this is the only way for computations of
expressions to split.

Lemma 2.3. If (M,µ) N−→
F

(M ′, µ′) and (M,ν) N ′
−→
F ′

(M ′′, ν ′) with M ′ 6= M ′′ and dom(ν ′ − ν) =

dom(µ′−µ), then N = () = N ′ and there exist E and u`,θ such that F = dEe = F ′, M = E[(!u`,θ)],
and M ′ = E[µ(u`,θ)], M ′′ = E[ν(u`,θ)] with µ′ = µ and ν ′ = ν.

Proof: easy induction on the proof of the transition (M,µ) N−→
F

(M ′, µ′).
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3. The non-disclosure policy

In this section we introduce our security property. The definitions that follow could be formulated
in an abstract way, that is for any semantic framework consisting of a given labelled transition
system, where the transitions have, as above, the form

(P, µ) −→
F

(P ′, µ′)

However, we instantiate here the definitions with the notion of a process that we have introduced
in the previous section.

To state the security property, we use, as it is standard, a notion of memory equality relative
to a given confidentiality level: two memories µ and ν are equal up to level ` if they assign the
same value to every location with security level lower than ` (this is sometimes referred to as “low
equality” of memories). However, there is an implicit parameter in this notion, which is the flow
relation used to determine that a level is lower than `. Since the flow policy is not fixed in our
setting, we make it explicit in the notion of memory equality. Furthermore, we will compare two
memories only with respect to the references they share. The low equality of memories is thus
defined:

µ lF,` ν ⇔def ∀u`′,θ ∈ dom(µ) ∩ dom(ν). `′ �F ` ⇒ µ(u`′,θ) = ν(u`′,θ)

This relation is not transitive, but it is reflexive and symmetric. We shall use without notice the
fact that

G ⊆ F & µ lF,` ν ⇒ µ lG,` ν

Our security property is defined in terms of bisimulations (see [6, 14, 37, 42] for the use of bisimula-
tions in stating security properties, and [25] for a review of various other approaches). Bisimulations
are relations on states of transition systems, that relate two states whenever any transition of either
of these states can be “matched” by a transition of the other. Following [37], here we shall make use
of this notion in a slightly non-standard way, since we shall call “bisimulation” a relation between
processes P , rather than configurations (P, µ). Moreover, such a relation is parameterized upon a
flow policy G, which is the current flow relation.

Definition (Bisimulation) 3.1. A (G, `)-bisimulation is a symmetric relation R on processes
such that if

P RQ & (P, µ) −→
F

(P ′, µ′) & µ lF∪G,` ν & u`′,θ ∈ dom(µ′ − µ) ⇒ u is fresh for ν

then there exist Q′ and ν ′ such that

(Q, ν) ∗→ (Q′, ν ′) & P ′RQ′ & µ′ lG,` ν ′ & dom(ν ′ − ν) ⊆ dom(µ′ − µ)

It is implicit in this definition that the configurations (P, µ) and (Q, ν) are well-formed. This implies
in particular that loc(P ) ⊆ dom(µ) and loc(Q) ⊆ dom(ν). The definition says that the transition

(P, µ) −→
F

(P ′, µ′)

has to be matched by a transition from (Q, ν), whenever P RQ, and the memories µ and ν satisfy
some conditions. The first one, namely that µ lF∪G,` ν, can be interpreted as follows: since P is
performing a transition within the scope of the current flow policy G extended with the local flow
relation F , it is allowed to read references from the input memory according to the policy F ∪G.
That is, in the input memories µ and ν, “low” means less than ` with respect to F ∪ G. The
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condition “u`′,θ ∈ dom(µ′−µ) ⇒ u is fresh for ν” simply means that if P creates a new reference,
then we assume that the created name does not conflict with other names under consideration.
Indeed, this new name can always be chosen so that it satisfies this constraint. The conclusion
is that the state (Q, ν) should be able to evolve, possibly in several steps, into a configuration
(Q′, ν ′), satisfying the following constraints: first, P ′RQ′ means that no mismatch should occur
in future computations. Next, we require µ′ lG,` ν ′, thus considering the output µ′ of the step
(P, µ) −→

F
(P ′, µ′) from the point of view of the flow policy that is restored after it, that is G.

This means in particular that the local flow policy F does not affect the level of references from
the writing, or output point of view (recall that p ≺ q means that “everything that principal p is
allowed to read may also be read by principal q”). Finally dom(ν ′− ν) ⊆ dom(µ′− µ) ensures that
Q only creates a reference to match P ’s transition if P itself has created a reference, in which case
we require the new location names to be the same. Without this condition, an expression like

(refL(!uH)) (3)

would be secure. Indeed, one could argue that there is no information flow here, since we are
creating a reference that does not yet exist, but the point is that, if we run this program in the
context of two memories µ and ν such that µ(uH) 6= ν(uH), we would have to count on the non-
determinism of the semantics, as regards reference creation, to claim that such a program is secure.
We think it is better to rule out such a program, even though we are here assuming in a sense that
an “attacker” has the power of magically knowing the name of public references that are created –
this goes beyond the power of programs, since they do not have access to the syntax of references.
The reader may have also noticed that there is no condition on the flow policy of the matching
moves for Q. This is because we wish to consider all the pure programs, written without (!N) and
(M .. N), to be bisimilar.

As mentioned above, the notion of bisimulation we use is stronger than the standard one, since
if the transition (P, µ) −→

F
(P ′, µ′) is matched by (Q, ν) ∗→ (Q′, ν ′), we restart the bisimulation game

by comparing the processes P ′ and Q′, in the context of any new low equal memories, rather than
the configurations (P ′, µ′) and (Q′, ν ′). This allows us to restore a more restrictive flow relation
after a local flow relation has been used, as in

(flow H ≺ L in vL
.. !uH) ; wL

.. !u′H (4)

where the second assignment implements an illegal flow (denoting simply by H, L . . . a singleton
security level {H}, {L} . . . assigned to a reference). Defining bisimulations over processes, rather
than between configurations, also allows us to detect an illegal flow in the program

(if !wX then (if !wX then () else vL
.. !uH) else ()) (5)

This demanding definition for bisimulations seems also appropriate for dealing with a mobile code
scenario, where the shared memory of a system of threads can be modified by incoming code.

Remarks and Notation 3.2.

(i) For any G and ` there exists a (G, `)-bisimulation, like for instance the set Val ×Val of pairs of
values.

(ii) The union of a family of (G, `)-bisimulations is a (G, `)-bisimulation. Consequently, there is a
largest (G, `)-bisimulation, which we denote ◊G,`. This is the union of all such bisimulations.
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One should observe that ◊G,` is a partial equivalence relation. That is, this relation is not reflexive.
Indeed, a process which is not bisimilar to itself, like vL

.. !uH if H 6�G L, is not secure. As in
[37], our definition states that a program is secure if it is bisimilar to itself:

Definition (The Non-Disclosure Policy) 3.3. A process P satisfies the non-disclosure policy
(or is secure from the confidentiality point of view) with respect to the flow policy G if it satisfies
P ◊G,` P for any `. We then write P ∈ND(G).

It is easily seen that the set ND(G) is non-empty. For instance, any value is secure. An important
property of our notion of security is that if an expression M does not violate the current flow policy
G extended with a local policy F , then the expression (flow F in M) is secure with respect to the
current flow relation:

Proposition 3.4.

M ∈ND(F ∪G) ⇒ (flow F in M) ∈ND(G)

Proof: it is easy to see that if R is a (F ∪G, `)-bisimulation, then the relation

{ ((flow F in M), (flow F in N)) | M RN }
∪ { (V, (flow F in N)) | V RN & V ∈ Val }
∪ { ((flow F in M), V ) | M RV & V ∈ Val }

is a (G, `)-bisimulation.

Then for instance a program like the one of example (1) is secure. Another property is that security
is compatible with parallel composition:

Proposition (Compositionality) 3.5.

P ∈ND(G) & Q ∈ND(G) ⇒ (P ‖ Q) ∈ND(G)

Proof: it is easy to see that if R is a (G, `)-bisimulation, then the relation

{ ((P ‖ Q), (P ′ ‖ Q′)) | P RP ′ & QRQ′ }

is a (G, `)-bisimulation.

Our non-disclosure policy generalizes the usual non-interference property for sequential programs
(without declassification). To see this point, let us first recall that the latter is based on the “big-
step” semantics of programs, that is on the relation (P, µ) ⇒ µ′ that a program P establishes from
an initial state of the memory µ to the final state µ′. Namely, P is non-interfering if (P, µ) ⇒ µ′

and (P, ν) ⇒ ν ′, for µ and ν that differ only regarding confidential information, implies that also
µ′ and ν ′ are equal as regards public information, that is:

(P, µ) ⇒ µ′ & (P, ν) ⇒ ν ′ & µ lG,` ν ⇒ µ′ lG,` ν ′

Let us denote for a while by DExpr the set of expressions written without using thread, flow and
ref, and let us show that the expressions in DExpr satisfying the non-disclosure policy with respect
to a given flow policy G are non-interfering. The big-step semantics for expressions in DExpr can
be defined as follows:

(M,µ) ⇒ µ′ ⇔def ∃V ∈ Val . (M,µ) ∗−→ (V, µ′)
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It is easy to see that the evaluation mechanism is deterministic for M∈DExpr , and that if (M,µ) ⇒
µ′ then dom(µ′) = dom(µ). Now assume that M ∈DExpr ∩ND(G), (M,µ) ∗−→ (V, µ′) and (M,ν) ∗−→
(V ′, ν ′) with µ lG,` ν. Then there exist M ′ and ν ′′ such that (M,ν) ∗−→ (M ′, ν ′′), V ◊G,` M ′ and
µ′ lG,` ν ′′. Since M is deterministic, we have (M ′, ν ′′) ∗−→ (V ′, ν ′), and from (V, µ′) there must be a
sequence of transitions matching the move from (M ′, ν ′′) to (V ′, ν ′). This sequence must be empty,
and we then have µ′ lG,` ν ′.

We can use the standard bisimulation technique to show that a process P is secure. Namely, for
any ` we exhibit a symmetric relation R that contains the pair (P, P ) and is a (G, `)-bisimulation.
To prove that a process is not secure may be more difficult. We may, in the case where P is actually
an expression of DExpr , show that P does not satisfy the non-interference property. This applies
to some of the examples given below. However, we cannot use this argument for expressions that
spawn threads or use the declassification facility. We shall come back to this point at the end of
Section 5, where we further discuss the non-disclosure policy and non-interference.

Now let us see some examples. We assume given two principals H and L, and a current flow
relation G consisting of the pair L ≺ H. We shall denote references with security levels {H} or {L}
simply by uH or vL (leaving out the type), as usual. Since, as we have just seen, the non-disclosure
policy implies the standard non-interference property for expressions of DExpr , it is obvious that
the standard examples of explicit (or direct) and implicit (or indirect) flow, namely:

vL
.. !uH (6)

(if !uH then vL
.. tt else vL

.. ff ) (7)

do not satisfy the non-disclosure policy, whereas these programs are secure in the context of the
flow declaration (flow H ≺ L in ). Since we follow a bisimulation approach to security, we also
reject termination leaks, like for instance

(if !uH then () else loop) ; vL
.. tt (8)

where writing at level L depends on reading at level H (we refer to [2, 6, 17, 38, 42, 47] for
discussions about this kind of leaks). Another example of a termination leak is

((!uH)()) ; vL
.. tt (9)

Indeed, the value of the reference u could be λyλxx or λy loop. Similarly, there is a termination
leak in

(λx(x())(!uH)) ; vL
.. tt (10)

since the value of the reference u might be λyy or λy loop. We shall put a constraint on sequential
composition in the type system to rule out such programs. However, this constraint will not be as
strict as “no low write after a high read”, because we would like to accept for instance the following
(secure) program:

(wH
.. !uH) ; (vL

.. tt) (11)

Regarding the flow declaration construct, we notice for instance that the program

vL
.. (flow H ≺ L in !uH) (12)

which is essentially the same as example (1), is secure, as well as

(if !uH then wH
.. tt else ())
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whereas
(if !uH then (flow H ≺ L in vL

.. tt) else ()) (13)

is not. The reason is that the flow declaration H ≺ L is a way of giving (temporarily) the same
reading capabilities to the principals H and L, whereas it does not affect the writing capabilities
of a program. A type system for information flow has to take this into account.

We conclude this section with some technical properties that will be used in the type soundness
proof. We begin with an operational property relative to the low equality of memories. Namely,
we show that any expression has, in the context of low equal memories, similar transitions:

Lemma 3.6. If (M,µ) N−→
F

(M ′, µ′) and µ lG,` ν such that u`′,θ ∈ dom(µ′ − µ) implies that u

is fresh for ν, then there exist M ′′ and ν ′ such that (M,ν) N−→
F

(M ′′, ν ′) with µ′ lG,` ν ′ and

dom(ν ′ − ν) = dom(µ′ − µ).

Proof: by induction on the proof of the transition (M,µ) N−→
F

(M ′, µ′). In most cases, this

transition does not depend on (and does not modify) the memory µ, and we may let M ′′ = M ′

and ν ′ = ν. If M creates a reference, that is M = E[(ref`′,θ V )], then M ′ = E[u`′,θ], F = dEe
and µ′ = µ ∪ {u`′,θ 7→V }. Since u is fresh for ν, we have (M,ν) N−→

F
(M ′, ν ∪ {u`′,θ 7→V }). If

M = E[(!u`′,θ)] then M ′ = E[µ(u`′,θ)], F = dEe and µ′ = µ. Since the configurations we consider

are assumed to be well-formed, we have (M,ν) N−→
F

(E[ν(u`′,θ)], ν). If M = E[(u`′,θ
.. V )] then

M ′ = E[()], F = dEe and µ′ = µ[u`′,θ
.. V ]. In this case (M,ν) N−→

F
(M ′, ν[u`′,θ

.. V ]). All the other

cases are immediate.

Now we define “operationally high” processes, those that do not modify the low part of the memory:

Definition (Operationally High Processes) 3.7. A set H of processes is said to be a set of
operationally (G, `)-high processes if the following holds for any P ∈H:

(P, µ) → (P ′, µ′) ⇒ µ′ lG,` µ & P ′ ∈H

One may wonder why we do not simply define a high process as one that satisfies

(P, µ) ∗→ (P ′, µ′) ⇒ µ′ lG,` µ

This is because the expression of Example (5) for instance would be high, and Lemma 3.8 below
would therefore not hold. One should remark that there are sets satisfying Definition 3.7. For
instance, any value is a high process. Moreover, the union of a family of such H’s is a set of (G, `)-
high processes, and so there exists the largest such set, which we denote by HG,`, and call the set
of operationally (G, `)-high processes. Notice that

G ⊆ F ⇒ HF,` ⊆ HG,`

and that a process which is >-high never modifies the memory (which does not mean that it
performs no writes).

Lemma and Notation 3.8. If H is a set of (G, `)-high processes, then the relation H ×H is a
(G, `)-bisimulation. We denote by fG,` the (G, `)-bisimulation HG,` ×HG,`.
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Proof: let P,Q ∈H and (P, µ) −→
F

(P ′, µ′) with µ lF∪G,` ν, such that u`′,θ ∈ dom(µ′ − µ) implies

that u is fresh for ν. Then we have µ′ lG,` µ and P ′ ∈ H, and therefore also µ′ lG,` ν since
dom(µ′−µ)∩ dom(ν) = ∅. Therefore the transition (Q, ν) ∗→ (Q, ν) matches (P, µ) −→

F
(P ′, µ′).

The following is easy to see:

Lemma 3.9. M,N0, N1 ∈HG,` ⇒ (if M then N0 else N1) ∈HG,`

4. The type and effect system

The types we use in the type and effect system are quite standard. Namely, a reference type θ ref`
records the type θ of values the reference contains, as well as the “region” ` where it is created.
Here this is the confidentiality level of the reference, indicating who is allowed to read it. A function
type records the latent effect [26] of a function of that type, which is the effect the function may
have when applied to an argument. It also records the “latent flow relation”, which is assumed to
hold when the function is applied to an argument. The syntax of types is

τ, σ, θ . . . .... t | bool | unit | θ ref` | (τ s−→
F

σ)

where t is any type variable and s is any “security effect” – see below. The judgements of the type
and effect system have the form

G; Γ ` M : s, τ

where G is a flow relation, Γ is a typing context, assigning types to variables, s is a security effect,
that is a triple (`0, `1, `2) of confidentiality levels, and τ is a type. The intuition is:

• G is the current flow policy that is in force when evaluating M ;
• `0, also denoted by s.r, is the reading effect, that is an upper bound (up to the current flow

relation) of the security levels of the references the expression M may read. This may be
regarded as the security level, or more precisely the confidentiality level of the expression M ;

• `1, also denoted s.w, is the writing effect, that is a lower bound (w.r.t. the relation �) of the
level of references that the expression M may update;

• `2, also denoted s.t, is an upper bound (w.r.t. the current flow relation) of some of the levels
of dereferencing the expression M may perform. This is used to avoid termination leaks,
and therefore we call this the termination effect – although the intention is not to guarantee
termination.

With respect to the various type systems for information flow, the main novelty here is the G
parameter in the typing context, which is used to relax the constraints on how information may
flow in a piece of code to type (such a flow relation in the typing context also appears, under the
name of a “hierarchy”, in [44]). The termination effect is similar to the “guard level” of [6] and to the
“running time level” of [42]. According to the intuition above, in the type system the reading and
termination levels will be composed in a covariant way, whereas the writing level is contravariant,
and not concerned with the flow relations between principals. Then we abusively denote by ⊥ and
> the triples (⊥,>,⊥) and (>,⊥,>) respectively. In the typing rules for compound expressions,
we will use the join operation on security effects:

s gG s′ =def (s.r gG s′.r, s.w ∪ s′.w, s.t gG s′.t)

as well as the following convention:
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G; Γ ` u`,θ : ⊥, θ ref`
(Loc)

G; Γ, x : τ ` x : ⊥, τ
(Var)

F ; Γ, x : τ ` M : s, σ

G; Γ ` λxM : ⊥, (τ s−→
F

σ)
(Abs)

G; Γ ` () : ⊥, unit
(Nil)

G; Γ ` tt : ⊥, bool
(BoolT)

G; Γ ` ff : ⊥, bool
(BoolF)

G; Γ ` M : s, bool G; Γ ` Ni : si, τ s.r �G s0.w ∪ s1.w

G; Γ ` (if M then N0 else N1) : s g s0 g s1 g (⊥,>, s.r), τ
(Cond)

G; Γ ` M : s, τ
s′
−→
F

σ G; Γ ` N : s′′, τ s.t �G s′′.w s.r g s′′.r �G s′.w

F,G; Γ ` (MN) : s g s′ g s′′ g (⊥,>, s.r g s′′.r), σ
(App)

G; Γ ` M : s, τ G; Γ ` N : s′, σ s.t �G s′.w

G; Γ ` M ; N : s g s′, σ
(Seq)

G; Γ ` M : s, θ s.r �G `

G; Γ ` (ref`,θ M) : s, θ ref`
(Ref)

G; Γ ` M : s, θ ref`

G; Γ ` (!M) : s g (`,>,⊥), θ
(Deref)

G; Γ ` M : s, θ ref` G; Γ ` N : s′, θ s.t �G s′.w, s.r g s′.r �G `

G; Γ ` (M .. N) : s g s′ g (⊥, `,⊥), unit
(Assign)

G; Γ ` M : s, unit

G; Γ ` (thread M) : (⊥, s.w,⊥), unit
(Thread)

G; Γ, x : τ ` W : s, τ

G; Γ ` %xW : s, τ
(Rec)

F,G; Γ ` M : s, τ s.r �G∪F r s.t �G∪F t �G r

G; Γ ` (flow F in M) : (r, s.w, t), τ
(Flow)

Figure 3: The Type and Effect System

Convention. In the type system, when the security effects occurring in the context of a judge-
ment G; Γ ` M : s, τ involve the join operation g, it is assumed that the join is taken w.r.t. G, i.e.
it is gG.

The typing system is given in Figure 3. Notice that this system is syntax-directed: there is exactly
one rule per construction of the language. Let us comment on some of the rules, justifying the
side conditions that constrain the typing of an expression, as well as the resulting effect of the
expression. We see that the reading and writing effects are respectively introduced by the con-
structions for dereferencing and updating the memory – rules (Deref) and (Assign). We notice
that an expression (thread M) has no termination effect, since its evaluation terminates in one step.
Indeed, the non-termination of M as a thread cannot influence the computations in the thread
that spawned it. The constraints on information flow are implemented in the rules (Cond), (App),
(Seq) and (Assign). In the former, the constraint s.r �G s0.w ∪ s1.w means that the branches N0

and N1 may only write at a level which is greater, with respect to the current flow relation G, than
the reading level of the predicate. This is to prevent indirect flows, like in example (7). A slightly
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more subtle example is
(if !uH then (thread vL

.. tt) else ())

which also shows why we record the writing level of the body M of the thread in the effect of
(thread M). In the conclusion of (Cond), we record the reading level of the predicate as the
termination level of the whole expression. This, combined with the condition s.t �G s′.w in the
(Seq) rule, is to prevent termination leaks as in example (8). This example is essentially the same
as

((if !uH then λxx else loop)(vL
.. tt))

which is ruled out by the condition s.t �G s′′.w in the (App) rule. In this rule, the condition
s′′.r �G s′.w is to prevent a direct flow, like in

(λx(vL
.. x)(!uH))

The condition s.r �G s′.w is meant to exclude expressions that read a secret function that writes
in a public location, and unravel this effect by applying it. For instance, it rules out an expression

like ((!u`,θ)()) where θ = unit
(⊥,`′,⊥)−−−−−→ unit and ` is not lower than `′. Indeed, the value of the

reference u might be λz(v`′,θ′ .. V ), with different values for V in different memories (see [52] for
a similar example). Examples (9) and (10) respectively show why the reading levels of both the
function and the argument are recorded in the termination level of the application. We can use
the typing rules for abstraction and application to derive the typing of the let construct, that is
(let x = N in M) = (λxMN), namely:

G; Γ ` N : s, τ G; Γ, x : τ ` M : s′, σ s.r �G s′.w

G; Γ ` (let x = N in M) : s g s′ g (⊥,>, s.r), σ

The reader may also check that the typing of M ; N is slightly more liberal than the one of
(let z = M in N), where z 6∈ fv(N) – and similarly for (ref`,θ M), (!M) and (M .. N) with
respect to (λx(ref`,θ x)M), (λx(!x)M) and ((λxλy(x .. y)M)N) –, since we do not have to record
the reading effect of the component M in the termination effect of M ; N . For instance neither
(let x = (wH

.. !uH) in (vL
.. tt)) nor (λx(wH

.. x)(!uH)) ; (vL
.. tt) can be typed, whereas the

expression of example (11) is accepted. This explains our syntax for the imperative part of the
language.

The condition s.r �G ` in the typing rule (Ref) is meant to rule out for instance the expression
of example (3). The condition s′.r �G ` in the rule (Assign) is to prevent a direct flow, like in
example (6). With the condition s.r �G ` we rule out the expression (!uH) .. tt . Indeed, the
value of the reference u might be different locations with level L in different memories. Finally the
condition s.t �G s′.w is to prevent termination leaks, as in

(if !uH then wH else loop) .. (vL
.. tt)

These examples show that all the constraints put on information flow in the typing rules for condi-
tional branching, application, sequential composition, reference creation and assignment are in fact
necessary. The completeness of this informal analysis will be established by the type soundness
result. Regarding recursion, the reader can check for instance that a derived typing for the while
construct is

G; Γ ` M : s, bool G; Γ ` N : s′, τ s.r g s′.t �G s.w g s′.w

G; Γ ` (while M do N) : s g s′ g (⊥,>, s.r), unit
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As in [6, 42], we record the confidentiality level of the boolean guard expression in the termination
level of the while construct.

To type a flow declaration (flow F in M), we have to type M in the context of the current flow
policy extended with F . In the (Flow) rule, we use a kind of subsumption for the security effect.
Namely, the apparent reading and termination effects of the expression (flow F in M) are allowed
to be higher, with respect to F , than the ones of M . For instance, one can check that the following
is a valid proof of typing (leaving out the type annotation of references):

H ≺ L,L ≺ H; Γ ` uH : ⊥, τ

H ≺ L,L ≺ H; Γ ` (!uH) : (H,>,⊥), τ

L ≺ H; Γ ` (flow H ≺ L in (!uH)) : (L,>,⊥), τ
H ≺ L

and therefore one can see that the type system accepts the expression of example (12). Similarly,
if, for ` = {p1, . . . , pn} we let, as suggested in the Introduction:

declassify(M, `) =def (flow H ≺ p1, . . . ,H ≺ pn in M)

where H is a security level that is higher (w.r.t. the current flow policy) than any other one, then
we have

G; Γ ` M : s, τ

G; Γ ` declassify(M, `) : (`, s.w, `), τ

Another example is
vL

.. (flow H ≺ L in encrypt(!uH ,K))

where encrypt is a given encryption function, and K is the encryption key. Subsumption in the
(Flow) rule will be used in the proof of the Subject Reduction property (1). However, one should
notice that in the typing rule for flow declaration we do not allow subsumption for the writing level.
Example (13) shows why it would be wrong to do so.

The way we build the termination effect of an expression allows us to accept the expression of
example (11). This would not be the case if we had approximated s.t as s.r by dealing with security
effects of the form (r, w). The classical approach to “weak” non-interference, based on a big-step
semantics, actually corresponds to a variant of our type system where s.t = ⊥, but obviously this
is too weak to ensure the non-disclosure policy. We could think of further refining our type system
by building the termination level in a more clever way, since clearly secure programs such as

(if !uH then vH
.. tt else vH

.. ff ) ; wL
.. tt

are still rejected by our type system. For instance, we would like to say that the termination level
of (if !uH then M else N) may be taken as ⊥ if we know that both M and N terminate. However,
little is known on how to ensure termination in a higher-order imperative language. Indeed, it is
well-known since Landin’s work [20] that circular higher-order references introduce non-termination,
like for instance in (using ref without subscripts)

(let x = (ref λyy) in x .. λy((!x)y) ; ((!x)V ))

which has the type of V . Nevertheless, if we know for a fact that both M and N do not cause any
trouble (see [1, 37, 48] for some ways of ensuring this in a simple language), we may compensate

(1) The proof we have for our Soundness Theorem uses all the features of the type system.
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for the inflexibility of the type system as regards (if !uH then M else N) for instance by writing
instead:

(flow H ≺ ⊥ in (if !uH then M else N))

Our type system rejects in the same way expressions that are regarded as involving a timing leak
(see [18, 38, 43]), like

(if !uH then M else ()) ; vL
.. ff (14)

where M is an expression that takes some time to compute, like () ; · · · ; (), although program (14)
is generally secure in the sense of Definition 3.3. We notice that the notion of a timing leak does
not make much sense at the abstract level at which we describe the operational semantics. This
kind of leaks should rather be tracked down when dealing with the code produced by an optimizing
compiler for instance. Nevertheless, a program such as (14) could be regarded as unsecure if some
specific scheduling discipline were to be taken into account (cf. [6, 37, 43]). We leave for further
investigations the question as to whether our type system is also adequate to deal with scheduling
disciplines (we plan to do this for the cooperative concurrency of ULM [5]), but we observe that
it does not restrict the confidentiality level of the predicate in a conditional branching to be ⊥, as
suggested in [43, 47]. In this respect, our system is close to the ones of [6, 42].

As a last example, let us examine a program showing that the flow policy under which the value
of a reference will be put cannot be predicted statically. Let M be the following expression:

let f = λxλy if x then (flow p ≺ q in vq,θ
.. ! y)

else (flow p ≺ r in wr,θ
.. ! y)

in ((fN)up,θ)

Then one can see that the following typing is admissible:

G; Γ ` N : s, bool s.r �G {q, r}

G; Γ ` M : s g (p, {q, r}, s.r), unit

As we explained above, the constraint s.r �G {q, r} is to prevent termination leaks, since the
evaluation of N could terminate or not, depending on the values read in the memory. One should
notice that there is no constraint relating p, the confidentiality level of the reference u, with q or
r. This means that the value of this reference can be downgraded to either level q or r, depending
on the value computed for the boolean N .

It is not obvious to compare our type system with other proposals for similar languages, e.g.
[17, 33, 54], since most of them attach security levels to values (this is obviously the case when
imperative features are not considered), whereas here all the pure expressions, written without
(!N) and (M .. N), are secure. Closer to ours is the type system of [10], which follows a “store-
oriented” view of confidentiality. However, the security effects in [10] are – using our notations –
assumed to satisfy s.r � s.w. Here we do not reject expressions that write below their read level,
like the one of Example (11) for instance. As far as we can see, the latter is accepted in the system
of [10] using the “informativeness” predicate, which has no counterpart here. Another difference is
that [10] only deals with “weak” non-interference, and does not consider termination leaks. These
have sometimes been ruled out using very severe restrictions, like allowing only predicates of the
lowest confidentiality level in the while loops – which here would mean restricting in the same
way the conditional branchings –, see [43, 47] for instance. Regarding termination leaks, we have
followed the approach of [6, 42], using the “termination effect”. As a matter of fact, our type
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system appears to be a quite direct generalization of the one of [6], and, more generally, of type
systems for imperative languages, like the one originally proposed in [50]. In that paper, and many
others that followed, an expression has no side effect: it can read from the store, but does not
create or update references. Moreover, its evaluation is assumed to terminate and produce a value
(not an exception) in the context of any memory. Then the security effect of such an expression is
reduced to its reading level – in our setting, it would have security effect (r,>,⊥). On the other
hand, the programs, or “commands” in [50] only read the store when evaluating an expression, and
therefore it is enough to record their writing level (and their termination level, if termination leaks
are considered). It is then easy to see that, if we restrict our attention to the simple imperative
fragment, given by the syntax

S, T . . . .... () | (x .. E) | S ; T | (if E then S else T ) | (while E do S)

where E is any pure expression, having a security effect of the form (r,>,⊥), and if we forget about
the reading effect of these programs (which is not involved in any flow constraint), then the type
system we get is almost exactly the one of [6]. A rather cosmetic difference with type systems for
imperative languages is that they often use subtyping, where we have used flow constraints which,
to our view, clearly show the points where a possible flow of information may occur. A well-known
technical advantage of having a syntax-directed type system is that it simplifies the proofs a little.

We now establish some properties of typed expressions, and in particular a Subject Reduction
result. We start by remarking that a value, and more generally a pseudo-value, has no effect, and
that this is properly reflected in the type system. Moreover, the typing of a pseudo-value does not
depend on the flow policy:

Remark 4.1. ∀W ∈W. G; Γ ` W : s, τ ⇒ s = ⊥ & ∀F. F ; Γ ` W : ⊥, τ .

It should be clear that the termination effect of a typable expression is always bounded by its
reading effect:

Remark 4.2. G; Γ ` M : s, τ ⇒ s.t �G s.r.

To prove Subject Reduction we shall follow the usual steps [51], thus omitting the details of the
proofs. We need, in particular, some standard weakening and strengthening properties:

Lemma 4.3.

(i) If G; Γ ` M : s, τ and x 6∈ dom(Γ) then G; Γ, x : σ ` M : s, τ .

(ii) If G; Γ, x : σ ` M : s, τ and x 6∈ fv(M) then G; Γ ` M : s, τ .

(iii) If G; Γ ` M : s, τ then F,G; Γ ` M : s′, τ for some s′ such that s′.r �F∪G s.r, s′.w = s.w and
s′.t �F∪G s.t.

Proof: by induction on the inference of the judgements, and by case on the last rule used in this
typing proof (that is, by induction on M , since the type system is syntax-directed). Regarding the
last point, we get, for an expression M typable in the context of the flow relation F ∪G, a security
effect which is lower than the one it has in the context of G, simply because in the conclusion of
the typing rules we make a join with respect to F ∪G, instead of G.

Lemma (Substitution) 4.4. G; Γ ` W : ⊥, τ & G; Γ, x : τ ` M : s, σ ⇒ G; Γ ` {x 7→W}M : s, σ

Proof: by induction on the inference of G; Γ, x : τ ` M : s, σ, and by case on the last rule used
in this typing proof, using the previous lemma. Let us just examine the case of the (Flow) typing
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rule, which is the only non-standard one. In this case we have M = (flow F in M ′), and the typing
proof must end with

...

F,G; Γ, x : τ ` M ′ : s′, σ

G; Γ, x : τ ` (flow F in M ′) : s, σ

with s′.r �G∪F s.r, s′.w = s.w and s′.t �G∪F s.t �G s.r. By Remark 4.1 we have F,G; Γ ` W : ⊥, τ ,
and therefore by induction hypothesis, the judgement F,G; Γ ` {x 7→W}M ′ : s′, σ is provable, hence
also G; Γ ` (flow F in {x 7→W}M ′) : s, σ.

Lemma (Replacement) 4.5. If G; Γ ` E[M ] : s, τ is a valid judgement, with a proof where M
has the typing dEe, G; Γ ` M : s′, σ, and if dEe, G; Γ ` N : s′′, σ with s′′.r �G∪dEe s′.r, s′.w � s′′.w
and s′′.t �G∪dEe s′.t, then G; Γ ` E[N ] : s0, τ for some s0 such that s0.r �G s.r, s.w � s0.w and
s0.t �G s.t.

Proof: by induction on E. We just examine the case where E = (flow F in E′). The typing proof
of E[M ] must end with

...

F,G; Γ ` E′[M ] : s1, τ

G; Γ ` E[M ] : s, τ

with s1.r �G∪F s.r, s1.w = s.w and s1.t �G∪F s.t �G s.r. By induction hypothesis there exists s0

such that the judgement F,G; Γ ` E′[N ] : s0, τ is provable, and s0.r �G∪F s1.r, s1.w � s0.w and
s0.t �G∪F s1.t. Then by the (Flow) rule G; Γ ` E[N ] : (s.r, s0.w, s.t), τ is provable.

The Subject Reduction property states that the type of an expression is preserved by reduction.
Regarding its effects some may be performed, by reading or updating a reference, and some may
be discarded, when a branch in a conditional expression is taken. Then the effects of an expression
“decrease” along the computations, and, in particular, its confidentiality level becomes less critical.

Proposition (Subject Reduction) 4.6. If G; Γ ` M : s, τ and (M,µ) N−→
F

(M ′, µ′) with

u`,θ ∈ dom(µ) ⇒ G; Γ ` µ(u`,θ) : ⊥, θ then G; Γ ` M ′ : s′, τ and G; Γ ` N : s′′, unit for some s′ and
s′′ such that s′.r gG s′′.r �G s.r, s.w � s′.w ∪ s′′.w and s′.t �G s.t.

Proof: by induction on the proof of the transition (M,µ) N−→
F

(M ′, µ′). We only examine some

cases. If M = (λxM0V ), with F = ∅, N = (), µ′ = µ and M ′ = {s 7→V }M0, then we use Lemma 4.4.
The argument is similar if M = %xW and M ′ = {x 7→%xW}W . If M = (flow F ′ in V ) and M ′ = V ,
with F = ∅, N = () and µ′ = µ, then the proof of the judgement G; Γ ` M : s, τ must have the
form

...

F ′, G; Γ ` V : ⊥, τ

G; Γ,` (flow F ′ in V ) : s, τ

with s.w = ⊥. By Remark 4.1 we have G; Γ ` M ′ : ⊥, τ , hence we are done in this case. If
M = E[M0] and M ′ = E[M ′

0] with (M0, µ) N−→
F ′

(M ′, µ′) and F = F ′ ∪ dEe then we use the

induction hypothesis and Lemma 4.5. If M = E[(thread M0)] and M ′ = E[()], with F = ∅,
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N = (flow dEe in M0) and µ′ = µ, and if in the proof of G; Γ ` M : s, τ , the expression (thread M0)
has the typing

...

dEe, G; Γ ` M0 : s′, unit

dEe, G; Γ ` (thread M0) : (⊥, s′.w,⊥), unit

then we conclude using the Lemma 4.5 and the fact that

...

dEe, G; Γ ` M0 : s′, unit

G; Γ ` (flow dEe in M0) : s′, unit

is a valid typing (thanks to Remark 4.2).

We conclude this section with some properties of typed expressions that will be used to prove our
main result. We observe (in specific cases – those needed for the soundness proof) that the intuitive
meaning of the reading and writing effect is indeed captured by the type system.

Lemma 4.7.

(i) G; Γ ` E[(!u`,θ)] : s, τ ⇒ ` �G∪dEe s.r

(ii) If G; Γ ` E[(u`,θ
.. V )] : s, τ then s.w � `

Proof: by induction on E, easy.

With the intuition that the writing effect of a typable expression is a lower bound of the level of
the references the expression may update, we define:

Definition (Syntactically High Expressions) 4.8. An expression M is syntactically (G, `)-
high if G; Γ ` M : s, τ with s.w 6�G `. The expression M is a (G, `)-high function if G; Γ ` M :

s, (τ s′
−→
F

σ) with s′.w 6�G `.

This definition is justified by the following results.

Lemma 4.9. A syntactically (G, `)-high expression is operationally (G, `)-high.

Proof: we show that if M is syntactically (G, `)-high, that is G; Γ ` M : s, τ with s.w 6�G `, and
(M,µ) N−→

F
(M ′, µ′) then µ′ lG,` µ. This is enough since, by Subject Reduction, both N and M ′ are

syntactically (G, `)-high. We proceed by cases on the proof of the transition (M,µ) N−→
F

(M ′, µ′).

The lemma is trivial in all the cases where µ ⊆ µ′. If M = E[(u`′,θ
.. V )] and µ′ = µ[u`′,θ

.. V ]
then s.w � `′ by Lemma 4.7(ii). This implies `′ 6�G `, hence µ′ lG,` µ.

Lemma 4.10. If (MN) is typable in the context of the flow relation G, with M,N ∈HG,` and M
is a (G, `)-high function then (MN) ∈HG,`.

Proof: let G be the set containing HG,`, and containing expressions (MN) provided they are
typable in the context of the flow relation G, and satisfy M,N ∈G and M is a (G, `)-high function.

Assume that such an application (MN) performs the transition ((MN), µ) N ′
−→
F

(M ′, µ′). We

show, by induction on the proof of this transition, that this implies M ′, N ′ ∈ G and µ′ lG,` µ. If
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M ′ = {x 7→N}M ′′ and N ′ = (), where M = λxM ′′ (and N ∈ Val) and µ′ = µ, then, since both M
and N are values, the typing of (MN) must end with

...

G; Γ ` M : ⊥, τ
s−→
F

σ

...

G; Γ ` N : ⊥, τ

F,G; Γ ` (MN) : s, σ

Since M is a (G, `)-high function, we have M ′ ∈HG,` by Subject Reduction and the Lemma 4.9. If

M ′ = (M ′′N) with (M,µ) N ′
−→
F

(M ′′, µ′) we have M ′′, N ′∈G and µ lG,` µ′ by induction hypothesis,

and M ′′ is a (G, `)-high function, by Subject Reduction, hence M ′ ∈ G. The argument is similar if

M ′ = (MN ′′) where M ∈ Val and (N,µ) N ′
−→
F

(N ′′, µ′).

We believe we could prove the standard Type Safety result for our system, establishing that a
typable program either diverges or terminates, returning a value of the appropriate type. However,
this is not the topic of our work, since our aim is rather to show a security property of typable
programs.

5. Type Soundness

In this section we establish the main technical result of our paper, namely the type soundness
property:

Theorem (Soundness). If M is typable in the context of a flow policy G, that is if for some Γ,
s and τ we have G; Γ ` M : s, τ , then M satisfies the non-disclosure policy with respect to G, that
is M ∈ND(G).

To prove this result, for any security level ` we shall exhibit a (G, `)-bisimulation that contains the
pair (M,M) for any G-typable expression M . Such a relation is built by examining the possible
cases for pairs (P,Q) such that (M,µ) → (P, µ′) and (M,ν) → (Q, ν ′), where µ and ν satisfy the
condition of Definition 3.1 of bisimulations. Lemma 2.3 shows that, starting from a given expression
M in the context of two different memories, the evaluation process may only branch (to P and Q)
when the expression comes to read a reference. This is the basis for building our bisimulations, as
shown by Lemmas 5.2 and 5.5 below, which relate such a branching situation with the typing of
expressions.

We first build a kind of “strong bisimulation” (see the next Proposition) from expressions that
have a low termination effect. Namely, given a flow policy G and a confidentiality level `, let us
define inductively the relation SG,` on expressions, as follows: M SG,` N if both M and N are
typable with a low termination effect in the context of G, that is more precisely G; Γ ` M : s, τ and
G; Γ ` N : s′, σ for some Γ, s, s′, τ and σ, with s.t �G ` and s′.t �G `, and one of the following
holds:

(Clause 1) M and N are both values, or

(Clause 2) M = N , or

(Clause 3) M = M ′ ; M ′′ and N = N ′ ; M ′′ where M ′ SG,` N ′, or

(Clause 4) M = (ref`′,θ M ′) and N = (ref`′,θ N ′) with M ′ SG,` N ′ and `′ 6�G `, or
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(Clause 5) M = (!M ′) and N = (!N ′) with M ′ SG,` N ′, or

(Clause 6) M = (M0
.. M ′) and N = (N0

.. M ′) with M0 SG,` N0 where M0 and N0 are not
values, and both have type θ ref`′ for some θ and `′ such that `′ 6�G `, or

(Clause 7) M = (V .. M ′) and N = (V ′ .. N ′) with M ′ SG,` N ′ and V and V ′ both have type
θ ref`′ for some θ and `′ such that `′ 6�G `, or

(Clause 8) M = (flow F in M ′) and N = (flow F in N ′) with M ′ SF∪G,` N ′.

This is clearly a symmetric relation.

Remark 5.1. M SG,` N & M ∈ Val ⇒ N ∈ Val

The next lemma states that if, in the context of two different memories, the evaluation of a typable
expression M with a low termination effect may split (see Lemma 2.3), then the resulting expressions
are still in the relation SG,`.

Lemma 5.2. If G; Γ ` E[(!u`′,θ)] : s, τ with s.t �G ` and `′ 6�G∪dEe ` then for any values V0, V1∈Val
such that dEe, G; Γ ` Vi : ⊥, θ we have E[V0]SG,` E[V1].

Proof: by induction on the structure of E.

• If E = , we have V0 SG,` V1 by Clause 1.

• If E = (if E′ then N0 else N1) then G; Γ ` E′[(!u`′,θ)] : s′, bool with s′.r �G s.t. By Lemma 4.7(i)
we have `′ �G∪dE′e s′.r, and therefore this case is not possible.

• Assume that E = (E′N). Then G = F,G′ with G′; Γ ` E′[(!u`′,θ)] : s′, σ
s′′
−→
F

τ and s′.r �G s.t,

hence s′.r �G `. Since we also have `′ �G∪dE′e s′.r by Lemma 4.7(i), this case is not possible.

• If E = (V E′) then G = F,G′ with G′; Γ ` V : ⊥, σ
s′′
−→
F

τ and G′; Γ ` E′[(!u`′,θ)] : s′, σ with

`′ �G∪dE′e s′.r by Lemma 4.7(i). Since s′.r �G s.t �G `, this case is not possible.

• If E = E′ ; N we have G; Γ ` E′[(!u`′,θ)] : s′, σ with s′.t �G s.t, and we use the induction
hypothesis and Clause 3 to conclude.

• If E = (ref`′′,θ′ E′) then τ = θ′ ref`′′ and G; Γ ` E′[(!u`′,θ)] : s, θ′ with s.r �G `′′. Since
`′ �G∪dE′e s.r by Lemma 4.7(i), we have `′′ 6�G `, and we use the induction hypothesis and Clause
4 to conclude.

• If E = (! E′) then G; Γ ` E′[(!u`′,θ)] : s′, τ ref`′′ with s′.t = s.t, and we use the induction hy-
pothesis and Clause 5 to conclude.

• If E = (E′ .. N) we have G; Γ ` E′[(!u`′,θ)] : s′, σ ref`′′ with s′.r �G `′′ and s′.t �G s.t. Since
`′ �G∪dE′e s′.r by Lemma 4.7(i), we also have `′′ 6�G ` (since otherwise we would have `′ �G∪dEe `),
and we use the induction hypothesis and Clause 6 to conclude.

• If E = (V .. E′) we have G; Γ ` V : ⊥, σ ref`′′ and G; Γ ` E′[(!u`′,θ)] : s′, σ with s′.t �G s.t and
s′.r �G `′′. Since `′ �G∪dE′e s′′.r Lemma 4.7(i), we also have `′′ 6�G ` (since otherwise we would
have `′ �G∪dEe `), and we use the induction hypothesis and Clause 7 to conclude.

• If E = (flow F in E′) we have F,G; Γ ` E′[(!u`′,θ)] : s′, τ with s′.t �F∪G s.t, hence s′.t �F∪G `.
Since dEe = F ∪ dE′e, we conclude using the induction hypothesis and Clause 8.
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The next proposition states that SG,` is indeed a kind of “strong bisimulation” with respect to the

transition relation N−→
F

.

Proposition 5.3. If M SG,` N and (M,µ) M ′′
−−→

F
(M ′, µ′), with µ lF∪G,` ν and u is fresh for ν if

u`′,θ ∈ dom(µ′ − µ), then there exist N ′ and ν ′ such that (N, ν) M ′′
−−→

F
(N ′, ν ′) with M ′ SG,` N ′ and

µ′ lG,` ν ′ with dom(ν ′ − ν) = dom(µ′ − µ).

Proof: by induction on the definition of SG,`.

• It cannot be that M SG,` N by Clause 1.

• If N = M , then by Lemma 3.6 there exist N ′ and ν ′ such that (N, ν) M ′′
−−→

F
(N ′, ν ′) with

µ′ lF∪G,` ν ′. By Subject Reduction we have G; Γ ` M ′ : s′, τ with s′.t �G s.t, and there-
fore M ′ SG,` N ′ if M ′ = N ′, by Clause 2. Otherwise, by Lemma 2.3 we have (M ′′ = () and)
M = E[(!u`′,θ)] with M ′ = E[µ(u`′,θ)] and N ′ = E[ν(u`′,θ)], and F = dEe. Since µ(u`′,θ) 6= ν(u`′,θ),
we have `′ 6�F∪G `, and therefore M ′ SG,` N ′ by Lemma 5.2 above (and the Subject Reduction
property).

• If M SG,` N by Clause 3, that is M = M0 ; M1 and N = N0 ; M1 with M0 SG,` N0, then ei-
ther M0 is a value and M ′ = M1 (and F = ∅, M ′′ = () and µ′ = µ), or M ′ = M ′

0 ; M1 with

(M0, µ) M ′′
−−→

F
(M ′

0, µ
′). In the latter case, we use the induction hypothesis and Clause 3 to conclude.

Otherwise, we have N0∈Val by Remark 5.1, hence (N, ν)
()−→
∅

(M1, ν), and we conclude using Clause

2.

• If M SG,` N by Clause 4, we have M = (ref`′,θ M0) and N = (ref`′,θ N0) with M0 SG,` N0 and
`′ 6�G `. There are two cases. If M0 is a value, then M ′ = u`′,θ, with u fresh for µ, M ′′ = () and
µ′ = µ ∪ {u`′,θ 7→M0} (and therefore u is also fresh for ν). Then N0 ∈ Val by Remark 5.1, and

therefore (N, ν)
()−→
∅

(u`′,θ, ν ∪ {u`′,θ 7→N0}). If we let ν ′ = ν ∪ {u`′,θ 7→N0} then µ′ lG,` ν ′ since

`′ 6�G `, and we conclude using Clause 1. Otherwise, M ′ = (ref`,θ M ′
0) with (M0, µ) M ′′

−−→
F

(M ′
0, µ

′),

and we use the induction hypothesis and Clause 4 to conclude.

• If M SG,` N by Clause 5, that is M = (!M0) and N = (!N0) with M0 SG,` N0, we distinguish
two sub-cases. If M0 = u`′,θ and M ′ = µ(u`′,θ) with M ′′ = () and µ′ = µ then, by Remark 5.1, N0 is
a value too, and it must be a reference v`′′,θ′ , since N is typable. In this case we let N ′ = ν(v`′′,θ′)

and ν ′ = ν, and we conclude using Clause 1. Otherwise, M ′ = (!M ′
0) with (M0, µ) M ′′

−−→
F

(M ′
0, µ

′),

and we use the induction hypothesis and Clause 5 to conclude.

• If M SG,` N by Clause 6, that is M = (M0
.. M1) and N = (N0

.. M1) with M0 SG,` N0 where
M0 and N0 are not values, and both have type θ ref`′′ for some θ and `′′ such that `′′ 6�G `, we have
M ′ = (M ′

0
.. M1) for some M ′

0 such that (M0, µ) M ′′
−−→

F
(M ′

0, µ
′). By induction hypothesis, there exist

N ′
0 such that (N0, ν) M ′′

−−→
F

(N ′
0, ν

′) with M ′
0 SG,` N ′

0 and µ′ lF∪G,` ν ′ with dom(ν ′−ν) = dom(µ′−µ).

If M ′
0 ∈ Val , then also N ′

0 ∈ Val by Remark 5.1, and we conclude using Clause 7 (and Clause 2, as
regards M1). Otherwise, we conclude by Clause 6 (and Subject Reduction).

• If M SG,` N by Clause 7, then M = (V .. M0) and N = (V ′ .. N0) with M0 SG,` N0 and V and
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V ′ both have type θ ref`′ for some θ and `′ such that `′ 6�G `. There are again two cases. If M0 is
a value and M ′ = () = M ′′ (and F = ∅) with µ′ = µ[V .. M0] then N0 ∈ Val by Remark 5.1, and

therefore (N, ν)
()−→
∅

((), ν ′) where ν ′ = ν[V ′ .. N0], and therefore µ′ lG,` ν ′ since `′ 6�G `. Otherwise,

the transition is due to M0, and we use the induction hypothesis and Clause 7 to conclude.

• If M SG,` N by Clause 8, that is M = (flow F in M0) and N = (flow F in N0) with M0 SG,` N0.
There are again two cases, depending on whether M0 is a value or not, and we use the same
arguments as in the previous cases.

Now given G and ` as above, we define the binary relation RG,` on expressions inductively as
follows: M RG,` N if and only if both M and N are typable in the context of the flow relation G,
and one of the following holds:

(Clause 1) M and N are both values, or

(Clause 2) M = N , or

(Clause 3) M = (if M0 then M ′ else N ′) and N = (if N0 then M ′ else N ′) with M0RG,` N0 and
M ′ fG,` N ′, or

(Clause 4) M = (M0M1) and N = (N0N1) with M0RG,` N0, M0 and N0 are (G, `)-high functions,
and M1 fG,` N1, or

(Clause 5) M = (M0M1) and N = (N0N1) with M0 SG,` N0, M0 and N0 are (G, `)-high functions,
and M1RG,` N1, or

(Clause 6) M = M0 ; M1 and N = N0 ; M1 with M0RG,` N0 and M1 ∈HG,`, or

(Clause 7) M = M0 ; M1 and N = N0 ; M1 with M0 SG,` N0, or

(Clause 8) M = (ref`′,θ M ′) and N = (ref`′,θ N ′) with M ′RG,` N ′ and `′ 6�G `, or

(Clause 9) M = (!M ′) and N = (!N ′) with M ′RG,` N ′, or

(Clause 10) M = (M0
.. M ′) and N = (N0

.. M ′) with M0RG,` N0 where M0 and N0 are not
values, and both have type θ ref`′ for some θ and `′ such that `′ 6�G `, and M ′ ∈HG,`, or

(Clause 11) M = (M0
.. M ′) and N = (N0

.. M ′) with M0 SG,` N0 where M0 and N0 are not
values, and both have type θ ref`′ for some θ and `′ such that `′ 6�G `, or

(Clause 12) M = (V .. M ′) and N = (V ′ .. N ′) with M ′RG,` N ′ and V and V ′ both have type
θ ref`′ for some θ and `′ such that `′ 6�G `, or

(Clause 13) M = (flow F in M ′) and N = (flow F in N ′) with M ′RF∪G,` N ′.

Remark 5.4. M RG,` N & M ∈ Val ⇒ N ∈ Val

The relation RG,` is clearly symmetric. We shall prove that this is in turn a kind of (weak)
bisimulation, see the next proposition. The following lemma is analogous to Lemma 5.2. It states
that if a typable expression is reading in the “high” part of the memory, in the context of two
possibly different memories, then the resulting expressions are in the relation RG,`.

Lemma 5.5. If G; Γ ` E[(!u`′,θ)] : s, τ with `′ 6�G∪dEe ` then for any values V0, V1 ∈Val such that
dEe, G; Γ ` Vi : ⊥, θ we have E[V0]RG,` E[V1].
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Proof: by induction on the structure of E.

• If E = , we have E[V0]RG,` E[V1] by Clause 1.

• If E = (if E′ then N0 else N1) then we have G; Γ ` E′[(!u`′,θ)] : s′, bool and G; Γ ` Ni : si, τ
with `′ �G∪dE′e s′.r �G si.w, by Lemma 4.7(i), and therefore si.w 6�G `, This implies N0 fG,` N1

by Lemma 4.9, and we conclude using the induction hypothesis and Clause 3.

• If E = (E′N) then we have G = F,G′ with G′; Γ ` E′[(!u`′,θ)] : s0, σ
s1−→
F

τ and G′; Γ ` N : s2, σ,

with s0.r �G′ s1.w and s0.t �G′ s2.w, hence also s0.r �G s1.w and s0.t �G s2.w. By Lemma 4.3(iii)
we have G; Γ ` E′[(!u`′,θ)] : s′0, σ

s1−→
F

τ and G; Γ ` N : s′2, σ for some s′0 and s′2 such that s′0.r �G s0.r,

s′0.t �G s0.t and s′2.w = s2.w. By Lemma 4.7(i) we have `′ �G∪dE′e s′0.r and therefore s1.w 6�G `,
that is, E′[(!u`′,θ)] is a (G, `)-high function. The same holds for both E′[V0] and E′[V1], and by
induction hypothesis we have E′[V0]RG,` E′[V1]. Now if s′0.t 6�G `, we have N ∈HG,` by Lemma 4.9
since s′0.t �G s2.w = s′2.w, and therefore E[V0]RG,` E[V1] by Clause 4. Otherwise E′[V0]SG,` E′[V1]
by Lemma 5.2, and therefore E[V0]RG,` E[V1] by Clause 5 (and Clause 2).

• If E = (V E′) then G = F,G′ and G′; Γ ` V : ⊥, σ
s0−→
F

τ and G′; Γ ` E′[(!u`′,θ)] : s1, σ

with s1.r �G′ s0.w. By Lemma 4.3(iii) we have G; Γ ` E′[(!u`′,θ)] : s2, σ for some s2 such that
s2.r �G s1.r. By Lemma 4.7(i) we have `′ �G∪dE′e s2.r and therefore s0.w 6�G `, that is, V is a
(G, `)-high function. Then we conclude using the induction hypothesis and Clause 5, since V SG,` V
by definition of SG,`.

• If E = E′ ; N then G; Γ ` E′[(!u`′,θ)] : s′, σ and G; Γ ` N : s′′, τ with s′.t �G s′′.w. If s′.t �G `,
we have E[V0]SG,` E[V1] by Lemma 5.2, and we conclude using Clause 7. Otherwise, we have
s′′.w 6�G `, and therefore N ∈HG,` by Lemma 4.9, and we conclude using the induction hypothesis
and Clause 6.

• For the case where E = (ref`′′,θ′ E′), we argue as in Lemma 5.2. The case E = (! E′) is immedi-
ate, using the induction hypothesis.

• If E = (E′ .. N) then G; Γ ` E′[(!u`′,θ)] : s′, θ′ ref`′′ and G; Γ ` N : s′′, θ′ with s′.r �G `′′ and
s′.t �G s′′.w. By Lemma 4.7(i) we have `′ �G∪dE′e s′.r, and therefore `′′ 6�G `. If s′.t 6�G ` we have
s′′.w 6�G `, and therefore N ∈HG,` by Lemma 4.9, and we conclude using the induction hypothesis
and Clause 10 in this case (notice that s′.t 6= ⊥ ⇒ E′ 6= ). Otherwise, we have E[V0]SG,` E[V1]
by Lemma 5.2, and we conclude using Clause 11 if E′ 6= , and Clause 12 (and 2) otherwise.

• If E = (V .. E′) then G; Γ ` V : ⊥, θ′ ref`′′ and G; Γ ` E′[(!u`′,θ)] : s′, θ′ with s′.r �G `′′. Since
`′ �G∪dE′e s′.r by Lemma 4.7(i), we have `′′ 6�G `, and we conclude using the induction hypothesis
and Clause 12.

• If E = (flow F in E′) then we have F,G; Γ ` E′[(!u`′,θ)] : s′, τ . Since dEe = F ∪ dEe′, we
conclude using the induction hypothesis and Clause 13.

Now we prove that the relation RG,` is a kind of “weak bisimulation”, with respect to the transition

relation N−→
F

:

Proposition 5.6. If M RG,` N with M 6∈ HG,`, and if (M,µ) M ′′
−−→

F
(M ′, µ′) with µ lF∪G,` ν, and

u`′∈dom(µ′−µ) implies that u is fresh for ν, then there exist N ′ and ν ′ such that (N, ν) M ′′
−−→

F
(N ′, ν ′)

with M ′RG,` N ′ and µ′ lG,` ν ′, with dom(ν ′ − ν) = dom(µ′ − µ).
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Proof: by induction on the definition of RG,`. The proposition is vacuously true if M RG,` N by
Clause 1.

• If M RG,` N by Clause 2, that is M = N , then by Lemma 3.6 there exist N ′ and ν ′ such that

(N, ν) M ′′
−−→

F
(N ′, ν ′) with µ′ lF∪G,` ν ′ and dom(ν ′− ν) = dom(µ′−µ). If M ′ = N ′ then M ′RG,` N ′

by Clause 2 (and Subject Reduction). Otherwise by Lemma 2.3 we have M = E[(!u`′,θ)] and
M ′ = E[µ(u`′,θ)] and N ′ = E[ν(u`′,θ)] for some evaluation context E, with F = dEe. Since
µ(u`′,θ) 6= ν(u`′,θ) we have `′ 6�F∪G `, and therefore M ′RG,` N ′ by Lemma 5.5.

• If M RG,` N by Clause 3, that is M = (if M0 then N1 else N2) and N = (if N0 then N1 else N2)
with M0RG,` N0 and N1 fG,` N2 then we have M0 6∈ HG,`, by Lemma 3.9, since M 6∈ HG,`, and

therefore M ′ = (if M ′
0 then N1 else N2) for some M ′

0 such that (M0, µ) M ′′
−−→

F
(M ′

0, µ
′). Then we

conclude using the induction hypothesis and Clause 3.
• If M RG,` N by Clause 4, that is M = (M0M1) and N = (N0N1) with M0RG,` N0, M0 and N0

are (G, `)-high functions, and M1 fG,` N1, we notice that M cannot be a redex, with M0,M1∈Val ,
since otherwise we would have M ∈HG,` by Lemma 4.10. For the same reason, we have M0 6∈ HG,`,

and therefore it must be the case that M ′ = (M ′
0M1) for some M ′

0 such that (M0, µ) M ′′
−−→

F
(M ′

0, µ
′).

We easily conclude using the induction hypothesis (and Subject Reduction) and Clause 4.

• If M RG,` N by Clause 5, that is M = (M0M1) and N = (N0N1) with M0 SG,` N0, M0 and N0

are (G, `)-high functions, and M1RG,` N1, we notice that M cannot be a redex, with M0,M1∈Val ,
since otherwise we would have M ∈ HG,` by the Lemma 4.10. Then either M0 ∈ Val (hence also

N0∈Val , see Remark 5.1) and there exists M ′
1 such that (M1, µ) M ′′

−−→
F

(M ′
1, µ

′) with M ′ = (M0M
′
1),

or M ′ = (M ′
0M1) for some M ′

0 such that (M0, µ) M ′′
−−→

F
(M ′

0, µ
′). In the first case, we have M1 6∈ HG,`

(since otherwise we would have M ∈ HG,`), and we use the induction hypothesis and Clause 5 to
conclude. In the second case, we use Proposition 5.3 and the induction hypothesis to conclude, by
Clause 5.

• If M RG,` N by Clause 6, that is M = M0 ;M1 and N = N0 ;M1 with M0RG,` N0 and M1∈HG,`,
then we have M0 6∈ HG,` (otherwise we would have M ∈ HG,`). Therefore, there exists M ′

0 such

that M ′ = M ′
0 ; M1 with (M0, µ) M ′′

−−→
F

(M ′
0, µ

′), and we conclude using the induction hypothesis

and Clause 6.

• If M RG,` N by Clause 7, that is M = M0 ;M1 and N = N0 ;M1 with M0 SG,` N0, then there are
two cases. If M0 is a value and M ′ = M1 (with F = ∅, M ′′ = () and µ′ = µ) then N0 ∈ Val by Re-

mark 5.1, and (N, ν)
()−→
∅

(M ′, ν), and we conclude using Clause 2. Otherwise, there exists M ′
0 such

that M ′ = M ′
0 ;M1 with (M0, µ) M ′′

−−→
F

(M ′
0, µ

′), and we use Proposition 5.3 and Clause 7 to conclude.

• In the cases where M RG,` N by Clause 8 or 9, we argue as in Proposition 5.3.

• If M RG,` N by Clause 10, that is M = (M0
.. M1) and N = (N0

.. M1) with M0RG,` N0

where M0 and N0 are not values, and both have type θ ref`′ for some θ and `′ such that `′ 6�G `,
and M1 ∈ HG,`, then M ′ = (M ′

0
.. M1) with (M0, µ) M ′′

−−→
F

(M ′
0, µ

′). We have M0 6∈ HG,`, since

otherwise we would have M ∈HG,`. Then by induction hypothesis there exist N ′
0 and ν ′ such that

(N0, ν) M ′′
−−→

F
(N ′

0, ν
′) with M ′

0RG,` N ′
0, µ′ lF∪G,` ν ′, and dom(ν ′− ν) = dom(µ′−µ). If M ′

0 is not a
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value, then by Remark 5.4 N ′
0 is not a value, and we conclude by Clause 10 in this case. Otherwise,

we conclude by Clause 12 (and 2, as regards M1).

• If M RG,` N by Clause 11, that is M = (M0
.. M1) and N = (N0

.. M1) with M0 SG,` N0 where
M0 and N0 are not values, and both have type θ ref`′ for some θ and `′ such that `′ 6�G ` then, as in
the previous case, M ′ = (M ′

0
.. M1) with (M0, µ) M ′′

−−→
F

(M ′
0, µ

′). By Proposition 5.3 there exist N ′
0

and ν ′ such that (N0, ν) M ′′
−−→

F
(N ′

0, ν
′) with M ′

0 SG,` N ′
0, µ′ lF∪G,` ν ′, and dom(ν ′−ν) = dom(µ′−µ).

If M ′
0 is not a value, then by Remark 5.1 N ′

0 is not a value, and we conclude by Clause 11 in this
case. Otherwise, we conclude by Clause 12 (and 2, as regards M1).

• If M RG,` N by Clause 12, that is M = (V .. M0) and N = (V ′ .. N0) with M0RG,` N0 and V
and V ′ both have type θ ref`′ for some θ and `′ such that `′ 6�G `, then M0 6∈ HG,`, since otherwise
we would have M ∈HG,`. Then in particular M0 is a not value, and therefore there exists M ′

0 such

that M ′ = (V .. M ′
0) with (M0, µ) M ′′

−−→
F

(M ′
0, µ

′), and we use the induction hypothesis and Clause

12 to conclude.

• If M RG,` N by Clause 13, that is M = (flow F ′ in M0) and N = (flow F ′ in N0) with
M0RF ′∪G,` N0 then M0 6∈ HG,` (hence also M0 6∈ HF ′∪G,`) since M 6∈ HG,`, and therefore

M ′ = (flow F ′ in M ′
0) for some M ′

0 such that (M0, µ) M ′′
−−→
F ′′

(M ′
0, µ

′) with F = F ′ ∪ F ′′. Then

we conclude using the induction hypothesis and Clause 13.

To conclude the proof of the Soundness Theorem, it remains to exhibit an appropriate bisimulation.
Let R?

G,` be the relation inductively defined as follows:

M RG,` N

M R?
G,` N

P fG,` Q QR?
G,` R

P R?
G,` R

P R?
G,` Q Q fG,` R

P R?
G,` R

P R?
G,` P ′ QR?

G,` Q′

(P ‖ Q)R?
G,` (P ′ ‖ Q′)

Proposition 5.7. The relation R?
G,` is a (G, `)-bisimulation.

Proof: first, it is easy to see, by induction on the definition ofR?
G,`, that this relation is symmetric.

Now we show, by induction on the definition of R?
G,`, that if P R?

G,` Q and (P, µ) −→
F

(P ′, µ′) with

µ lF∪G,` ν and u`′,θ ∈ dom(µ′−µ) implies that u is fresh for ν, then there is a matching transition
from (Q, ν). We proceed by induction on the inference of P R?

G,` Q.

• If P and Q are expressions, with P RG,` Q, we distinguish two cases. If P ∈HG,` then P ′∈HG,`,
hence P ′R?

G,` Q since P ′ fG,` P RG,` Q, and a matching transition for Q is (Q, ν) ∗→ (Q, ν) since
dom(µ′) ∩ dom(ν) = dom(µ) ∩ dom(ν). Otherwise, by Lemma 2.2(ii), either P ′ is an expression

and (P, µ)
()−→
F

(P ′, µ′) or (P, µ) M ′′
−−→

F
(M ′, µ′) for some M ′ and M ′′ such that P ′ = (M ′ ‖ M ′′),

with M ′′RG,` M ′′ since M ′′ is typable. In both cases we use Proposition 5.6, Lemma 2.2(i) and the
definition of R?

G,` to conclude.

• If P fG,` RR?
G,` Q then P ′ ∈ HG,`, and therefore P ′ fG,` RR?

G,` Q, hence P ′R?
G,` Q, and a

matching transition for Q is (Q, ν) ∗→ (Q, ν).
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• If P R?
G,` R fG,` Q then by induction hypothesis there exist R′ and µ′′ such that (R,µ) ∗→

(R′, µ′′) with P ′R?
G,` R′, µ′ lG,` µ′′ and dom(µ′′ − µ) ⊆ dom(µ′ − µ). We have R′ ∈ HG,`, and

therefore P ′R?
G,` R′ fG,` Q, hence P ′R?

G,` Q, and a matching transition for Q is (Q, ν) ∗→ (Q, ν),
since dom(µ′) ∩ dom(ν) = dom(µ) ∩ dom(ν).

• If (P, µ) −→
F

(P ′, µ′) with P = (P0 ‖ P1) and PiR?
G,` Qi then we have, for i = 0 or i = 1,

(Pi, µ) −→
F

(P ′
i , µ

′) with P ′ = (P ′
0 ‖ P1) if i = 0, and P ′ = (P0 ‖ P ′

1) if i = 1. Then we use the

induction hypothesis and the definition of R?
G,` to conclude that ((Q0 ‖ Q1), ν) has a transition

matching the one of (P, µ).

The Soundness Theorem is an immediate corollary of this last result.
To conclude this section, let us see some implications of what we have proved. Looking closely

at Proposition 5.6, we see that we have shown a much more precise result than the one stated by
the Soundness Theorem. Indeed, let us define the strong non-disclosure policy as follows.

Definition (Quasi-Strong Bisimulation) 5.8. A quasi-strong (G, `)-bisimulation is a sym-
metric relation R on expressions such that if M RN then either

(i) M and N are both (G, `)-high, i.e. M,N ∈HG,`, or

(ii) if (M,µ) M ′′
−−→

F
(M ′, µ′) with µ lF∪G,` ν, and u`′ ∈dom(µ′−µ) implies that u is fresh for ν, then

there exist N ′ and ν ′ such that (N, ν) M ′′
−−→

F
(N ′, ν ′) with M ′′RM ′′, M ′RN ′ and µ′ lG,` ν ′, with

dom(ν ′ − ν) = dom(µ′ − µ).

This is a generalization of the quasi-strong bisimulations of [6]. We use the word “quasi-strong”
because, in case a transition on one side has to be matched by the other, this must be achieved in
a single step. Moreover, the thread that is spawned, if any, and the local flow relation that is in
force in the two matching transitions must be the same.

Definition (The Strong Non-Disclosure Policy) 5.9. An expression M satisfies the strong
non-disclosure policy, or is strongly secure with respect to the flow policy G if for any ` there exists
a quasi-strong (G, `)-bisimulation R such that M RM .

Then we proved that if an expression is typable, it is strongly secure. Notice that, according to
these definitions, any thread spawned by a strongly secure expression is strongly secure.

The definition above can be stated for any language where the semantics may be described
using transitions of the form (M,µ) N−→

F
(M ′, µ′). There are several advantages in using such a

definition. First of all, since the transitions (M,µ) N−→
F

(M ′, µ′) are deterministic (up to the choice

of the name of created references), it is generally easy to prove that an expression is not strongly
secure – hence not typable. For instance, if, starting with the expression M0 = M , there are two
sequences of transitions

(M0, µ0)
N0−−→
F0

(M1, µ
′
0), (M1, µ1)

N1−−→
F1

(M2, µ
′
1), . . . , (Mn, µn) Nn−−→

Fn

(Mn+1, µ
′)

(M0, ν0)
N0−−→
F0

(M1, ν
′
0), (M1, ν1)

N1−−→
F1

(M2, ν
′
1), . . . , (Mn, νn) Nn−−→

Fn

(Mn+1, ν
′)

with 0 6 i 6 n ⇒ µi lFi∪G,` νi (with some obvious conditions on the created references) and
µ′ 6lG,` ν ′, then M is not strongly secure. This applies for instance to Examples (4), (5), (8), (9),

29



(10) and (13) of Section 3. Moreover, if we define strong non-interference in a similar way, ignoring
the local flow relations, that is:

Definition (The Strong Non-Interference Property) 5.10. An expression M satisfies
the strong non-interference property with respect to the flow policy G if for any ` there exists a
relation R such that M RM , which satisfies: if M0RM1 then either

(i) M0 and M1 are both (G, `)-high, i.e. M0,M1 ∈HG,`, or

(ii) if (M0, µ) N−→ (M ′
0, µ

′) with µ lG,` ν, and u`′ ∈ dom(µ′ − µ) implies that u is fresh for ν, then

there exist M ′
1 and ν ′ such that (M1, ν) N−→ (M ′

1, ν
′) with N RN , M ′

0RM ′
1 and µ′ lG,` ν ′, with

dom(ν ′ − ν) = dom(µ′ − µ).

then the following facts are immediate:

(i) if M satisfies the strong non-interference property, then it is strongly secure;

(ii) if M is strongly secure and does not use declassification, that is, M does not contain a subex-
pression (flow F in N), then it satisfies the strong non-interference property.

6. Conclusion and related work

We have proposed a way to face the “challenge [of] determining what the nature of a downgrading
mechanism should be and what kinds of security guarantees it permits” [53]. Taking the view that
one should distinguish the questions of what or how much can be revealed, from that of how it
can be revealed, we addressed the second question by proposing a simple and powerful construct
for declassification based on dynamically varying flow policies. Although this idea has already
been mentioned in the literature (see [44]), it does not seem to have been previously studied in
a formal way (in [45] it is shown that if the downgrading relations used in a program do not
modify the security lattice under some level `, then the program is secure up to this level). Our
main achievement is the design of a security property that is a natural generalization of classical
non-interference, based on dynamic flow policies. We notice that the idea of stating the security
property in a way that reflects the local nature of declassification, that is, using a decorated small-
step semantics, could perhaps be used in other settings. Moreover, we have shown that, for programs
written in an expressive, higher-order imperative core language, this property can be enforced by
static analysis. The idea of using a construct for dynamically introducing flow policies can certainly
be applied to various other programming paradigms.

The language-based security approach is now well established – though not widely used –, and
there is no question that lattices of information flow provide a good basis for ensuring end-to-end
confidentiality properties. Indeed, checking that a program does not violate a given flow policy by
means of a type system which enforces the extensional property of non-interference, is regarded as
providing a reasonable security guarantee. Therefore we believe that checking, piece by piece, that
a program does not violate local flow policies should provide a similar guarantee, while allowing us
to deal with declassification. Borrowing an example from [52], we may then write a piece of code
to release precious information held in a safe place A by Alice, to Bob who wishes to purchase it,
provided a payment has indeed been done:

if paid then (flow Alice ≺ Bob in B .. !A) else · · ·

without checking further that this intended leak of information is justified. In some other cases,
where a program has to be certified against high security standards for instance, one would have
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to provide a formal proof that a declassified portion of code satisfies some specification, like that of
not releasing too much information. This justification is left to the programmer, whereas our pro-
gramming language design provides him with a flexible programming construct for declassification,
together with a static checking technique to prevent some errors.

In this respect, our approach contrasts with most previous works on declassification in a
language-based security setting that aimed at imposing constraints, at a linguistic level, on this
operation – sometimes without justifying such constraints, for lack of an extensional notion of
security. For instance, in [46, 49], Volpano and Smith restrict downgrading to occur by means
of specific “hard” functions. This is certainly relevant for some applications, especially those in-
volving cryptography, but is less appropriate for applications where the programmer intends to
let information leak in some places (like in the example above). Another example of constrained
downgrading is robust declassification which was proposed, and then studied in a series of papers
[29, 30, 31, 32, 44, 52] by Myers and colleagues. The idea of robust declassification is to allow this
operation only for extending the reading clearances assigned by the owner of an object, and to con-
trol it by requiring that this operation runs under appropriate authority. This was first conceived
as a run-time constraint, and was later approximated in a type system by means of integrity levels.
Compared to our approach, robust declassification is obviously more restrictive (for instance one
can only set up flows from lower to higher levels). However, it would be interesting to see whether
we can accomodate our setting to deal with it (even though it is not very clear that the “robustness
property” of [32] is related to our non-disclosure property). An obvious idea would be to restrict
the use of (flow F in M) to the case where F only allows to declassify the contents of references
that have been created by the thread executing this piece of code, and then to see how our security
property can be made more accurate for this case.

In another paper [39], Sabelfeld and Myers introduce a different way of restricting declassifi-
cation, with the idea that downgrading is acceptable provided that the program does not modify
data if that could influence the value of declassified expressions, therefore addressing the question
of what is downgraded. For instance, the program uH

.. ff ; vL
.. declassify(uH , L) is not re-

garded as safe according to the definition of delimited release. On the other hand, a program like
vL

.. declassify(uH , L) ; wL
.. uH , which is similar to the one of example (4), is considered safe,

but is ruled out by the type system. The type system, based on the idea that “variables under
declassification may not be updated prior to declassification”, might be difficult to extend to a more
sophisticated language, with a less predictable order of execution than the one considered in [39].

More recently, Chong and Myers introduced declassification policies [8], that specify the levels
through which a value can be downgraded. This also involves conditions, which are supposed
to be satisfied in order to perform the declassification steps. These are used in the definition
of a generalized noninterference property to mark the steps where declassification occurs. This
bears some resemblance to our transitions labelled by a local flow relation, although conditions
are rather used to single out sequences of steps that do not involve downgrading operations. The
declassification policies of [8] look a bit inflexible since, as far as we can see, there is no possibility
for a value to be used in another way than the one prescribed by the specific policy assigned to it.
Therefore it seems that, with these policies, the programmer must accurately anticipate the run-
time behaviour of the declassified values. By contrast, in our setting a reference can be involved in
various declassification scenarios, and this does not have to be reflected in its type.

Closer to ours is the work by Ferrari & al. [13], who proposed to attach “waivers” to methods
in an object-oriented language to provide a way of making information flow from objects to users.
Although the authors claim that “only priviledged methods” have associated waivers, there seems
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to be actually no constraint on the flow of information they allow. This idea of a waiver is therefore
similar to a local flow relation, though it is not clear whether the notion of “safe information flow”
that the authors define is similar to our non-disclosure property (as far as we can see, this definition
does not treat waivers as having a local scope). A work that is also close to ours, at least as regards
the motivations, is the one by Li and Zdancewic [24]. After having made the initial decision that
“instead of studying who can downgrade the data [like in the work on robust declassification], we
take an orthogonal direction and study how data can be downgraded”, they intend to offer the
programmer a way of specifying sophisticated downgrading policies. Therefore we can say we share
the same motivations. However, the ways we take from this starting point differ considerably. Li
and Zdancewic introduce a very sophisticated notion of a downgrading policy (an expression in a
typed λ-calculus), where we use flow relations between principals, which look easy to use in practice.
Our non-disclosure property also looks simpler than the notion of relaxed noninterference, which is
based on program equivalence (in the language of downgrading policies). Their main result is again
very close in its spirit to ours, since “the security guarantee [provided by relaxed noninterference]
only assures that the program respects the user’s security policies”. Therefore it will be interesting
to compare in greater details the two approaches, especially from the point of view of expressiveness.

Finally, the work that is the closest to ours is the one by Mantel and Sands [27]. In addition
to a given lattice structure of security levels, they consider an extra relation on these levels, that
can be used in specific instructions – namely, assignments of the form v`′ .. (!u`) – to downgrade
information: in such an instruction, the flow from ` to `′ should be allowed by the “exceptional”
flow relation. In our syntax, we would write this as (flow ` ≺ `′ in v`′ .. (!u`)) (where ` ≺ `′

means { p ≺ q | p∈ ` & q∈ `′ }). Then Mantel and Sands introduce a security property generalizing
classical non-interference, defined by means of a notion of bisimulation with respect to transitions
annotated by a flow relation, and they show a type soundness result. Therefore one can see that
this is very close to what we did in this paper (the two works were done independently, and a
precise comparison of our security properties remains to be made). There are some differences,
however. A first difference is that Mantel and Sands choose to restrict declassification to very
specific instructions, whereas we allow any computation to be declassified. From a pragmatic point
of view, the main difference we see is that in their work, declassification is governed by a specific
global flow policy – the “exceptional” flow relation – that cannot be manipulated by programs. We
think that it could be useful in practice to have the ability of choosing various ways of downgrading,
depending on the point in the program where this is performed, without necessarily complying with
a predetermined, global downgrading policy. Moreover, such a dynamic view seems to be needed in
order to deal with mobile code, where agents migrate with their own flow policy. Another noticeable
– though not related to declassification – difference is that we are using a higher-order imperative
language, whereas Mantel and Sands consider a simple while language with threads, where there is
no interaction between commands and expressions. Moreover, our type system appears to be less
restrictive (as regards the while construct for instance).

Some obvious topics for further investigations are polymorphism and type inference [29, 33],
dynamic labels [44, 55], and more generally first-class security levels. One could also wish to deal
with a richer set of effects, including for instance the creation and deletion of references, the creation
of threads, and more generally any action that modifies the context of an expression in the (abstract)
machine evaluating it. We are currently working on using the idea of local flow policies in a mobile
code setting, and more precisely in the ULM language [5]. Indeed, a mobile agent may carry its own
flow policy, and run in various sites, each having their own, local flow policies, and therefore this is
a scenario where one has to deal with various flow relations. Regarding declassification, one may
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think our approach is too permissive, since it allows any program to declassify anything, provided
that no other flow than the declared ones is implemented. Therefore it would be interesting to see
how we could restrict the usage of the flow declaration construct in some sensible ways, and adapt
the non-disclosure policy accordingly. We have mentioned a possible way of doing this in discussing
the work on robust declassification. It would also be interesting to find a simple notion of “security
error”, that could be used as a basis for designing error messages in a type inference approach.
Finally, we observe that, following Biba’s remark that integrity is dual to confidentiality in some
sense (see [23, 31]), we may design a framework for the integrity aspect of security in a similar
way to what we did for confidentiality. It could support, in particular, dowgrading facilities like
the “endorse” construct of [23] (which is also considered in [32], but with a different semantics).
Although the expectations are even stronger regarding integrity than confidentiality (see [23] for
instance), it would be interesting, from a practical point of view (cf. [53]), to have in a programming
language such flexible downgrading facilities with respect to integrity.
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