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Abstract

We define a small class-based object-oriented language in which
the availability of methods depends on an object’s abstract state:
objects’ interfaces are dynamic. Each class has a session type which
provides a global specification of the availability of methods in
each state. A key feature is that the abstract state of an object
may depend on the result of a method whose return type is an
enumeration. Static typing guarantees that methods are only called
when they are available. We present both a type system, in which
the typing of a method specifies pre- and post-conditions for its
object’s state, and a typechecking algorithm, which infers the pre-
and post-conditions from the session type, and prove type safety
results. Inheritance is included; a subtyping relation on session
types, related to that found in previous literature, characterizes the
relationship between method availability in a subclass and in its
superclass. We illustrate the language and its type system with
example based on a Java-style iterator and a hierarchy of classes
for accessing files, and conclude by outlining several ways in which
our theory can be extended towards more practical languages.
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1. Introduction

Standard class-based object-oriented languages present the pro-
grammer with the following view: an object is declared to belong to
a certain type, and the type defines various methods; it is therefore
possible at any time to call any of the methods described in the type.
However, there are often semantic reasons why it is not appropriate
to call a particular method when the object is in a particular inter-
nal state. For example: with a stack, one should not attempt to pop
if the stack is empty; with a finite buffer, one should not attempt
to write if the buffer is full; with a file, one should not attempt to
read data until the file has been opened. We will refer to the set of
available methods as the interface of an object, and use the term
dynamic interfaces in connection with objects for which method
availability depends on state. Objects with dynamic interfaces are
also referred to in the literature as non-uniform objects (active ob-
jects with non-uniform service availability (36)), although usually
in a concurrent setting.
Consider the java. util . Iterator interface.

interface lterator {
boolean hasNext ()
Object next()
void remove()

}

One correct pattern for using an iterator it is as follows:

while (it.hasNext())
{... it.next() ...

while common programming errors, familiar to any teacher, in-
clude failing to call hasNext():

for (int i =0; i < 5; i+) {
it.next() ... }

calling next() too often:

while (it.hasNext())
if (it.next().equals(x))
y.add(it.next());

and omitting an initial call of hasNext():

b.append(it.next());
while (it.hasNext())
b.append(”,”).append(it.next());



There are two problems with the above interface: a) it provides
no clue on how its methods should be used; in fact it is not obvious
from the English text that accompanies java. util . Iterator when
one is supposed to call method remove; b) all of the code snippets
above compile, errors being caught only at runtime, if ever.

We propose to discipline the order of method calls by annotating
the above interface with a session type, inspired by work on type-
theoretic specifications of communication protocols (44; 28), as
follows.

session Init
where Init = &{hasNext: Result}
Result = @{true: Next,
false: end}
Next = &{next: &{hasNext: Result,
remove: Init},
hasNext: Result}

The session type defines certain abstract states of iterator objects
and specifies which methods are available in each state. For ex-
ample, in state Init only the method hasNext() is available, and
after calling it the abstract state becomes Result. The form of this
state indicates that the method hasNext() returns a result of type
boolean and that the subsequent state depends on the result. In gen-
eral, & indicates available methods and ¢ indicates possible results.
In state Next, the method next() is available, and after calling it, the
method remove() is also available. The keyword end is an abbre-
viation for an empty &, indicating that no methods are available,
hence that the object cannot be used further and may be subject to
garbage collection. The session type captures the specification of
an iterator: hasNext() must be called in order to find out whether or
not next() can be called, and remove() can be called at most once
for each call of next(). Our type system makes sure that, not only
methods are called by the specified order, but also that client code
actually tests methods’ results and proceeds accordingly, rendering
the above programming errors untypable.

In the present paper we propose, in the sequential setting, a type
system to support static checking of correctness of method calls in
the presence of objects with dynamic interfaces. The key features
of our approach are as follows.

e Each class declares a session type which provides an abstract
view of the allowed sequences of method calls. In the simplest
case, a session type defines a directed graph of abstract state
transitions labelled by method names.

A session type can also specify that the abstract state after
a method call depends on the result of the call, where this
result comes from an enumerated type. In this case the caller
must perform a case-analysis on the result before calling further
methods.

We allow inheritance between classes, characterizing the condi-
tions for inheritance by means of a subtyping relation on session

types.

We formalize the operational semantics and typing rules of
a core language with these features, enabling us to prove a
type safety result. Objects with dynamic interfaces are handled
linearly in order to avoid aliasing problems.

We define a typechecking algorithm, whose success guarantees
not only type safety but also consistency between method def-
initions and session types, so that every sequence of methods
calls in the session type is realizable in a typable program.

There is a substantial literature of related work, which we dis-
cuss in more detail in Section 7. Type systems for non-uniform
concurrent objects have been proposed by several authors including
Nierstrasz (36), Ravara er al. (42; 43) and Puntigam and Peter (40;

41). The type systems of the imperative languages Cyclone (24;
25), Vault (10; 18) and Fugue (19; 11) address similar issues in
sequential programming. The related topic of type-theoretic speci-
fications of protocols on communication channels has been studied
for concurrent object-oriented languages by Dezani-Ciancaglini et
al. (12; 14; 15; 16) and implemented in the Sing# language (17).

Contributions

Our work makes the following new contributions. In contrast with
Cyclone and Vault, we define an object-oriented language with in-
heritance. In contrast with Sing# and other work on session types
for object-oriented languages, we consider objects with dynamic
interfaces in a setting more general than communication channels.
In contrast with Fugue, we use a session type as a global specifica-
tion of method availability, instead of pre- and post-conditions on
methods. In contrast with work on non-uniform concurrent objects,
we work with a Java-like language, not a mobile process calculus;
and we force the caller to perform a case-analysis when necessary,
meaning that our session types are richer than simply sequences of
available methods.

The remainder of the paper is structured as follows. In Section 2
we illustrate our system by means of a more extensive example,
extending it in Section 3 to include inheritance. In Section 4 we
formalize a core language and prove a type safety result. The core
language requires, in addition to the session type, explicit pre- and
post-conditions for each method. In Section 5 we present a type-
checking algorithm which infers the pre- and post-conditions from
the session types. Section 6 describes our prototype implemen-
tation. Section 7 contains a more extensive discussion of related
work, Section 8 outlines future work and Section 9 concludes.

2. Programming with Dynamic Interfaces

This section and the next section contain more extensive examples
of programming with dynamic interfaces. From now on, we do
not use the term inferface in the technical Java sense; for us,
an interface is simply a class definition without the code of the
methods. Of course it includes a session type, making it dynamic.

Our next example involves the class FileReadToEnd, represent-
ing part of an API for using a file system. A file has a dynamic
interface: it must first be opened, then can be read repeatedly, and
must finally be closed. Before reading, a test for end of file must
be carried out, in a way similar to the iterator. A key feature of
FileRead ToEnd is that the file cannot be closed until all of the data
has been read. We will relax this restriction later. The example also
contains a class FileReader, representing application code which
uses FileReadToEnd to access a file and read its data into a string.

Figures 1 and 2 contain the code for the example. Figure 1
consists of three declarations. Lines 1 and 3 define enumerated
types Res and Bool. Lines 5-19 define the interface FileRead ToEnd.
For technical reasons we use an enumerated type Bool rather than
the primitive type boolean, and type Null rather than void. The
session type is represented diagrammatically in Figure 7(a).

Our language does not include constructor methods as a special
category, but the method open must be called first and can therefore
be regarded as a constructor.

Figure 2 defines the class FileReader, which uses an object
of class FileReadToEnd. The class diagram for the example is in
Figure 8. This class has a session type of its own, defined on lines
2-5. It specifies that methods must be called in the sequence init,
read, toString, toString, ...Line 7 defines the fields of FileReader.
The core language does not require a type declaration for f, since
this is a linear field, and linear fields always start with type Null.
Lines 14-23 illustrate the switch construct. Unlike Sing# (17), we
allow arbitrary code between the method call and the switch.



enum Res {OK, NOT_FOUND, DENIED;} 1
2

enum Bool {FALSE, TRUE;} 3
4

interface FileReadToEnd { 5
session Init 6
where Init = &{open: ®{Res.OK: Open, 7
Res .NOT_FOUND: end, 8

Res.DENIED: end}} 9

Open = &{eof: ®{Bool . TRUE: Close, 10

Bool .FALSE: Read}} 11

Read = &{read:Open} 12

Close = &{close:end} 13

14

Res open () 15
Bool eof() 16
String read () 17
Null close () 18

} 19

Figure 1. The interface of a file that must be read to the end-of-file.

class FileReader { 1
session Init 2
where Init = &{init: Read} 3

Read = &{read: Final} 4

Final = &{toString: Final} 5

6

f; String s; 7
8

Null init() { 9
f = new FileReadToEnd (); 10

s =""; 11

} 12
Null read() { 13
switch(f.open()) { 14
case NOT_FOUND: 15
case DENIED: 16
break; 17

case OK: 18
while (1f.eof()) 19

s =s + f.read (); 20
f.close (); 21
break; 22

b} 23
String toString() { return s; } 24
} 25

Figure 2. A client that reads from a FileRead ToEnd.

The while loop (lines 19-20) is similar. The result of f.eof()
must be a constant from enumeration Bool. Line 24 defines the
method toString which simply accesses a field.

Clearly, correctness of this code requires that the sequence of
method calls on field f within class FileReader matches the &s in
the session type of class FileReadToEnd, and that the appropriate
switch or while loops are performed when prescribed by the @s
in the session type. Our static type system, defined in Section 4,
enables this consistency to be checked at compile-time. In order
to check statically that an object with a dynamic interface such as
FileReader . f is used correctly, our type system treats the reference
linearly so that aliases to it cannot be created.

In order to support separate compilation we require only the
interface of a class. For example, in order to typecheck classes
that are clients of FileReader, we rely on its interface, as defined in
Figure 3. Similarly, to typecheck class FileReader, which is a client
of FileReadToEnd, it suffices to use the interface in Figure 1, thus

interface FileReader { 1
session &{init: &{read: Final}} 2
where Final = &{toString: Final} 3

4

Null init() 5

Null read () 6

String toString () 7

} 8
Figure 3. Interface for FileReader.

interface FileRead extends FileReadToEnd { 1
session Init 2
where Init = ... // As in Figure 1 3

Open = &{eof: &{Bool . TRUE: Close, 4
Bool.FALSE: Read }, 5

close:end} 6

Read = &{read:Open, close:end} 7

Close = &{close:end} 8

} 9

Figure 4. A file that can be closed before the end-of-file.

effectively supporting typing clients of classes containing native
methods.

3. Subclassing Dynamic Interfaces

We now extend our example to illustrate inheritance and subtyping
in the presence of session types. We allow a class C to inherit from
(extend) a class D in the usual way: C may define additional fields
and methods, and may override methods of D. By considering the
standard principle of safe substitutability, namely that an object of
class C should be safely usable wherever an object of class D is
expected, we can work out the allowed relationship between the
session types of C and D. In a given state, C must make at least
as many methods available as D; if a given method returns an
enumeration, corresponding to a ¢ session type, then the set of
values in C must be a subset of the set in D. When a method of
class D is overridden by a method of class C, we allow contravariant
changes in the parameter types and covariant changes in the result
type.

Class FileRead (Figure 4) extends FileReadToEnd (Figure 1).
The extension is that method close is now also available from
states Open and Read. A new client FileBoundedReader (Figure 5)
takes advantage of this possibility to read the first string in the file.
Because method FileReader . init (the constructor) creates a object
of class FileReadToEnd, the new client also overrides method init
to create an object of the correct type. The class diagram is in
Figure 8.

The original FileReader can safely use an object of class
FileRead instead of the expected FileReadToEnd; it does not take
advantage of the additional availability of close. The diagram in
Figure 7(b) highlights the key idea: the session type of a sub-
class can add extra branches to a & type. Similarly, clients of class
FileReader can use the subclass FileBoundedReader; they do not use
the new method readFirst.

Class FileRead also illustrates a self-call (to method tryRead).
This method does not show up in the session type of the class.
Although our language does not include method qualifiers, method
tryRead can be regarded as private since the type system ensures
that it cannot be called by any client of class FileBoundedReader.
There are other important features of the language that the example
does not show: methods can be recursive, methods can be both
“public” and “private” in the above sense, and methods can have



class FileBoundedReader extends FileReader { 1
session Init 2
where // see Figure 3 3

Read = &{read: Final, 4
toString: Final, 5
readFirst: Final} 6

7
8
9
1

@Override
Null init() {
f = new FileRead ();
s =""; 0
} 11
Null readFirst() { 12
switch (f.open()) { 13
case NOT_FOUND: 14
case DENIED: 15
break ; 16
case OK: 17
tryRead (); 18
} ) 19
Null tryRead () { 20
switch(f.eof ()) { 21
case TRUE: break; 22
case FALSE: f.read(); break; 23
} 24
f.close (); 25
} ) 26
Figure 5. A client that reads strings from a FileRead.
enum KindRes restricts Res {OK;} 1
2
interface KindFileRead extends FileRead { 3
session Init 4
where Init = &{open: ®{KindRes.OK: Open} 5
... // see Figure 5 6
@Override 7
KindRes open () 8
} 9

Figure 6. A file that can always be opened for reading.

parameters. Because of this last feature, the language supports
passing objects, hence passing sessions: a class may create an
object, use it according to the initial part of its session type, and
then send the object to another class that continues using the object
according to the session type. Reference (23) contains examples of
these kinds.

Classes can also be subtyped by restricting the range of the pos-
sible results of method calls. For example, class KindFileRead (Fig-
ure 6) extends class FileRead (Figure 5). The method open is over-
ridden and the new version never returns NOT_FOUND or DENIED.
The diagram in Figure 7(c) illustrates the idea of removing two
branches from a @ type in this way. The return type of open is now
an enumeration containing only the value OK. To observe the usual
requirement of covariant changes to the return type of a method,
we define a new enumeration KindRes which is a subtype of Res.
The syntax enum KindRes restricts Res {OK;} is analogous to the
extends form for classes, but instead of specifying additional mem-
bers it specifies the remaining values.

The original FileReader can safely use a KindFileRead; the
NOT_FOUND and DENIED branches of the switch statment will
never be called. In the new KindFileBoundedReader class (not
shown), the switch statement has just one branch, for OK. Had
we defined KindFileRead and KindBoundedReader in isolation there
would be no need to use an enumeration at all, but it is necessary
for compatibility with the rest of the class hierarchy.

v @ 9

open | open | open |

@ @ @

\
OK/ \NOTJOUND OK/ \NOTJ"OUND OK \ NOT_FOUND

9@ @9 @>)

eof | eof/  \clos eof/ \clos®

@\ B H
@Y

[ close | close/ close | close/ close
a) FileReadToEnd (b) FileRead ©) aindFiIeRead

Figure 7. The diagrammatic representation of the session types for
the classes in Figures 1, 5 and 6 (branch DENIED omitted).

FileReader - --------- FileReadToEnd
AN AN
’ FileBoundedReader % ******** 1 FileRead
AN
KindFileRead

Figure 8. Class diagram for the classes in the example.

’ KindFileBoundedReader % —————

4. A Core Language for Dynamic Interfaces

We now present a formal syntax, operational semantics and type
system for a core language containing the essential features of the
examples in Sections 1-3, and state a type safety result. All objects
have dynamic interfaces, meaning that all objects are handled lin-
early by the type system, whereas a practical language would also
contain standard (non-dynamic) objects. All methods have exactly
one parameter. In terms of expressivity this is not significant, as
multiple parameters can be passed within an object, and a dummy
parameter can be added if necessary. Anyway, it is easy to gener-
alize the definitions, at the expense of slightly more complex no-
tation. The formal language only includes classes; the interfaces in
Sections 2 and 3 are used for illustration purposes only.

In order to simplify the presentation of the type system and the
proof of type safety, the formal language requires every method
definition to be annotated with pre- and post-conditions, expressed
as a requirement (req) and a guarantee (ens, for “ensures”) on the
type of the object on which it is called. These annotations are in the
style of the Fugue system (11) but stated in terms of session types.
The typechecking algorithm presented in Section 5 infers the pre-
and post-conditions for each “public”” method.

4.1 Syntax

We separate the syntax into the programmer’s language (Figure 9)
and the extensions required by the type system and operational se-
mantics (Figure 10). Class, enum and method declarations, includ-
ing the forms for inheritance, have been illustrated by the examples.
We write session(C), fields(C'), methods(C') to access the com-
ponents of a class, and constants(E) for the set of values in an
enum. A class declaration does not declare types for fields because
they can vary at run-time. When an object is created, its fields are
initialised to null. We assume that class and enum identifiers in a
sequence of declarations D are all distinct, and that method names,

field names and labels in M , f and {l; }scr are distinct as well.



D := classC {S; f: M} | enum E L |
class C extends C {S; f; M} |
enum FE restricts £ L

Class dec

Constant sets L == {l; }ier
Methoddec M = T m(T z) {e}
Values v == null | E.l | o
Value references r == v | z | o.f
Expressions e =7 | newC() | o.f = e |

r.m(e) | e;e | while (e) {e} |
switch (e) {case l;: €; }ier
Types T == Null | E | C[S]
S = &{mi: Sitier | ®{E.li: Sitier |
uX.S | X

The only object reference o available to the programmer is this.

Session types

Figure 9. Programmer’s syntax

Methoddec M := reqT ensT for T 'm(T z) {e}
Field types F = T f
Types T == ... | C[S;F] | Tlinkr | (E.li: Ti)ier
Field values V = f=4
Heaps h == ¢ | hi:o=C[V]
States s == hse
Contexts & == [] | o.f =& | Ee | rm(€E) |

switch (&) {case l;: e; }ier

Figure 10. Syntax used only in the type system and semantics.

There are some restrictions on the syntax of expressions. Field
access and assignment are only available for a field of an object
reference, not a field of an arbitrary expression; moreover, the only
object reference available to the programmer is this. Method call is
only available on object references and parameters, not on arbitrary
expressions. All fields are private: this.f.g and this.f.g.m() are
not syntactically correct. The examples in Section 2 omit this as
the prefix to all field accesses, but they can easily be inserted by the
compiler.

C'[S] is the type of an object of class C'in state (session type) S.
F is an enumerated type, and the type Null has the single value null.
The type system uses type environments I', which are functions
assigning types to object references o.

Session types have been discussed in relation to the example.
Session type end abbreviates &{}. In ®{E.l;: S;}icr, the identi-
fier E is an enum with values {I; };c1. In the session type of a class
declaration, the top-level constructor, apart from recursion, must be
&. The core language does not include named session types, nor the
session and where clauses from the examples; we just work with
recursive session type expressions of the form pX.S, which are
required to be contractive, i.e. containing no subexpression of the
form X5 - - X5 .X1. We adopt the equi-recursive approach (39,
Chapter 21) and regard pX.S and S{(uX.S)/X} as equivalent,
using them interchangeably in any mathematical context.

Figure 10 defines additional syntax needed for the formal sys-
tem. It is not available to the programmer. In the types, C[S; F] is

a form of object type that includes field types, and (E.l;: T;)icr
is a variant type, indexed by the values of an enumerated type E.
In contrast to variant types in functional languages, values are not
tagged; instead the tag is stored in a field of type E link r, where r
has variant type. These types are used in the type system but do not
appear in top-level programs.

Field values, heaps, states and configurations are used to define
the operational semantics. A heap is a function and an entry in the
heap maps an object reference o to an object: 0 = C| f = 7],
where C is the class and the fields f have values v. £ are evaluation
contexts in the style of Wright and Felleisen (45).

4.2 Operational Semantics

Figure 11 defines an operational semantics on configurations h;e
consisting of a heap and an expression. The rules are implicitly pa-
rameterized by D, the list of declarations constituting the program.
We regard a heap £ as a function from object references o to objects
C[f = #]. The operation h :: 0 = C|[f = #] denotes adding an en-
try to the heap h, and it is only defined if o is not in h and all object
references in ¥ are in the domain of h. If k(o) = C[f = ] then
h(o).class means C' and h(o).f; means v;. If h(0) is defined (this
is an implicit hypothesis) then the notation h{o.f — v} means the
heap obtained by changing the value of field f in object o to v.

The rules central to our proposal—method call and switch—and
their interplay with the novel link types are better described via an
example. The reduction of the expression

0.g = o.f.m;();switch (0.g) {case lx: er}rex

is illustrated in Figure 12. The figure shows the environment in
which each expression is typed; the environment changes as reduc-
tion proceeds, because a method call advances the session type of
the object (and because of the link type). The typing of an expres-
sionis I'>e:T'< I but we only show I' because I'’ does not change.
We also omit the heap, showing the typing of expressions instead
of states, and the type of the expression, which is not the interesting
part of this example. Calling o. f.m () introduces a variant type for
field f. The type of the expression o.f.m;() is E link o.f, which
appears as the type of o0.g after the assignment is executed. Extract-
ing the value of 0.g, in order to switch on it, nullifies 0.g and so the
type E link o.f disappears. Finally, the switch resolves the variant
type of o.f according to the particular enumerated value E.[,.

R-NEW creates a new object in the heap, with null fields. R-
FIELD extracts the value of a field from an object in the heap.
Linear control of objects requires that the field be nullified. R-
ASSIGN updates the value of a field. The value of the assignment,
as an expression, is null; linearity means that it cannot be v as in
Java.

There are two rules for method call. R-DIRECTCALL is for calls
directly on an object reference, which arise from calls on this and
calls on method parameters. R-INDIRCALL is for calls on fields of
objects. In both cases, appropriate substitutions are made for this
and the formal parameter.

R-WHILE defines the behaviour of a while expression by rewrit-
ing to an appropriate switch. R-SWITCH itself is standard. R-SEQ
discards the result of the first part of a sequential composition. R-
CONTEXT is the usual rule for reduction in contexts.

To complete the definition of the semantics we need to define
the initial state. For a given class C' and main method m, one would
expect an initial state of the form (; new C().m(...). Because we
cannot call methods on arbitrary expressions, the initial state is
actually

o0 = Clfields(C) = null]; o.m(...).



h; new C() — h:: 0 = Clfields(C) = null]; o
h(o).f =wv

(R-NEW)

h; o.f — hio.f — null}; v
h; o.f = v— h{o.f — v}; null
(-m(-z) {e}) € methods(h(o).class)

(R-FIELD)

(R-ASSIGN)

h; o.m(v) — h; e{o/this}{v/x}
(_m(_z) {e}) € methods(h(0").class)

h(o).f =0

(R-DIRECTCALL)

h; o.f.m(v) — h; e{o’/this}{v/x}
h; switch (E.l;) {casel;: e;}icr — h; €
h; while (e) {'} — h; switch (e) {case F : null,case T : ¢’; while (e) {e'}}

h; v;e — h; e

(R-INDIRCALL)

Gebh (R-SWITCH)
(R-WHILE)

h;e—h'; ¢

h; Ele] — n'; Ele’]

(R-SEQ,R-CONTEXT)

Figure 11. Reduction rules.

0:C[S;C'[&{mi: Si}ier] £, T g] ©

— (R-INDIRCALL)

0:C[S;(E.lk: C'[Sk)kex [T g] v

*
—

0:C[S;{(E.ly: C'[Sk))kex f,Tg] ©

— (R-ASSIGN, R-SEQ)

0:C[S;{E.ly: C'[Sk)kex f,(Elinko.f) g]

— (R-FIELD)

OZC[S; <Elk C/[SkaEK f,NuIIg} >

— (R-SWITCH)

0.9 = o.f.m;();switch (0.g) {case li: ertrex

0.9 = e{h(o.f)/this}; switch (0.g) {case lx: ex}rer
0.9 = E.lp;switch (0.g) {case li: er}rek

switch (0.9) {case l: ex}rex

switch (E.l,) {case l: ex}rek

0:C[S;C'[Sp] f,Nullg] > ep

Figure 12. Example of the interplay between method call, switch and link types.

T<:T'" T'<:T

T<:T S-ID,S-TRANS
< T<:T ( )
enum E restricts E' L € D L C constants(E')
= S-ENUM
E< FE ( )
T< T ICJ E<E T,<:T (Viel

Tlinkr <: T’ link r (Edi: Toyier < (E'1;: T!Y;eq

(S-LINK,S-VARIANT)

class C extends C' {_; ;_} € D S <: 8 F < F'
C[S; F] <: C'[S; F']
(S-CLASS)
T<T W<W
-M
T m(Wx) {7} < T m(W’x) {7} (S-METHOD)
T<T U<U V<V W<W

req T ens U for V m(Wz) {_} <:reqT" ens U’ for V' m(W'xz) {_}

(S-ANNOTMETHOD)

Figure 13. Subtyping rules for types and method signatures.

4.3 Subtyping

The foundation for the theory of inheritance and subtyping is the
definition of subtyping between session types. Let S be the set of
session types. Define unfold(uX.S) = unfold(S{(pX.S)/X}),

and unfold(S) = S for non-recursive session types S; contractiv-
ity guarantees that this definition terminates.

DEFINITION 1. A relation R C S X S is a session type simulation
if (S,S") € R implies the following conditions.

1. If unfold(S) = &{mi: Si}ticr then
unfold(S") = &{my: Sj}jes, J C I and
Vj € J.(S;,57) € R.
2. If’LL?’ZfOld(S) = GB{EZ, Sz’}ie] then
unfold(S") = @{E'.l;: Sj}je,
constants(E) C constants(E') and Vi € 1.(S;, S;) € R.

The subtyping relation on session types is defined by S <: S’ if
there exists a session type simulation R such that (S,S’) € R.

The direction of subtyping is opposite to that defined in (21),
because we make a choice by selecting a method from a session
of & type instead of by sending a label on a channel of & type.
However, the point is that in both cases, the type allowing a choice
to be made has contravariant subtyping in the set of choices. This
reversal of the subtyping relation for session types also occurs in
(6). Further details, including the proof that subtyping is reflexive
and transitive and an algorithm for checking subtyping, can easily
be adapted from (21).

Figure 13 defines subtyping between types of our language. The
relation is as expected for object types viewed as records of fields,
with the addition of subtyping between the session types.

It turns out that both the requires and ensures types behave
covariantly. For ensures this is because the type is really part of the
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Figure 16. Typing rules for heaps and states.

result type of the method, describing the implicitly returned this.
For requires it is because the type is the true type of the object on
which the method is called.

4.4 Type System

The type system is defined by the rules in Figures 14, 15, and 16.
The typing judgement for expressions is I'>e:T'< . Here I" and I’
are the initial and final type environments when typing e; I may
differ from I' either because identifiers disappear (due to linearity)
or because their types change (due to their dynamic interfaces). We
regard an environment I" as a function from object references o to
object types C[S; T f]. If T'(0) = C[S;T f] then I'(0). f; means
T;. If r is a value reference such that I'(r) is defined (i.e. either
r=oand o € dom(T') orr = o.f and 0 € dom(I") and I'(0)
has field f) then the notation I'{r — T} means the environment
obtained by changing the type of o or o. f, as appropriate, to 7.

First consider Figure 14, which defines typing of expressions.
T-NEW types a new object, giving it the initial session type from
the class declaration and giving all the fields type Null. T-FIELD
types field access, nullifying the field because its value has moved
into the expression part of the judgement. T-ASSIGN types field
update; the type of the field changes, and the type of the expression
is Null, again because of linearity. The restriction on variant types
is to avoid invalidating link types.

T-CALL requires an environment in which method r.m is avail-
able. In the signature of m, the req type must match the type of o. f,
the ens type gives the final type of o.f, and the result type gives
the type of the expression as usual. The rule covers two cases, de-
pending on whether the method returns an object or an enumerated
value. In the latter case, which corresponds to a variant type in the
ens of the method, the expression acquires the type T link 7, in-
dicating that 7 has a variant type that will be resolved by a switch
on the result of the method. The same mechanism is used by T-
BRANCH. The other rule for method call, T-SELFCALL, does not
check the req annotation; self-calls do not change the session type
of the object.

T-SWITCH types a switch on e, whose type must have a link to
a field with a variant type. All branches must have the same final
environment I'”, so that it is a consistent final environment for the
switch expression.

T-WHILE is derived from T-SWITCH and the fact that a while
expression reduces to a switch with two branches. The terminating
branch is null and does not appear as a hypothesis. The looping
branch, which is the expression €', must be typable and must
preserve the environment, so that the loop makes sense. T-SEQ and
T-SUB are standard.

Now consider Figure 15. The most interesting rules are T-
METH and T-METHVAR, which check that a method body has the
effect specified by the req and ens declarations. There are two rules
because the typing of a method has different forms depending on
whether or not the class session type is . If it is, then the method
must produce a variant type for this.

Figure 16 defines rules for typing heaps and states (runtime con-
figurations). The typing of a heap, I' - h, means that I" gives types
to the usable objects in h. Because of linearity, I" only contains
types for top-level objects, i.e. those that are not stored in fields of
other objects. Weakening of the heap typing (T-HWEAK) is needed
in order to prove type preservation, because assignment can discard
an object. T-EXPRSTATE and T-LINKSTATE are not used for top-
level programs, but are needed in the proof of type preservation to
type the state resulting from reduction of a method call.

4.5 Results

By standard techniques (45) adapted to typing judgements with
initial and final environments (22) we can prove a type preservation
theorem of the usual kind.

THEOREM 1 (Type Preservation). IfI'>h;e: T <I" and h;e —
h'; € then there exists T such that T > h';e’ : T <T".

To obtain a type safety theorem we define call traces, enabling
us to extract more information from the type preservation proof.

DEFINITION 2 (Call Traces). A call trace on an object o is a se-
quence mi1maQsa . .. where each m; is a method name and each
«; s either an enumeration label or nothing.

The operational semantics defines a call trace for every object.
Self-calls are excluded from call traces. A session type defines a set
of call traces, which is simply the set of paths through the session
type regarded as a labelled directed graph.

THEOREM 2 (Type Safety). When executing a typed program, the
call trace of every object is one of the traces of the initial session
type of its class.

Given a mapping from objects to call traces, the safety property
is an invariant of reduction, and type safety becomes a corollary of
type preservation.

5. Typechecking Algorithm

Figure 17 defines a typechecking algorithm. It is used in two steps.
First, for each class C' with declared session type S, Pc(S,0)
is called. This returns annotations for the methods of C, in the
form req C[&{m;: S;}ic1] ens C[S;] for T m;{e}. Algorithm
‘P is very simple, and just translates the session type of a class
into explicit pre- and post-conditions for its methods. A particular
method can receive several different annotations, giving a form of
overloading which is useful in the example of Figure 4, allowing
method close to be called in three different states. In this case, the
req type should be used to disambiguate methods calls.

The second step is to call Ac(F,S,0) for each class C,
where S is the declared session type of C and F' is the initial
field typing (with all fields having type Null) of C. Algorithm
A has two purposes. (1) It calls algorithm B to typecheck the
method bodies of C, in the order corresponding to S. While type-
checking, the annotations calculated by algorithm P are used to
check the effect of method calls. (2) It calculates a more com-
prehensive set of annotations for the methods of C, in the form
req C[&{m;: Si}ticr; F] ens C[Sj; F}] for T m;() {e}. These
are used in the proof of type safety, to show that a typable program
in the top-level language yields a typable program in the runtime
language.
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Figure 14. Typing rules for expressions.
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Figure 15. Typing rules for programs.
The definition of B follows the typing rules (Figure 14) except ens FileReadToEnd [Open]

for one point: T-INJ means that the rules are not syntax-directed. String read()
To compensate, clause E.l of B produces a partial variant field )
typing with an incomplete set of labels, and clause switch uses the req FileReadToEnd[Close]

W operator to combine partial variants and check for consistency.
The various “where” and “if” clauses should be interpreted
as conditions for the functions to be defined; cases in which the

ens FileReadToEnd[end]
Null close ()

These annotations are used when algorithm A is applied to class

functions are undeﬁneq should b_e interpreted as typing errors. FileReader in Figure 2 producing the following annotated methods,
) For example, applying algorlthm P to class FileReadToEnd in that include information about the field typing within FileReader,
Figure 1 produces the following annotated methods. but no information about fields within FileReadToEnd, for which

we do not have the source code.

req FileReadToEnd[Init]

ens FileReadToEnd [®{Res.OK: Open,...}] req FileReader[Init; Null f]
Res open () ens FileReader[Read; FileReadToEnd|[Init]
Null init()

req FileReadToEnd[Open]
ens FileReadToEnd [®{Bool.True: Close,...}] req FileReader[Read; FileReadToEnd[Init]
Bool eof() ens FileReader[Final; FileReadToEnd[end]

Null read()
req FileReadToEnd[Read]



Algorithm P
pC(&{mi5 Si}ieh A) =
{req &{m;: S;}icr ens C[S;] for T m;(F) {e} |
T mi(F){e} € methods(C),i € I} UU;c; Pc(S;, cA)
Po(O{E.li: Siticr, A) = U;e; Pc(Si, A)
PC(“X'S7 A) =
if nX.S € A then 0 else Pc(unfold(S), AU {uX.S})
Algorithm A
Ac(&{ml : Si}iej, F, A) =
U, e, {{rea Clic{m.: Si}ier; F] ens C[S5; B for Ty my(F,
UAc(Sj, Fj, A) | Ty m;(Fy) {e;} € methods(C),
S5 .
(FjvTj) = BCJ (ej7 (Fa FP)7®)7.7 € I}
Ac(@{Elz : Si}ie], F, A) = UjeI Ac(S]', F, A)
Ac(pX.S, F,A) =if nX.S € dom(A) then A(pX.S)
else Ac(unfold(S), F, AU {uX.S — F})
Algorithm B

Bg(nun F,) = (F,Null)
E.F,)) = ((E.l: C[S;F]),E)
new C(), F, ) = (F, C[session(C)])

BE(
Be&(
(thls fF (F+ f:Null, F(f))
(z,
(

B
B
B

i) =
F,.) = (F + z: Null, F(z))
th|sf = e, F, A) (F" + this.f : T, Null)
where (F', T) = BZ (e, F, A)
BZ (this.f.mj(e), F,_) = (F + f : Null, T")
where (F',T,) = B& (e, F, A)
and F'(f) = C'[&{m;: Si}icr]and j € I
and req C'[&{m;: S;}icr] ens _for T m;(T, z) {_}
€ methods(P o (session(C’), D))
and 7" =if S; = @{... } then T link this else T
BZ (this.m(e), F, A) = if m € dom(A) then (A(m), T)
else BE (e, F', AU {m — (F')})
where (F',T,) = B& (e, F, A)
and T'm(T, z){e} € methods(C)
BZ (switch () {case l;: e; }icr, F; A) = (Y F;, T)
where (F', E link this) = B2 (e, F, A)
and (F;, T) = BE(ei, ', A) and I; € constants(E)
B2 (while (e) {€'}, F, A) = (Fy, Null)
where ((Bool.F : C[_; F¥],Bool.T : C[_; Fy]), E link this) =
Bi(e, F,A)
and (F,.) = Bg(e/>FfaA)
Bé((e;€)), F,A) = BE (e, F', A)
where (F’,_) = B2 (e, F, A)

Combining partial variants

S
C
S
C
S
C
S
C
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<E.li: Ti>ie[ ] (E.mj: T]{>j€J = <Elk T,g)keIUJ
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and whenever [; = m; we have T; = T}

Figure 17. Algorithm

req FileReader[Final;
ens FileReader[Final;
String toString ()

FileReadToEnd[end] f]
FileReadToEnd[end] f]

Notice that both algorithm P and algorithm A are driven by the
session type of the class, hence, e.g., method tryRead in Figure 5

will not be annotated, although its code will be analysed triggered
by the call in method readFirst.

The main results about the algorithm are: 1) it always termi-
nates; and 2) it produces only well-typed class declarations. To
prove the latter we need to check consistency between the session
type and the pre- and post-conditions of the methods, as informa-
tion about the allowed sequences of method calls is now specified in
two places: the session type of a class, and the req and ens clauses
of the methods.

THEOREM 3. Let D be a program, i.e. a sequence of declarations.

) et} 1. For every class C {S; f; M} or class C extends C’ {S; f: M}

in D, Po(S,0) and Ac(Nullf, S, 0) terminate.

2. Forevery class C {S; f: M} or class C extends C’ {S; f; M}
in D, replace M by Ac(NGIIf, S,0), and let D' be the result-
ing declarations. Then - D

The session type of a class has two interpretations. The first is as
a limit on the allowed sequences of method calls, a kind of safety
property, and this is always guaranteed by our type safety result.
The second interpretation is that every sequence of method calls in
the session type should be realizable in a typable program. Given a
class definition C' in the internal syntax, with explicit req and ens
annotations, construct an expression ec as follows:

1. View the session type of C as a (possibly infinite) tree, with
branching at & and + nodes.

2. Make it into a finite tree by replacing some & nodes by end.

3. For each & node, remove all except one of the branches; call
the resulting tree 7'.

4. ec constructs an object of class C' and contains a sequence
of method calls and switch statements corresponding to the
structure of 7.

Typability of C in the internal system does not guarantee that ec
is typable, because it is possible for the req and ens clauses to
contain spurious constraints such that the ens of one method does
not match the req of the next method in the session type. But the
typechecking algorithm, applied to a program in the programmer’s
syntax, produces definitions such that every ec is typable.

6. Implementation

We have used the Polyglot (37) system to implement the ideas of
this paper as a prototype extension to Java 5, which we call Bica.
This includes type-checking method calls against the class session
types of non-uniform objects. The implementation also includes
standard classes without session types, which are not linearly con-
trolled. The definitions of class session types, and the restricts
declaration of enumerated types, are implemented as Java annota-
tions @session and @restricts rather than syntactic extensions. The
semantics of the language is standard Java.

The implementation of Bica follows the Polyglot framework
and is structured as a number of visitors which process session type
declarations and implement the type-checking algorithms defined
in Section 5. It is available from
http://gloss.di.fc.ul.pt/bica/.

Calling a method out of the order specified by the session
type will be detected and reported as an error. For the FileReader
example (Figure 2), if we try to read from the file while it is not
opened, (by including a call f.read() before the switch statement
in line 14), the compiler will exit with an error message:

FileReader.java:14:
Cannot proceed with call to f.read()
in state &{open:...}



If we omit the call f. close () in line 21, Figure 2, the compiler
detects that the three branches (NOT_FOUND, DENIED, and OK)
do not end with f in the same state.

FileReader.java:14—-23:
Switch cases end in different states:
NOT_FOUND: [f: end]
DENIED: [f: end]
OK: [f: &{close: end}]

7. Related Work

Previous work on session types for object-oriented languages.
Several recent papers by Dezani-Ciancaglini, Yoshida et al. (14;
29; 5; 13; 15; 35) have combined session types, as specifications
of protocols on communication channels, with the object-oriented
paradigm. A characteristic of all of this work is that a channel is
always created and used within a single method call. It is possible
for a method to delegate a channel by passing it to another method,
but it is not possible to modularize session implementations as
we have recently done (23), by storing a channel in a field of an
object and allowing several methods to use it. The most recent
work in this line (5) unifies sessions and methods, and continues
the idea that a session is a complete entity. Mostrous and Yoshida
(35) add sessions to Abadi and Cardelli’s object calculus. Our
approach is substantially different: we use session types as global
specifications of class behaviour, supporting thus a disciplined use
of non-uniform objects, not (only) to discipline communication
channels.

Non-uniform concurrent objects / active objects. Another related
line of research was started by Nierstrasz (36), aimed at describ-
ing the active objects in concurrent systems, whose non-uniform
behaviour (including the set of available methods) may change dy-
namically. He defined subtyping for active objects, but did not for-
mally define a language semantics or a type system. The topic has
been continued by several authors (43; 40; 41; 4; 9).The last two are
the most relevant. Damiani et al. (9) define a concurrent Java-like
language incorporating inheritance and subtyping and equipped
with a type-and-effect system, in which method availability is made
dependent on the state of objects. Caires (4) uses an approach based
on spatial logic to give very fine-grained control of resources, and
Militdo (34) has implemented a prototype based on this idea. The
distinctive feature of our approach to non-uniform objects, in com-
parison with all of the above work, is that we allow an object’s
abstract state to depend on the result of a method call. This gives
a very nice integration with the branching structure of channel ses-
sion types.

Cyclone, Vault, CQual, Fugue, Sing#. Cyclone (25),Vault (10;
18), and CQual (20) are systems based on the C programming lan-
guage that allow protocols to be statically enforced by a compiler.
Cyclone adds many benefits to C, but its support for protocols is
limited to enforcing locking of resources. Between acquiring and
releasing a lock, there are no restrictions on how a thread may use
a resource. In contrast, our system uses types both to enforce lock-
ing of objects (via linearity) and to enforce the correct sequence of
method calls.

Vault is much closer to our system, allowing abstract states to
be defined for resources, with pre- and post-conditions for each
operation, and checking statically that operations occur in the cor-
rect sequence. It uses linear types to control aliasing, and uses the
adoption and focus mechanism (18) to re-introduce aliasing in lim-
ited situations. Fugue (19; 11) extends similar ideas to an object-
oriented language, and uses explicit pre- and post-conditions that
are somewhat similar to our req/ens annotations. CQual expects
users to annotate programs with type qualifiers; its type system,

simpler and less expressive than the above, provides for type infer-
ence.

Sing# (17) is an extension of C# which has been used to imple-
ment Singularity, an operating system based on message-passing.
It incorporates session types to specify protocols for communica-
tion channels, and introduces contracts which are analogous to our
req and ens clauses. The published paper (17) does not discuss the
relationship between channel contracts and non-uniform objects or
typestates, and does not define a formal language.

The main novelties of our work are the integration of session-
typed channels, the use of the session type of a class as a global
specification, the dependency between the result of a method and
the subsequent abstract state of the object, and the characterization
of the subtyping relation. A technical point is that Sing# uses a
single construct switch receive to combine receiving an enumera-
tion value and doing a case-analysis, whereas our system allows a
switch on an enumeration value to be separated from the method
call that produces it.

Unique ownership of objects. In order to demonstrate the key idea
of modularizing session implementations by integrating session-
typed channels and non-uniform objects, we have taken the sim-
plest possible approach to ownership control: strict linearity of
non-uniform objects. This idea goes back at least to the work of
Baker (2) and has been applied many times. However, linearity
causes problems of its own: linear objects cannot be stored in
shared data structures, and this tends to restrict expressivity. There
is a large literature on less extreme techniques for static control of
aliasing: Hogg’s Islands (26), Almeida’s balloon types (1), Clarke
et al.’s ownership types (8), Fihndrich and DeLine’s adoption and
focus (18), Ostlund ef al.’s Joes (38) among others. In future work
we intend to use an off-the-shelf technique for more sophisticated
alias analysis. The property we need is that when changing the type
of an object (by calling a method on it or by performing a switch
or a while on an enumeration constant returned from a method call)
there must be a unique reference to it.

Resource usage analysis. Igarashi and Kobayashi (31) define
a general resource usage analysis problem for an extended A-
calculus, including a type inference system, that statically checks
the order of resource usage. Although quite expressive, their system
only analyzes the sequence of method calls and does not consider
branching on method results as we do.

Analysis of concurrent systems using pi-calculus. Some work
on static analysis of concurrent systems expressed in pi-calculus
is also relevant, in the sense that it addresses the question (among
others) of whether attempted uses of a resource are consistent with
its state. Kobayashi ez al. have developed a generic framework (30)
including a verification tool (32) in which to define type systems
for analyzing various behavioural properties including sequences
of resource uses (33). In some of this work, types are themselves
abstract processes, and therefore situations resemble our session
types. Chaki et al. (7) follow Kobayashi’s approach and use CCS
to describe properties of pi-calculus programs, and verify the valid-
ity of temporal formulae via a combination of type-checking and
model-checking techniques, thereby going beyond static analysis,
as they are interested in liveness properties.

All of this pi-calculus-based work follows the approach of mod-
elling systems in a relatively low-level language which is then ana-
lyzed. In contrast, we work directly with the high-level abstractions
of session types and objects. It is not clear how to lift the generic
types pproach from process algebra to a programming language, as
we have done with session types.

8. Future Work

There are several topics for future work.



Shared classes. In the present system, all classes are linear. It is
straightforward to add shared classes, whose objects do not have to
be uniquely referenced. The behaviour of shared objects is largely
orthogonal to that of linear objects, except for the condition that a
shared object’s fields cannot contain linear objects.

More flexible control of aliasing. The mechanism for controlling
aliasing should be orthogonal to the theory of how operations affect
uniquely-referenced objects. We intend to adapt existing work to
relax our strictly linear control and obtain a more flexible language.
Complete use of sessions. Some systems based on session types
guarantee that sessions are completely used, finishing in state end.
Our system does not have this property, but to achieve it we only
need to change the rules for assignment so that an incompletely-
used object cannot be discarded. In a practical language this condi-
tion could be specified independently for each object.

Java-style interfaces. If class C' implements interface I then we
should have session(C) <: session(I), interpreting the interface
as a specification of minimum method availability.

Concurrency. We have extended our system to a concurrent lan-
guage with channel-based communication (23), unifying dynamic
interfaces, the Sing# (17) version of session types, and other work
on object-oriented session types (14; 15; 16; 29). It will also be
interesting to look at RMI for dynamic interfaces.

Specifications involving several objects. Multi-party session
types (3; 27) allow to describe specifications that involve more
than two objects. The introduction of such types would allow dis-
ciplining the usage of more sophisticated patterns of object usage.

9. Conclusions

We have defined a core class-based object-oriented language with
a static type system which is able to check correctness of method
calls in a setting in which method availability depends on an ob-
ject’s state. We have proved the correctness of the type system with
respect to a formal operational semantics. Key features of the lan-
guage are: firstly, allowing a dependency between the result of a
method and the subsequent abstract state of its object, thereby forc-
ing the client of such a method to branch accordingly; secondly, the
use of a session type as a global representation of the abstract states
of an object, enabling us to define rules for inheritance in terms of
a subtyping relation on session types.
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