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Abstract

Labelled sequent calculi are provided for a wide class of normal modal
systems using truth values as labels. The rules for formula constructors
are common to all modal systems. For each modal system, specific rules
for truth values are provided that reflect the envisaged properties of the ac-
cessibility relation. Both local and global reasoning are supported. Strong
completeness is proved for a natural two-sorted algebraic semantics. As a
corollary, strong completeness is also obtained over general Kripke seman-
tics. A duality result is established between the category of sober algebras
and the category of general Kripke structures. A simple enrichment of the
proposed sequent calculi is proved to be complete over standard Kripke
structures. The calculi are shown to be analytic in a useful sense.
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1 Introduction

Labelled deduction has been attracting much attention, namely within modal
logic where it is natural to set up deduction systems using worlds as labels. The
idea of using worlds as labels is already found in [15]. More recently, the idea
was further explored in an attempt to produce modular calculi appropriate
for automation. Indeed, while for defining a Hilbert calculus for a specific
modal system one has to add just some extra axioms to the core calculus for
system K, when setting up a sequent calculus (or a tableaux calculus, or a
natural deduction calculus) for a specific modal system one has to start from
scratch (or almost). Usually, the rules needed for the modal system at hand are
quite and subtly different from those of system K (see, for instance, [12, 20]).
Labelled deduction opened a way out of this difficulty. With labelled deduction
it is possible to keep the rules of the core calculus, adding for each modal
system some extra rules about the labels (worlds), as proposed in, for instance,
[10, 13, 4, 8, 19].
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The idea of labelled deduction also appeared outside the context of modal
logic, namely for finite many-valued logics where it is natural to use the truth
values as labels [9, 3, 14].

More recently, labelled deduction has been applied in the context of research
on combining logics. Namely, as discussed in [16], combining deduction systems
requires a sufficiently general notion of labelled deduction system in order to
make possible to combine, for instance, a natural deduction calculus for a modal
system with a natural deduction calculus for a finitely many-valued logic. To
this end, it is convenient to set up a deduction system with labels extracted
from a suitable algebra of truth values.

In this paper, we adopt this novel approach, studying labelled sequent calculi
for normal modal systems with labels extracted from an ordered algebra of truth
values. The basic assertions are of the form θ ≤ ϕ expressing that truth value
θ is less than or equal to the denotation of formula ϕ. Observe that by a
truth value we intend here a modal truth value that, in the context of Kripke
semantics, corresponds to a set of worlds.

The sequent calculi proposed in Section 2 share a common basis composed
of: (i) structural rules; (ii) rules about the order among truth values; and
(iii) rules for the formula constructors. The sequent calculus for each modal
system is obtained by adding to this common basis specific rules imposing the
underlying properties of the accessibility relation. The calculi support both
global and local reasoning (corresponding to entailment over Kripke structures
and entailment over worlds, respectively). Section 2 ends with some metathe-
orems not only interesting in themselves but also essential to the proof of the
completeness results.

In Section 3, we start by proposing a new algebraic semantics involving two
sorts (a sort for truth values and a sort for denotations of formulae). A quite
general completeness result is proved assuming very little about the sequent
calculus at hand (therefore, applicable outside the context of modal logic).
Afterwards, we show how to move between general Kripke structures and such
algebras in order to: (i) establish a characterization result showing that the
proposed specific rules do characterize the frames with the intended properties
of the accessibility relation; and (ii) obtain a completeness result over general
Kripke structures as a corollary of the completeness theorem over algebraic
semantics.

Observe that the proposed labelled language is rich enough to express prop-
erties of the accessibility relation that are not expressible by modal formu-
lae (such as, irreflexivity, antisymmetry and asymmetry). Furthermore, we
show that the proposed specific rules characterize the envisaged properties even
among general Kripke structures. This ability to deal with general Kripke se-
mantics is a key advantage of the “truth values as labels” approach proposed in
this paper compared with the traditional “worlds as labels” approach. By the
way, we also provide a simple enrichment of the language that leads to complete
calculi over standard Kripke semantics.

Section 3 ends with a duality between the category of sober algebras and the
category of general Kripke structures (with p-morphisms) and with a semantic
proof of the analyticity of the proposed calculi (that is, we only need to apply
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rules to known terms and formulae).
The significance of the approach is further discussed in Section 4 where

interesting future developments are also mentioned, namely towards obtain-
ing proof-theoretic results (like cut elimination), exploring the relationship to
hybrid logic and moving out of the context of modal logic to tackle other logics.

2 Sequent calculi

2.1 Language

Assume given three sets {ξi : i ∈ N}, {τi : i ∈ N} and {Γi : i ∈ N}. The elements
of these sets are meta-variables of different kinds: each ξi may be replaced by a
(simple) formula, each τi by a (truth value) term and each Γi by a (finite) bag
of assertions as described below.

A signature is a tuple Σ = 〈C, O, X, Y, Z〉 where C = {Ck : k ∈ N} and
O = {Ok : k ∈ N} such that each Ck and Ok is a countable set and ⊥,> ∈ O0

and X, Y, Z are countable sets. All these sets are assumed to be pair wise
disjoint. The elements of each Ck are known as (formula) constructors of arity
k. Those of each Ok are known as (truth value) operators of arity k. Those
of X are known as truth value unbound variables, while those of Y are known
as truth value bound variables. And those of Z are known as formula unbound
variables.

The sets X and Z are necessary because we need truth-value terms and
formula terms to range over all possible values. Thus, an assignment will provide
a possible value for each x ∈ X and each z ∈ Z and the set of assignments covers
all possible values. The set Y is required for a different reason. The truth value
bound variables in Y are needed in order to be able to universally quantify in
the inference rules.

The set F (Σ) of (schema) simple formulae over Σ is inductively defined
as follows: (i) ξi ∈ F (Σ) for every i ∈ N; (ii) z ∈ F (Σ) for every z ∈ Z;
(iii) c(ϕ1, . . . , ϕk) ∈ F (Σ) whenever c ∈ Ck and ϕ1, . . . , ϕk ∈ F (Σ). The set
gF(Σ) of ground simple formulae is composed of the elements in F (Σ) without
meta-variables. The set cgF(Σ) of closed simple formulae is composed of the
elements in gF(Σ) without variables.

The set T (Σ) of (schema) terms over Σ is inductively defined as follows:
(i) τi ∈ T (Σ) for every i ∈ N; (ii) x ∈ T (Σ) for every x ∈ X; (iii) y ∈ T (Σ) for
every y ∈ Y ; (iv) o(θ1, . . . , θk) ∈ T (Σ) whenever o ∈ Ok and θ1, . . . , θk ∈ T (Σ);
(v) #ϕ ∈ T (Σ) whenever ϕ ∈ F (Σ). The set gT(Σ) of ground terms is composed
of the elements in T (Σ) without meta-variables. The set cgT(Σ) of closed terms
is composed of the elements in gT(Σ) without variables.

The intended purpose of #ϕ is to say that we have a truth value term for
each formula.

The set A(Σ) of (schema) assertions over Σ is composed of the expressions
of the following six forms: (i) Ωθ and fθ (positive and negative truth value indi-
visibility assertion, respectively) with θ ∈ T (Σ); (ii) θ v θ′ and θ 6v θ′ (positive
and negative truth value comparison assertion, respectively) with θ, θ′ ∈ T (Σ);
(iii) θ ≤ ϕ and θ 6≤ ϕ (positive and negative labelled formula, respectively) with
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θ ∈ T (Σ) and ϕ ∈ F (Σ). The set gA(Σ) of ground assertions is composed of the
elements in A(Σ) without meta-variables. The set cgA(Σ) of closed assertions
is composed of the elements in gA(Σ) without variables.

The notion of conjugate δ of an assertion δ is introduced as follows: (i) Ωθ
is fθ; (ii) fθ is Ωθ; (iii) θ v θ′ is θ 6v θ′; (iv) θ 6v θ′ is θ v θ′; (v) θ ≤ ϕ is θ 6≤ ϕ;
(vi) θ 6≤ ϕ is θ ≤ ϕ.

The intended meaning of Ωθ is to assert that a truth value term is atomic,
that is, there is no term strictly smaller than it besides falsum. Clearly, the
meaning of the conjugate fθ is to indicate that θ is not atomic. We do not
consider conjunctions and disjunctions of assertions because we do not need
them in the sequel, but they could easily be introduced. Instead, we work with
sequents of assertions.

The set of (schema) labelled formulae over Σ is denoted by L(Σ). And the
set of ground labelled formulae is denoted by gL(Σ).

A (schema) substitution over Σ is a map σ such that1: (i) σ(ξi) ∈ F (Σ);
(ii) σ(τi) ∈ T (Σ); (iii) σ(Γi) ∈ Bf(A(Σ) ∪ {Γi : i ∈ N}). We denote the set of
(schema) substitutions over Σ by Sbs(Σ).

A ground substitution over Σ is a schema substitution ρ such that: (i) ρ(ξi) ∈
gF(Σ); (ii) ρ(τi) ∈ gT(Σ); (iii) ρ(Γi) ∈ Bf(gA(Σ)). We denote the set of ground
substitutions over Σ by gSbs(Σ).

In what concern substitutions we also write Γiσ and Γiρ for σ(Γi) and ρ(Γi)
respectively. The same applies to single formula and truth value terms.

2.2 Calculi

A sequent over a signature Σ is a pair s = 〈∆1, ∆2〉, written ∆1 → ∆2, where
∆1, ∆2 ∈ Bf(A(Σ) ∪ {Γi : i ∈ N}). A sequent is said to be ground if it is
written without meta-variables and it is said to be closed if furthermore it has
no variables.

The sequent calculi are composed by rules. As is standard for both labelled
and unlabelled deduction calculi, the application of the rules is subject to con-
straints. For example, in the Hilbert calculus for first-order logics we have
the axiom (∀x(ξ1 ⇒ ξ2) ⇒ (ξ1 ⇒ (∀xξ2))) provided that x does not occur free
in ξ1. The meaning os such a proviso is to say that we only allow (ground)
substitutions of the axiom where ξ1 is mapped to a formula ϕ where x does
not occur free in ϕ. Hence a proviso can be looked upon as a set of allowed
substitutions.

A (local) proviso over Σ is a map π : gSbs(Σ) → {0, 1}. The unit proviso
up is as follows: up(ρ) = 1 for every ρ ∈ gSbs(Σ). The zero proviso zp is as
follows: zp(ρ) = 0 for every ρ ∈ gSbs(Σ).

Given two provisos π, π′, their intersection is the proviso (π ∩ π′) such that
(π ∩ π′)(ρ) = π(ρ)× π′(ρ). And we say that π ⊆ π′ when π(ρ) ≤ π′(ρ) for each
ground substitution ρ. Therefore, a proviso π is included in a proviso π′ if
the latter allows more ground substitutions than the former.

1Given a set U , we denote by BfU the set of all finite bags (multisets) of elements in U .
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Given a schema substitution σ and a proviso π, the proviso (πσ) is as follows:
(πσ)(ρ) = π(σρ) for every ρ ∈ gSbs(Σ).

Observe that, for every proviso π and ground substitution ρ, the proviso
(πρ) is either up or zp.

A rule over Σ is a triple r = 〈{s1, . . . , sp}, s, π〉, written

s1 . . . sp

s
C π ,

where s1, . . . , sp, s are sequents over Σ and π is a proviso over Σ. When π is
up, the rule may be written

s1 . . . sp

s
.

Given a sequent s = 〈∆1, ∆2〉 and a substitution σ both over Σ, we denote
by sσ the instance 〈∆1σ,∆2σ〉 of s by σ. Given a rule r and a substitution σ
both over Σ, we denote by rσ the instance

s1σ . . . spσ

sσ
C πσ

of r by σ.
A (sequent) calculus is a pair C = 〈Σ,R〉 where Σ is a signature and R is a

finite set of rules over Σ.
Within the context of a sequent calculus C, we say that a sequent s′ is

derived from a set S of sequents with proviso π, written S `C s′ C π, if there is
a sequence 〈d1, π1〉, . . . , 〈dn, πn〉 such that:

• d1 is s′ and π ⊆ π1;

• for every i = 1, . . . , n:

1. either di ∈ S and πi is up;

2. or there is an assertion that occurs in both sides of di and πi is up;

3. or there are r ∈ R, σ ∈ Sbs(Σ), p ∈ N and i1, . . . , ip ∈ {i + 1, . . . , n}
such that

rσ =
di1 . . . dip

di
C π′

and πi = π′ ∩ πi1 ∩ · · · ∩ πip .

When the proviso π is up, we may write S `C s′. And we may write `C s
when the set of premises is empty. Furthermore, when the signature is obvious
from the context we may write `R instead of `C . In derivations we justify 1
by hyp (hypothesis), 2 by ax (axiom) and 3 by r[σ] : i1, . . . , ip.

Following [6, 1], we choose to display rules from premises to conclusions,
and derivations starting from the conclusion since this simplifies their reading,
as is illustrated by the example derivations below.

The derivation sequence 〈d1, π1〉, . . . , 〈dn, πn〉 is said to be sober if, for each
i = 2, . . . , n, i appears in the justification of some dj such that j < i. It
is straightforward to set up an algorithm to make sober any given derivation



6

sequence. It is also simple to set up an algorithm for extracting the traditional
derivation tree from any given sober derivation sequence.

When making proofs, we may write d1, . . . , dn for the derivation sequence
〈d1,up〉, . . . , 〈dn,up〉.

Derivation establishes a finitary consequence operator for ground sequents
thanks to the following result:

Proposition 2.1 For any sequent calculus C:
Projective If S `C s′ C π and π′ ⊆ π then S `C s′ C π′.

Finitary If S `C s′ C π then there is a finite S1 ⊆ S such that S1 `C s′ C π.

Extensive S `C s C up for each sequent s ∈ S.

Monotonic If S ⊆ S1 and S `C s′ C π then S1 `C s′ C π.

Idempotent If S1 `C s C πs for each s in a finite set S of sequents and
S `C s′ C π then S1 `C s′ C π ∩ (

⋂

s∈S

πs).

The following result is also straightforward to prove (by induction on the
length of the derivation).

Proposition 2.2 For any sequent calculus C = 〈Σ,R〉 and substitution σ over
Σ, if S `C s′ C π with derivation sequence 〈d1, π1〉, . . . , 〈dn, πn〉 then Sσ `C
s′σ C πσ with derivation sequence 〈d1σ, π1σ〉, . . . , 〈dnσ, πnσ〉.

2.3 Structural rules

A sequent calculus C = 〈Σ,R〉 is said to be structural if R contains the following
weakening, contraction, conjugation and cut rules:

LwΩ Γ1→Γ2
Ωτ1,Γ1→Γ2

RwΩ Γ1→Γ2
Γ1→Γ2,Ωτ1

LwT Γ1→Γ2
τ1vτ2,Γ1→Γ2

RwT Γ1→Γ2
Γ1→Γ2,τ1vτ2

LwF Γ1→Γ2
τ1≤ξ1,Γ1→Γ2

RwF Γ1→Γ2
Γ1→Γ2,τ1≤ξ1

LcT τ1vτ2,τ1vτ2,Γ1→Γ2

τ1vτ2,Γ1→Γ2
RcT Γ1→Γ2,τ1vτ2,τ1vτ2

Γ1→Γ2,τ1vτ2

LcF τ1≤ξ1,τ1≤ξ1,Γ1→Γ2

τ1≤ξ1,Γ1→Γ2
RcF Γ1→Γ2,τ1≤ξ1,τ1≤ξ1

Γ1→Γ2,τ1≤ξ1

LxiΩ Γ1→Γ2,Ωτ1
fτ1,Γ1→Γ2

RxiΩ Ωτ1,Γ1→Γ2

Γ1→Γ2,fτ1

LxiT Γ1→Γ2,τ1vτ2
τ1 6vτ2,Γ1→Γ2

RxiT τ1vτ2,Γ1→Γ2

Γ1→Γ2,τ1 6vτ2

LxiF Γ1→Γ2,τ1≤ξ1
τ1 6≤ξ1,Γ1→Γ2

RxiF τ1≤ξ1,Γ1→Γ2

Γ1→Γ2,τ1 6≤ξ1

LxeΩ Γ1→Γ2,fτ1
Ωτ1,Γ1→Γ2

RxeΩ fτ1,Γ1→Γ2

Γ1→Γ2,Ωτ1

LxeT Γ1→Γ2,τ1 6vτ2
τ1vτ2,Γ1→Γ2

RxeT τ1 6vτ2,Γ1→Γ2

Γ1→Γ2,τ1vτ2

LxeF Γ1→Γ2,τ1 6≤ξ1
τ1≤ξ1,Γ1→Γ2

RxeF τ1 6≤ξ1,Γ1→Γ2

Γ1→Γ2,τ1≤ξ1

cutT Γ1→Γ2,τ1vτ2 τ1vτ2,Γ1→Γ2

Γ1→Γ2
cutF Γ1→Γ2,τ1≤ξ1 τ1≤ξ1,Γ1→Γ2

Γ1→Γ2
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The rules above are known as structural rules. These structural rules are
the usual ones in sequent calculi plus those needed to deal with conjugates.
The introduction of disjunction and conjunction of assertions would lead to the
expected left and right rules. Other rules that may be present in the sequent
calculus at hand are known as proper rules.

2.4 Order rules

Before proceeding, we need to introduce the following provisos:

• (τk : y)(ρ) = 1 iff ρ(τk) ∈ Y ;

• (τk 6∈ ∆)(ρ) = 1 iff ρ(τk) does not occur in ∆ρ.

The first proviso states that we only allow ground substitutions where τk is
replaced by a truth value bound variable. The second proviso indicates that we
only allow a substitution ρ if τk is replaced by a truth value not occurring in
the bag ∆ρ.

A structural sequent calculus C = 〈Σ,R〉 is said to be an order sequent
calculus if it contains the following additional order rules:

L# τ1≤ξ1,Γ1→Γ2

τ1v#ξ1,Γ1→Γ2
R# Γ1→Γ2,τ1≤ξ1

Γ1→Γ2,τ1v#ξ1

⊥T Γ1→Γ2,⊥vτ1
⊥F Γ1→Γ2,⊥≤ξ1

Ω⊥ Γ1→Γ2,Ωτ1
Γ1→Γ2,τ1 6v⊥ > Γ1→Γ2,τ1v>

Ω> Ωτ1,Γ1→Γ2,τ1≤ξ1
Γ1→Γ2,>≤ξ1

C τ1 : y, τ1 /∈ Γ1, Γ2

Ω Γ1→Γ2,τ1 6v⊥ Ωτ2,τ2vτ1,Γ1→Γ2,τ1vτ2
Γ1→Γ2,Ωτ1

C τ2 : y, τ2 /∈ τ1, Γ1, Γ2

cons Γ1→Γ2,>6v⊥ ref Γ1→Γ2,τ1vτ1

transT Γ1→Γ2,τ1vτ2 Γ1→Γ2,τ2vτ3
Γ1→Γ2,τ1vτ3

transF Γ1→Γ2,τ1vτ2 Γ1→Γ2,τ2≤ξ1
Γ1→Γ2,τ1≤ξ1

Lasym Ωτ1,Ωτ2,τ1vτ2,Γ1→Γ2

Ωτ1,Ωτ2,τ2vτ1,Γ1→Γ2
Rasym Ωτ1,Ωτ2,Γ1→Γ2,τ1vτ2

Ωτ1,Ωτ2,Γ1→Γ2,τ2vτ1

LgenT Ωτ2,τ2vτ3,Γ1→Γ2 Ωτ2,Γ1→Γ2,τ2vτ1 τ1vτ3,Γ1→Γ2,Ωτ2
τ1vτ3,Γ1→Γ2

RgenT Ωτ2,τ2vτ1,Γ1→Γ2,τ2vτ3
Γ1→Γ2,τ1vτ3

C τ2 : y, τ2 6∈ τ1, τ3, Γ1, Γ2

LgenF Ωτ2,τ2≤ξ1,Γ1→Γ2 Ωτ2,Γ1→Γ2,τ2vτ1 τ1≤ξ1,Γ1→Γ2,Ωτ2
τ1≤ξ1,Γ1→Γ2

RgenF Ωτ2,τ2vτ1,Γ1→Γ2,τ2≤ξ1
Γ1→Γ2,τ1≤ξ1

C τ2 : y, τ2 6∈ τ1, Γ1, Γ2

These rules impose intended meanings to the basic assertions that should
be obvious. But, it is worthwhile to note that if Ωt holds then t is intended to
denote an atomic truth value (where a formula either holds or does not hold).

It is also worthwhile to explain the rules RgenF and LgenF. The rule RgenF
indicates that if the value of τ2 is less than or equal to the value of ξ1 for all
atomic τ2 included in τ1, then τ1 is less than or equal to the value of ξ1. We
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also impose that τ2 is fresh so that the universal quantifier does not capture
other variables namely those in τ1, Γ1, Γ2. The rule LgenF can be interpreted
as follows: assuming that we have τ1 ≤ ξ1 and Γ1 in order to show that we have
γ2 for some γ2 ∈ Γ2 it is enough to show that there is an element τ2 such that

• τ2 is atomic (premise τ1 ≤ ξ1, Γ1 → Γ2, Ωτ2);

• τ2 v τ1 (premise Ωτ2,Γ1 → Γ2, τ2 v τ1);

• from τ2 ≤ ξ1 we have γ2 for some γ2 ∈ Γ2 (premise Ωτ2, τ2 ≤ ξ1, Γ1 → Γ2).

Observe also that this set of rules, although convenient, is by no means
minimal. For instance, rules L# and R# allow the derivation of the F rules
from the corresponding T rules. Moreover, rule Ω> is derived from RgenT. Note
also that not all of these rules are needed for obtaining later on the completeness
result over Kripke semantics (Theorem 3.25). Indeed, rules ref and asym are
only needed for establishing the duality between the algebraic semantics and
the Kripke semantics (see Subsection 3.4).

Note that the provisos used above do not change value when the context
of the rule at hand is enriched with closed assertions. More precisely, a rule is
said to be endowed with a persistent proviso if its proviso does not change value
when the context of the rule is enriched with a closed assertion.

For example, consider the rule RgenF. The context of the rule is Γ1 and
Γ2, that is the bags of assertions in the conclusion of the rule. Note that if we
change the context by adding a closed assertion either to Γ1 or Γ2, the resulting
proviso will allow precisely the same substitutions.

More generally, any rule with a “fresh bound variable” proviso like τ2 :
y∩τ2 /∈ τ1, Γ1, Γ2 is endowed with a persistent proviso. Indeed, for every ground
substitution ρ, it holds (τ2 : y∩τ2 /∈ τ1, Γ1, Γ2)(ρ) = (τ2 : y∩τ2 /∈ τ1, Γ1, Γ2, δ)(ρ)
as long as δ is closed. Clearly, every rule endowed with the unit proviso up
(which is omitted) is also endowed with a persistent proviso.

Therefore, according to this definition, the order rules above are endowed
with persistent provisos.

2.5 Modal system K specific rules

We now proceed to define the sequent calculus CK = 〈Σk,RK〉 for modal system
K. The modal signature ΣK = 〈C, O,X, Y, Z〉 is as follows:

• C0 = {f , t} ∪ {pi : i ∈ N};
• C1 = {¬,¤,♦};
• C2 = {∧,∨,⇒};
• Ck = ∅ for k ≥ 3;

• O0 = {⊥,>};
• O1 = {I,N};
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• O2 = {lb};
• Ok = ∅ for k ≥ 3;

• X = {xi : i ∈ N};
• Y = {yi : i ∈ N};
• Z = {zi : i ∈ N}.
Besides the structural and order rules introduced above, RK contains the

following specific rules:

I Γ1→Γ2,I(τ1)vτ1
ΩI Γ1→Γ2,τ1 6v⊥

Γ1→Γ2,ΩI(τ1)

LNΩ τ3vτ1,Ωτ3,Ωτ2,Γ1→Γ2,τ2 6vN(τ3)
Ωτ2,Γ1→Γ2,τ2 6vN(τ1) C τ3 : y, τ3 6∈ τ1, τ2, Γ1, Γ2

RNΩ Ωτ2,Γ1→Γ2,Ωτ3 Ωτ3,Ωτ2,Γ1→Γ2,τ3vτ1 Ωτ3,Ωτ2,Γ1→Γ2,τ2vN(τ3)
Ωτ2,Γ1→Γ2,τ2vN(τ1)

lb1 Γ1→Γ2,lb(τ1,τ2)vτ1
lb2 Γ1→Γ2,lb(τ1,τ2)vτ2

Lf τ1v⊥,Γ1→Γ2

τ1≤f ,Γ1→Γ2
Rf Γ1→Γ2,τ1v⊥

Γ1→Γ2,τ1≤f

Lt τ1v>,Γ1→Γ2

τ1≤t,Γ1→Γ2
Rt Γ1→Γ2,τ1v>

Γ1→Γ2,τ1≤t

L∧ τ1≤ξ1,τ1≤ξ2,Γ1→Γ2

τ1≤(ξ1∧ξ2),Γ1→Γ2
R∧ Γ1→Γ2,τ1≤ξ1 Γ1→Γ2,τ1≤ξ2

Γ1→Γ2,τ1≤(ξ1∧ξ2)

L¬ Ωτ1,Γ1→Γ2,τ1≤ξ1
Ωτ1,τ1≤(¬ ξ1),Γ1→Γ2

R¬ Ωτ1,τ1≤ξ1,Γ1→Γ2

Ωτ1,Γ1→Γ2,τ1≤(¬ ξ1)

L⇒ Ωτ1,Γ1→Γ2,τ1≤ξ1 Ωτ1,τ1≤ξ2,Γ1→Γ2

Ωτ1,τ1≤(ξ1⇒ξ2),Γ1→Γ2
R⇒ Ωτ1,τ1≤ξ1,Γ1→Γ2,τ1≤ξ2

Ωτ1,Γ1→Γ2,τ1≤(ξ1⇒ξ2)

L∨ Ωτ1,τ1≤ξ1,Γ1→Γ2 Ωτ1,τ1≤ξ2,Γ1→Γ2

Ωτ1,τ1≤(ξ1∨ξ2),Γ1→Γ2
R∨ Ωτ1,Γ1→Γ2,τ1≤ξ1,τ1≤ξ2

Ωτ1,Γ1→Γ2,τ1≤(ξ1∨ξ2)

L¤ N(τ1)≤ξ1,Γ1→Γ2

τ1≤(�ξ1),Γ1→Γ2
R¤ Γ1→Γ2,N(τ1)≤ξ1

Γ1→Γ2,τ1≤(�ξ1)

L♦ Ωτ1,Ωτ2,τ2≤ξ1,τ2vN(τ1),Γ1→Γ2

Ωτ1,τ1≤(�ξ1),Γ1→Γ2
C τ2 : y, τ2 6∈ τ1, Γ1, Γ2

R♦ Ωτ1,Ωτ2,Γ1→Γ2,τ2vN(τ1) Ωτ1,Ωτ2,Γ1→Γ2,τ2≤ξ1 Ωτ1,Γ1→Γ2,Ωτ2
Ωτ1,Γ1→Γ2,τ1≤(�ξ1)

Rules I and ΩI impose that I(t) is an atomic truth value contained in t, as
long as the latter is not bottom. Rules NΩ state that the neighborhood of a
truth value t is induced by the neighbors of the atomic truth values contained
in t. Rules lb establish that lb(t1, t2) is some lower bound of t1 and t2.

The rules about the formula constructors fall into two main classes. The
rules about f , t, ∧ and ¤ hold for any truth value, while the rules about ¬, ⇒,
∨ and ♦ hold only for atomic truth values, as expressed by Ωτ1.

In the rest of the paper, we shall refer to a modal sequent calculus as any
enrichment of the system K sequent calculus with additional rules endowed with
persistent provisos. Several modal sequent calculi in this sense are considered
in Subsection 2.6.
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The two examples below of derivations in CK illustrate how the calculus can
be used for modal reasoning. As we remarked above, we display derivations
starting from the conclusion, and writing for each line the step number, the
sequent, and how it is justified (i.e. by which rule it is obtained and applied to
which sequents).

Example: Derivation of the necessitation rule

1 → > ≤ �ξ1 R� : 2

2 → N(>) ≤ ξ1 transF : 3, 4

3 → N(>) v > >

4 → > ≤ ξ1 hyp

Example: Derivation of the normality axiom

1 → > ≤ �(ξ1 ⇒ ξ2)⇒ (�ξ1 ⇒�ξ2) RgenF : 2

2
Ωy1

y1 v > → y1 ≤ �(ξ1 ⇒ ξ2)⇒ (�ξ1 ⇒�ξ2) R⇒ : 3

3
Ωy1

y1 v >
y1 ≤ �(ξ1 ⇒ ξ2)

→ y1 ≤ �ξ1 ⇒�ξ2 R⇒ : 4

4

Ωy1

y1 v >
y1 ≤ �(ξ1 ⇒ ξ2)
y1 ≤ �ξ1

→ y1 ≤ �ξ2 R� : 5

5

Ωy1

y1 v >
y1 ≤ �(ξ1 ⇒ ξ2)
y1 ≤ �ξ1

→ N(y1) ≤ ξ2 RgenF : 6

6

Ωy1

y1 v >
y1 ≤ �(ξ1 ⇒ ξ2)
y1 ≤ �ξ1
Ωy2

y2 v N(y1)

→ y2 ≤ ξ2 L� : 7

7

Ωy1

y1 v >
y1 ≤ �(ξ1 ⇒ ξ2)
N(y1) ≤ ξ1
Ωy2

y2 v N(y1)

→ y2 ≤ ξ2 LgenF : 8, 9, 10

8

Ωy1

y1 v >
y1 ≤ �(ξ1 ⇒ ξ2)
Ωy2

y2 v N(y1)
Ωy2

→ y2 ≤ ξ2
y2 v N(y1)

ax
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9

Ωy1

y1 v >
y1 ≤ �(ξ1 ⇒ ξ2)
Ωy2

y2 v N(y1)
Ωy2

y2 ≤ ξ1

→ y2 ≤ ξ2 L� : 11

10

Ωy1

y1 v >
y1 ≤ �(ξ1 ⇒ ξ2)
N(y1) ≤ ξ1
Ωy2

y2 v N(y1)

→ y2 ≤ ξ2
Ωy2

ax

11

Ωy1

y1 v >
N(y1) ≤ ξ1 ⇒ ξ2
Ωy2

y2 v N(y1)
Ωy2

y2 ≤ ξ1

→ y2 ≤ ξ2 LgenF : 12, 13, 14

12

Ωy1

y1 v >
Ωy2

y2 v N(y1)
Ωy2

y2 ≤ ξ1
Ωy2

→ y2 ≤ ξ2
y2 v N(y1)

ax

13

Ωy1

y1 v >
Ωy2

y2 v N(y1)
Ωy2

y2 ≤ ξ1
Ωy2

y2 ≤ ξ1 ⇒ ξ2

→ y2 ≤ ξ2 L⇒ : 15, 16

14

Ωy1

y1 v >
N(y1) ≤ ξ1 ⇒ ξ2
Ωy2

y2 v N(y1)
Ωy2

y2 ≤ ξ1

→ y2 ≤ ξ2
Ωy2

ax

15

Ωy1

y1 v >
Ωy2

y2 v N(y1)
Ωy2

y2 ≤ ξ1
Ωy2

→ y2 ≤ ξ2
y2 ≤ ξ1

ax

16

Ωy1

y1 v >
Ωy2

y2 v N(y1)
Ωy2

y2 ≤ ξ1
Ωy2

y2 ≤ ξ2

→ y2 ≤ ξ2 ax
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2.6 Rules for other modal systems

Other modal systems defined by properties of the accessibility relation can be
easily obtained by adding suitable rules. For instance:

Additional rule for T (reflexive)

T Γ1→Γ2,τ1vN(τ1)

Additional rule for B (symmetric)

B Ωτ1,Ωτ2,Γ1→Γ2,τ1vN(τ2)
Ωτ1,Ωτ2,Γ1→Γ2,τ2vN(τ1)

Additional rule for K4 (transitive)

4 Γ1→Γ2,N(N(τ1))vN(τ1)

Additional rule for D (serial)

D Ωτ1,Γ1→Γ2,N(τ1)6v⊥

Additional rule for L (right linear)

L Ωτ1,Ωτ2,Ωτ3,Γ1→Γ2,τ1vN(τ3) Ωτ1,Ωτ2,Ωτ3,Γ1→Γ2,τ2vN(τ3)
Ωτ1,Ωτ2,Γ1→Γ2,τ2vN(τ1),τ1vN(τ2),τ1vτ2

Additional rule for K5 (Euclidean)

5 Ωτ1,Ωτ2,Ωτ3,Γ1→Γ2,τ1vN(τ3) Ωτ1,Ωτ2,Ωτ3,Γ1→Γ2,τ2vN(τ3) Ωτ1,Ωτ2,Γ1→Γ2,Ωτ3
Ωτ1,Ωτ2,Γ1→Γ2,τ1vN(τ2)

Additional rule for C (confluent)

C Γ1→Γ2,τ1vN(τ3) Γ1→Γ2,τ2vN(τ3)
Γ1→Γ2,lb(N(τ1),N(τ2))6v⊥

Additional rule for W (transitive and well bounded)

W Ωτ1,Ωτ3,τ3vN(τ1),Γ1→Γ2,τ3vτ2,N(τ3)6vτ2
Ωτ1,Γ1→Γ2,N(τ1)vτ2

C τ3 : y, τ3 /∈ τ1, τ2, Γ1,Γ2

Additional rule for X (irreflexive)

X Ωτ1,Γ1→Γ2,τ1 6vN(τ1)

Additional rule for Y (antisymmetric)

Y Ωτ1,Ωτ2,Γ1→Γ2,τ1vN(τ2) Ωτ1,Ωτ2,Γ1→Γ2,τ2vN(τ1)
Ωτ1,Ωτ2,Γ1→Γ2,τ1vτ2
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Additional rule for Z (asymmetric)

Z Ωτ1,Ωτ2,Γ1→Γ2,τ1vN(τ2)
Ωτ1,Ωτ2,Γ1→Γ2,τ2 6vN(τ1)

In Subsection 3.3, these rules are shown to characterize precisely the envis-
aged properties of the accessibility relation (even among general Kripke struc-
tures). Given the greater expressiveness of the proposed labelled language, it
is not surprising that we can capture more properties of the accessibility re-
lation than those that are axiomatizable in standard modal language (namely,
irreflexivity, antisymmetry and asymmmetry). Note en passant that these three
properties are also not directly expressible in the language of modal logic la-
belled with worlds (unless one extends the labelling language to a full quantifier
calculus; see [19]). However, they are axiomatizable in hybrid logic (see [2]).

It is important to note that, even in the case of an axiomatizable property,
it is worthwhile to replace the axiom by a rule about the truth values. Indeed,
by doing so, we hope to preserve the good properties of the formula sub-calculus
(namely, cut elimination) and concentrate the unavoidable consequences of the
new rule on the sub-calculus for truth values. We return to this issue in the
concluding remarks.

Observe also that, in the case of an axiomatizable property, we might be
tempted to try to show that the proposed rule on truth values is correct by
verifying that the axiom and the rule are inter-derivable in CK . For instance,
consider reflexivity. It is straightforward to build a derivation in CK of the
corresponding modal axiom from rule T above. Indeed:

1 → > ≤ �ξ1 ⇒ ξ1 RgenF : 2

2
Ωy1

y1 v > → y1 ≤ �ξ1 ⇒ ξ1 R⇒ : 3

3
Ωy1

y1 v >
y1 ≤ �ξ1

→ y1 ≤ ξ1 L� : 4

4
Ωy1

y1 v >
N(y1) ≤ ξ1

→ y1 ≤ ξ1 transF : 5, 6

5
Ωy1

y1 v >
N(y1) ≤ ξ1

→ y1 v N(y1) T

6
Ωy1

y1 v >
N(y1) ≤ ξ1

→ N(y1) ≤ ξ1 ax

On the other hand, it is not possible in CK to derive rule T above from
the modal axiom for reflexivity. As we shall see in Subsection 3.3, the sequent
calculus CK is sound with respect to general Kripke structures as we will see
in Theorem 3.17 (recall that a general Kripke structure, see for instance [5], is
a tuple 〈W,Ã,B, V 〉 where W is the non-empty set of worlds, Ã is the acces-
sibility relation between worlds, B ⊆ ℘W is the set of admissible truth values,
and the valuation V maps each propositional symbol pi to an admissible truth
value). So, it is no surprise that rule T is not derivable from → > ≤ ¤ξ1⇒ ξ1.
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Indeed, rule T (as will be shown by Theorem 3.18 in Subsection 3.3) does char-
acterize the general frames with reflexive accessibility relation, while the axiom
does so only among the standard frames. Clearly, the axiom is satisfiable by a
general Kripke structure with a non reflexive accessibility relation. For instance,
consider the general Kripke frame 〈W,Ã,B〉 where:

• W = {w1, w2};
• Ã = {〈w1, w2〉, 〈w2, w1〉};
• B = {∅,W}.

It is trivial to verify that every structure over this general frame does satisfy
the axiom for reflexivity.

It is worthwhile to point out that the modal axiom for reflexivity and the
following mixed rule (about formulae and truth values)

T′ Γ1→Γ2,N(τ1)≤ξ1
Γ1→Γ2,τ1≤ξ1

are inter-derivable. However, we prefer rule T to rule T′ in order to preserve,
as much as possible, the separation between the formula sub-calculus and the
truth value sub-calculus.

A similar analysis could be done about each of the other properties of the
accessibility relation that are axiomatizable but there is no need to enter in
details.

Nevertheless, it is worthwhile to produce a derivation of the modal axiom
for confluence from rule C since it illustrates the use of both I and lb rules.

1 → > ≤ ��ξ1 ⇒��ξ1 RgenF : 2

2
Ωy1

y1 v > → y1 ≤ ��ξ1 ⇒��ξ1 R⇒ : 3

3
Ωy1

y1 v >
y1 ≤ ��ξ1

→ y1 ≤ ��ξ1 R� : 4

4
Ωy1

y1 v >
y1 ≤ ��ξ1

→ N(y1) ≤ �ξ1 L� : 5

5

Ωy1

y1 v >
Ωy2

y2 v N(y1)
y2 ≤ �ξ1

→ N(y1) ≤ �ξ1 L� : 6

6

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1

→ N(y1) ≤ �ξ1 RgenF : 7

7

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1
Ωy3

y3 v N(y1)

→ y3 ≤ �ξ1 R� : 8, 11, 16



15

8

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1
Ωy3

y3 v N(y1)
ΩI(lb(N(y2),N(y3)))

→ I(lb(N(y2),N(y3))) v N(y3) transT : 9, 10

9

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1
Ωy3

y3 v N(y1)
ΩI(lb(N(y2),N(y3)))

→ I(lb(N(y2),N(y3)))
v lb(N(y2),N(y3))

I

10

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1
Ωy3

y3 v N(y1)
ΩI(lb(N(y2),N(y3)))

→ lb(N(y2),N(y3)) v N(y3) lb2

11

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1
Ωy3

y3 v N(y1)
ΩI(lb(N(y2),N(y3)))

→ I(lb(N(y2),N(y3))) ≤ ξ1 transF : 12, 15

12

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1
Ωy3

y3 v N(y1)
ΩI(lb(N(y2),N(y3)))

→ I(lb(N(y2),N(y3))) v N(y2) transT : 13, 14

13

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1
Ωy3

y3 v N(y1)
ΩI(lb(N(y2),N(y3)))

→ I(lb(N(y2),N(y3))) v
lb(N(y2),N(y3))

I

14

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1
Ωy3

y3 v N(y1)
ΩI(lb(N(y2),N(y3)))

→ lb(N(y2),N(y3)) v N(y2) lb1
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15

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1
Ωy3

y3 v N(y1)
ΩI(lb(N(y2),N(y3)))

→ N(y2) ≤ ξ1 ax

16

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1
Ωy3

y3 v N(y1)

→ ΩI(lb(N(y2),N(y3))) ΩI : 17

17

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1
Ωy3

y3 v N(y1)

→ I(lb(N(y2),N(y3))) 6v ⊥ C: 18, 19

18

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1
Ωy3

y3 v N(y1)

→ N(y2) v N(y1) ax

19

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1
Ωy3

y3 v N(y1)

→ N(y3) v N(y1) ax

Again, the converse does not hold because (as will be shown by Theo-
rem 3.18) rule C does caracterize the general frames with confluent accessibility
relation while the corresponding modal axiom is more relaxed among general
frames.

It is also worthwhile to show that the Löb axiom can be derived in Ck from
rule W since the derivation requires the use of the # rules.

1 → > ≤ �(�ξ1 ⇒ ξ1)⇒�ξ1 RgenF : 2

2
Ωy1

y1 v > → y1 ≤ �(�ξ1 ⇒ ξ1)⇒�ξ1 R⇒ : 3

3
Ωy1

y1 v >
y1 ≤ �(�ξ1 ⇒ ξ1)

→ y1 ≤ �ξ1 R� : 4

4
Ωy1

y1 v >
y1 ≤ �(�ξ1 ⇒ ξ1)

→ N(y1) ≤ ξ1 cutT : 5, 7

5

Ωy1

y1 v >
y1 ≤ �(�ξ1 ⇒ ξ1)
N(y1) v #ξ1

→ N(y1) ≤ ξ1 L# : 6
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6

Ωy1

y1 v >
y1 ≤ �(�ξ1 ⇒ ξ1)
N(y1) ≤ ξ1

→ N(y1) ≤ ξ1 ax

7
Ωy1

y1 v >
y1 ≤ �(�ξ1 ⇒ ξ1)

→ N(y1) ≤ ξ1
N(y1) v #ξ1

W: 8

8

Ωy1

y1 v >
y1 ≤ �(�ξ1 ⇒ ξ1)
Ωy2

y2 v N(y1)

→
N(y1) ≤ ξ1
y2 v #ξ1
N(y2) 6v #ξ1

R# : 9

9

Ωy1

y1 v >
y1 ≤ �(�ξ1 ⇒ ξ1)
Ωy2

y2 v N(y1)

→
N(y1) ≤ ξ1
y2 ≤ ξ1
N(y2) 6v #ξ1

RxiT : 10

10

Ωy1

y1 v >
y1 ≤ �(�ξ1 ⇒ ξ1)
Ωy2

y2 v N(y1)
N(y2) v #ξ1

→ N(y1) ≤ ξ1
y2 ≤ ξ1

L# : 11

11

Ωy1

y1 v >
y1 ≤ �(�ξ1 ⇒ ξ1)
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1

→ N(y1) ≤ ξ1
y2 ≤ ξ1

LxeT : 12

12

Ωy1

y1 v >
y1 ≤ �(�ξ1 ⇒ ξ1)
Ωy2

y2 v N(y1)

→
N(y1) ≤ ξ1
y2 ≤ ξ1
N(y2) 6≤ ξ1

L� : 13

13

Ωy1

y1 v >
N(y1) ≤ �ξ1 ⇒ ξ1
Ωy2

y2 v N(y1)

→
N(y1) ≤ ξ1
y2 ≤ ξ1
N(y2) 6≤ ξ1

LgenT : 14, 15, 16

14

Ωy1

y1 v >
Ωy2

y2 v N(y1)

→
N(y1) ≤ ξ1
y2 ≤ ξ1
N(y2) 6≤ ξ1
Ωy2

ax

15

Ωy1

y1 v >
Ωy2

y2 v N(y1)

→
N(y1) ≤ ξ1
y2 ≤ ξ1
N(y2) 6≤ ξ1
y2 v N(y1)

ax

16

Ωy1

y1 v >
y2 ≤ �ξ1 ⇒ ξ1
Ωy2

y2 v N(y1)

→
N(y1) ≤ ξ1
y2 ≤ ξ1
N(y2) 6≤ ξ1

L⇒ : 17, 18
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17

Ωy1

y1 v >
y2 ≤ ξ1
Ωy2

y2 v N(y1)

→
N(y1) ≤ ξ1
y2 ≤ ξ1
N(y2) 6≤ ξ1

ax

18

Ωy1

y1 v >
Ωy2

y2 v N(y1)

→
N(y1) ≤ ξ1
y2 ≤ ξ1
N(y2) 6≤ ξ1
y2 ≤ �ξ1

R� : 19

19

Ωy1

y1 v >
Ωy2

y2 v N(y1)

→
N(y1) ≤ ξ1
y2 ≤ ξ1
N(y2) 6≤ ξ1
N(y2) ≤ ξ1

RxiF : 20

20

Ωy1

y1 v >
Ωy2

y2 v N(y1)
N(y2) ≤ ξ1

→
N(y1) ≤ ξ1
y2 ≤ ξ1
N(y2) ≤ ξ1

ax

Obviously, the converse does not hold since (as will be shown by Theo-
rem 3.18) rule W does caracterize the general frames with transitive and well
bounded accessibility relation while Löb’s axiom is more relaxed among general
frames.

This provides the basis for giving other rules for modal and other non-
classical logics. A detailed discussion of such rules and of the semantic and
proof-theoretic properties of the resulting labelled sequent calculi (e.g. a form
of correspondence theory [18] or the eliminability of cut) is out of the scope of
this paper and we leave it as future work.

2.7 Towards a hybrid version of CK

The discussion above (about, for instance, the non inter-derivability of rule
T and the modal axiom for reflexivity) motivates the following question: is it
possible to enrich CK in order to recover that inter-derivability? Semantically, as
we saw, this will mean moving from general Kripke semantics towards standard
Kripke semantics (as we shall further comment at the end of Subsection 3.3).

The answer turns out to be surprisingly simple and possibly useful for other
purposes. It is enough: (i) first, to enrich the language with a coercion operator
@ transforming any term t into a simple formula @t; (ii) and, second, add the
following order rules:

L@ τ1vτ2,Γ1→Γ2

τ1≤@τ2,Γ1→Γ2
R@ Γ1→Γ2,τ1vτ2

Γ1→Γ2,τ1≤@τ2

In this way we established an enrichment of CK that we denote by C@
K . In this

enriched calculus, it is possible to derive, for instance, rule T from the modal
axiom for reflexivity:

1 Ωτ1 → τ1 v N(τ1) cutF : 2, 6

2 Ωτ1 → τ1 v N(τ1)
τ1 ≤ �@N(τ1)⇒@N(τ1)

transF : 3, 4
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3 Ωτ1 → τ1 v N(τ1)
τ1 v > >

4 Ωτ1 → τ1 v N(τ1)
> ≤ �@N(τ1)⇒@N(τ1)

w : 5

5 → > ≤ �@N(τ1)⇒@N(τ1) hyp

6
Ωτ1
τ1 ≤ �@N(τ1)⇒@N(τ1)

→ τ1 v N(τ1) L⇒ : 7, 9

7
Ωτ1
τ1 ≤ @N(τ1)

→ τ1 v N(τ1) L@ : 8

8
Ωτ1
τ1 v N(τ1)

→ τ1 v N(τ1) ax

9 Ωτ1 → τ1 v N(τ1)
τ1 ≤ �@N(τ1)

R� : 10

10 Ωτ1 → τ1 v N(τ1)
N(τ1) ≤ @N(τ1)

R@ : 11

11 Ωτ1 → τ1 v N(τ1)
N(τ1) v N(τ1)

ref

The same holds for the other properties of the accessibility relation but we
refrain from going into details.

The sequent calculus C@
K represents a first step towards a hybrid version of

CK combining the ideas in this paper and those of hybrid logics [7, 6, 2].

2.8 Local and global reasoning

In the context of a modal sequent calculus, local and global notions of proof-
theoretic consequence can be defined as follows:

• ψ1, . . . , ψk `g
R ϕ iff `R > ≤ ψ1, . . . ,> ≤ ψk → > ≤ ϕ;

• ψ1, . . . , ψk ``
R ϕ iff `R Ωy1,y1 ≤ ψ1, . . . ,y1 ≤ ψk → y1 ≤ ϕ.

Thus, ϕ is globally derived from ψ1, . . . , ψk provided that ϕ is true (>)
whenever ψi is true for all i = 1, . . . k. When working with worlds this means
that the denotation ϕ is W whenever the denotation of ψi is W for all i = 1, . . . k.

On the other hand, ϕ is locally derived from ψ1, . . . , ψk provided that for
every atomic element y1 the value of ϕ is greater than or equal to the value of
y1 whenever the value of ψi is greater than or equal to the value of y1 for all
i = 1, . . . k. When working with worlds we get the usual definition stating that
ϕ is true at w whenever ψi is true at w for all i = 1, . . . k.

Lemma 2.3 Within the context of a modal sequent calculus:

1. Ωy1,y1 ≤ ψ1, . . . ,y1 ≤ ψk → y1 ≤ ϕ `R → > ≤ ((ψ1 ∧ . . . ∧ ψk)⇒ ϕ);

2. → > ≤ ((ψ1 ∧ . . . ∧ ψk)⇒ ϕ) `R Ωy1,y1 ≤ ψ1, . . . ,y1 ≤ ψk → y1 ≤ ϕ.

Proof: Without loss of generality consider k = 2.
1. Consider the following derivation:



20

1 → > ≤ ((ψ1 ∧ ψ2)⇒ ϕ) RgenF : 2

2
Ωy1

y1 v > → y1 ≤ ((ψ1 ∧ ψ2)⇒ ϕ) R⇒ : 3

3
Ωy1

y1 v >
y1 ≤ (ψ1 ∧ ψ2)

→ y1 ≤ ϕ L∧ : 4

4

Ωy1

y1 v >
y1 ≤ ψ1

y1 ≤ ψ2

→ y1 ≤ ϕ Lw : 5

5
Ωy1

y1 ≤ ψ1

y1 ≤ ψ2

→ y1 ≤ ϕ hyp

2. Consider the following derivation:

1
Ωy1

y1 ≤ ψ1

y1 ≤ ψ2

→ y1 ≤ ϕ cutF : 2, 3

2
Ωy1

y1 ≤ ψ1

y1 ≤ ψ2

→ y1 ≤ ϕ
y1 ≤ ((ψ1 ∧ ψ2)⇒ ϕ)

transF : 4, 9

3

Ωy1

y1 ≤ ψ1

y1 ≤ ψ2

y1 ≤ ((ψ1 ∧ ψ2)⇒ ϕ)

→ y1 ≤ ϕ L⇒ : 5, 6

4
Ωy1

y1 ≤ ψ1

y1 ≤ ψ2

→ y1 ≤ ϕ
y1 v > >

5
Ωy1

y1 ≤ ψ1

y1 ≤ ψ2

→ y1 ≤ ϕ
y1 ≤ (ψ1 ∧ ψ2)

R∧ : 7, 8

6

Ωy1

y1 ≤ ψ1

y1 ≤ ψ2

y1 ≤ ϕ

→ y1 ≤ ϕ ax

7
Ωy1

y1 ≤ ψ1

y1 ≤ ψ2

→ y1 ≤ ϕ
y1 ≤ ψ1

ax

8
Ωy1

y1 ≤ ψ1

y1 ≤ ψ2

→ y1 ≤ ϕ
y1 ≤ ψ2

ax

9
Ωy1

y1 ≤ ψ1

y1 ≤ ψ2

→ y1 ≤ ϕ
> ≤ ((ψ1 ∧ ψ2)⇒ ϕ)

ws : 10

10 → > ≤ ((ψ1 ∧ ψ2)⇒ ϕ) hyp

QED

With this lemma it is straightforward to establish the following result relat-
ing global and local reasoning.

Proposition 2.4 Within any modal sequent calculus: ψ1, . . . , ψk ``
R ϕ iff

`g
R (ψ1 ∧ . . . ∧ ψk)⇒ ϕ.
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Proof: Indeed, ψ1, . . . , ψk ``
R ϕ iff `R Ωy1,y1 ≤ ψ1, . . . ,y1 ≤ ψk → y1 ≤ ϕ

iff (using Lemma 2.3 and taking into account idempotence in Proposition 2.1)
`R → > ≤ ((ψ1 ∧ . . . ∧ ψk)⇒ ϕ) iff `g

R (ψ1 ∧ . . . ∧ ψk)⇒ ϕ. QED

2.9 Metatheorems

It is useful to denote by ∆ the bag {δ : δ ∈ ∆}. Then, it is straightforward to
prove the following result taking into account that the conjugate of a conjugate
of an assertion is the original assertion:

Theorem 2.5 (Metatheorem of conjugation) Let C be a structural sequent
calculus. Then, for every set S of ground sequents and every ground sequent
∆′ → ∆′′:

S `C ∆′ → ∆′′ iff S `C → ∆′′, ∆′ .

The two following metatheorems will also be useful later on when establish-
ing the completeness theorem.

Theorem 2.6 (Metatheorem of contradiction) Let C be a structural se-
quent calculus. Then, for every set S of ground sequents and every ground
sequent → ∆, if {

S `C → ∆ (∗)
S `C → δ for every δ ∈ ∆ (∗∗)

then S `C → υ for every ground assertion υ.

Proof: Let ∆ be δ1, δ2 without loss of generality. Then:

1 → υ cut : 2, 5
2 δ1 → υ Rx : 3

3 → υ, δ1 Rw : 4

4 → δ1 (**)
5 → υ, δ1 cut : 6, 9
6 δ2 → υ, δ1 Rx : 7

7 → υ, δ1, δ2 Rws : 8

8 → δ2 (**)
9 → υ, δ1, δ2 Rw : 10
10 → δ1, δ2 (*)

QED

Theorem 2.7 (Metatheorem of deduction) Let C be a structural sequent
calculus with rules endowed with persistent provisos. Then, for every set S of
ground sequents and closed sequent δ′1, . . . , δ

′
m → ∆′′:

S `C δ′1, . . . , δ
′
m → ∆′′ iff S, → δ′1, . . . , → δ′m `C → ∆′′ .

Proof:
(⇒) Assume S `C δ′1, . . . , δ

′
m → ∆′′ with derivation sequence D. Then, the

following sequence outline establishes S, → δ′1, . . . , → δ′m `C → ∆′′:
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1 → ∆′′ cut : 2, 3
2 → ∆′′, δ′1 Rws : 4
3 δ′1 → ∆′′ cut : 5, 6
4 → δ′1 hyp
5 δ′1 → ∆′′, δ′2 Rws : 7
6 δ′2, δ′1 → ∆′′ cut : 9, 10
7 δ′1 → δ′2 Lw : 8
8 → δ′2 hyp

. . .
i δ′1, . . . , δ′m → ∆′′ D

(⇐) Assume S, → δ′1, . . . , → δ′m `C → ∆′′ with the derivation sequence
d1, . . . , dn. Then we can build a derivation of S `C δ′1, . . . , δ

′
m → ∆′′ by changing

each di = Θi
1 → Θi

2 to d′i = δ′1, . . . , δ
′
m,Θi

1 → Θi
2 replacing the justification hyp

on each di =→ δ′j by ax. Observe that the sequence d′1, . . . , d
′
n does constitute

a derivation because the unchanged justifications still hold thanks to the fact
that δ′1, . . . , δ

′
m are closed assertions and therefore any (persistent) proviso that

otherwise might be violated is still fulfilled. QED

Therefore, the metatheorem of deduction holds in any modal sequent calcu-
lus as defined at the end of Subsection 2.5 (precluding the use of non persistent
provisos).

3 Semantics

3.1 Algebraic semantics

Let Σ = 〈C, O,X, Y, Z〉 be a signature. A Σ-algebra is a triple A = 〈F, T, ·A〉
where:

• F and T are sets;

• ·A is a map such that:

– cA : F k → F for each c ∈ Ck;

– oA : T k → T for each o ∈ Ok;

– #A : F → T ;

– ΩA ⊆ T ;

– vA ⊆ T × T ;

– ≤A ⊆ T × F .

Let A be a Σ-algebra. An unbound variable assignment over A is a map α
that maps each element of X to an element of T and each element of Z to an
element of F . A bound variable assignment over A is a map β from Y to T .

The denotation at Σ-algebra A for unbound variable assignment α of ground
simple formulae is inductively defined with the following rules:

• [[z]]Aα = α(z);

• [[c(ϕ1, . . . , ϕk)]]Aα = cA([[ϕ1]]Aα, . . . , [[ϕk]]Aα).
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The denotation at A for assignments α, β over A of ground terms is induc-
tively defined with the following rules:

• [[x]]Aαβ = α(x);

• [[y]]Aαβ = β(y);

• [[o(θ1, . . . , θk)]]Aαβ = oA([[θ1]]Aαβ , . . . , [[θk]]Aαβ);

• [[#ϕ]]Aαβ = #A([[ϕ]]Aα).

The satisfaction by A for α, β of ground assertions and sequents is defined
as follows:

• Aαβ ° Ωθ iff [[θ]]Aαβ ∈ ΩA;

• Aαβ ° fθ iff [[θ]]Aαβ /∈ ΩA;

• Aαβ ° θ v θ′ iff 〈[[θ]]Aαβ , [[θ′]]Aαβ〉 ∈ vA;

• Aαβ ° θ 6v θ′ iff 〈[[θ]]Aαβ , [[θ′]]Aαβ〉 /∈ vA;

• Aαβ ° θ ≤ ϕ iff 〈[[θ]]Aαβ , [[ϕ]]Aα〉 ∈ ≤A;

• Aαβ ° θ 6≤ ϕ iff 〈[[θ]]Aαβ , [[ϕ]]Aα〉 /∈ ≤A;

• Aαβ ° ∆′ → ∆′′ iff Aαβ ° δ for some δ ∈ ∆′′ ∪∆′.

Furthermore, the satisfaction by A for α of ground assertions and sequents
is defined as follows:

• Aα ° δ iff Aαβ ° δ for every bound variable assignment β over A;

• Aα ° ∆′ → ∆′′ iff Aαβ ° ∆′ → ∆′′ for every bound variable assignment
β over A.

Observe that, when dealing with closed simple formulae, terms, assertions
and sequents, we may drop the reference to the assignments in denotations
and satisfactions since they do not depend on them. For instance, if δ is a
closed assertion then we may write A ° δ since, for any assignments α, α′, β, β′,
Aαβ ° δ iff Aα′β′ ° δ. A similar principle applies when we deal with terms,
assertions and sequents without bound variables in which case we may drop
the reference to the bound variable assignment. In the same vein, we may drop
the reference to the unbound variable assignment when dealing with terms,
assertions and sequents without unbound variables.

Given a class A of Σ-algebras, a ground sequent s is A-entailed by the
ground sequents s1, . . . , sp, written s1, . . . , sp ²A s, iff, for each A ∈ A and
unbound variable assignment α over A, Aα ° s whenever Aα ° si for every
i = 1, . . . , p.

The notion of entailment is easily extended to (schema) sequents possibly
with provisos. A sequent s is A-entailed by the sequents s1, . . . , sp with pro-
viso π, written s1, . . . , sp ²A s C π, iff s1ρ, . . . , spρ ²A sρ for every ground
substitution ρ over Σ such that π(ρ) = 1.

The following results are the semantic counterparts of Proposition 2.1 and
Proposition 2.2.
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Proposition 3.1 Given a class A of Σ-algebras:

Projective If S ²A s′ C π and π′ ⊆ π then S ²A s′ C π′.

Extensive S ²A s C up for each sequent s ∈ S.

Monotonic If S ⊆ S1 and S ²A s′ C π then S1 ²A s′ C π.

Idempotent If S1 ²A s C πs for each s in a finite set S of sequents and
S ²A s′ C π then S1 ²A s′ C π ∩ (

⋂

s∈S

πs).

Proof: Straightforward. We prove only the last property. Assume S1 ²A s C πs

for each sequent s ∈ S and S ²A s′ C π. So, by the projective property,
S1 ²A s C π ∩ (

⋂
s∈S πs) for each sequent s ∈ S and S ²A s′ C π ∩ (

⋂
s∈S πs).

Thus, by definition of entailment, for every ρ such that (π ∩ (
⋂

s∈S πs))(ρ) = 1,
S1ρ ²A sρ for each sequent s ∈ S and Sρ ²A s′ρ. Therefore, for every such ρ,
every A ∈ A and unbound variable assignment α over A: (i) if Aα ° s1ρ for
every s1 ∈ S1 then Aα ° sρ for every s ∈ S; and (ii) if Aα ° sρ for every s ∈ S
then Aα ° s′ρ. So, for every such ρ, every A ∈ A and α, if Aα ° s1ρ for every
s1 ∈ S1 then Aα ° s′ρ. QED

Proposition 3.2 Given a class A of Σ-algebras, for every substitution σ, if
S ²A s′ C π then Sσ ²A s′σ C πσ.

Proof: We have to show Sσ ²A s′σ C πσ. That is, for an arbitrary ground
substitution ρ such that (πσ)(ρ) = 1, we have to show (Sσ)ρ ²A (s′σ)ρ. By
hypothesis, we know S ²A s′ C π. That is, for every ground substitution
ρ′ such that π(ρ′) = 1, we know Sρ′ ²A s′ρ′. Since the substitution σρ is
ground and, furthermore, π(σρ) = (πσ)(ρ) = 1, we know from the hypothesis
S(σρ) ²A s′(σρ) which establishes the thesis taking into account the following
property of substitutions δ(σρ) = (δσ)ρ. QED

A classA of Σ-algebras is said to be appropriate for a Σ-rule 〈{s1, . . . , sp}, s, π〉
if s1, . . . , sp ²A s C π. And an algebra A is said to be appropriate for a rule if
so is the class {A}.

Theorem 3.3 (Structural soundness) The class of all Σ-algebras is appro-
priate for every structural rule over Σ.

Proof: It is straighforward to verify the thesis for each of the structural rules.
For instance, consider the rule RwT. We have to verify that, for each Σ-algebra
A, assignment α and ground substitution ρ, if Aα ° Γ1ρ → Γ2ρ then Aα °
Γ1ρ → Γ2ρ, τ1ρ v τ2ρ. Assume that Aα ° Γ1ρ → Γ2ρ. That is, for every
assignment β, Aαβ ° Γ1ρ → Γ2ρ. Thus, for every assignment β there is
δ ∈ Γ2ρ ∪ Γ1ρ such that Aαβ ° δ. So, for every assignment β there is δ ∈
Γ2ρ∪{τ1ρ v τ2ρ}∪Γ1ρ such that Aαβ ° δ. Therefore, for every assignment β,
Aαβ ° Γ1ρ → Γ2ρ, τ1ρ v τ2ρ. That is, Aα ° Γ1ρ → Γ2ρ, τ1ρ v τ2ρ. QED
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A class A of Σ-algebras is said to be appropriate for a sequent calculus
〈Σ,R〉 if it is appropriate for each proper rule in R (and also for the structural
rules thanks to the theorem above). And an algebra A is said to be appropriate
for a sequent calculus if so is the class {A}.

A (sequent) logic is a triple L = 〈Σ,R,A〉 where 〈Σ,R〉 is a sequent calculus
and A is a class of Σ-algebras. A sequent logic is said to be:

• sound if A is appropriate for 〈Σ,R〉;
• full if A is the class of all Σ-algebras that are appropriate for 〈Σ,R〉;
• complete if s1, . . . , sp `R s whenever s1, . . . , sp ²A s for any closed se-

quents s, s1, . . . , sp.

Thus, every full logic is sound. Furthermore:

Theorem 3.4 A sequent logic L = 〈Σ,R,A〉 is sound iff s1, . . . , sp ²A s C π

whenever s1, . . . , sp `R s C π.

Proof:

(⇐) Given a rule r = s′1...s′q
s′ C π′ of R, we know how to build a derivation of

s′1, . . . , s
′
q `R s′ C π′. Thus, by hypothesis, s′1, . . . , s

′
q ²A s′ C π′ and, so, A is

appropriate for r.

(⇒) Assume that L is sound and s1, . . . , sp `R s C π with derivation sequence
D. We prove s1, . . . , sp ²A s C π by complete induction on the length of D.
Assume the thesis for derivation sequences of length less than n (induction
hypothesis). Consider a derivation sequence D = 〈d1, π1〉, . . . , 〈dn, πn〉. We
have to show s1, . . . , sp ²A d1 C π1. Looking at the justification of the first
element in the derivation we have to consider three cases:
(hypothesis) We have to show s1, . . . , sp ²A si C π1. Indeed, Proposition 3.1
allows us to obtain successively: s1, . . . , sp ²A si (extensive) and s1, . . . , sp ²A
si C π1 (projective).
(axiom) We have to show s1, . . . , sp ²A δ, Γ1 → Γ2, δ C π1. Indeed, ²A δ → δ
and, therefore, by weakening (Theorem 3.3), ²A δ,Γ1 → Γ2, δ. Therefore, using
Proposition 3.1 we obtain successively: s1, . . . , sp ²A δ,Γ1 → Γ2, δ (monotonic)
and s1, . . . , sp ²A δ,Γ1 → Γ2, δ C π1 (projective).
(rule) Assume that rule r ∈ R was used with substitution σ for justifying d1.
Let

rσ =
di1 . . . diq

d1
C π′

with i1, . . . , iq ∈ {2, . . . , n}. Thanks to the projective property in Proposi-
tion 3.1, it is enough to show s1, . . . , sp ²A d1 C π′ ∩ πi1 ∩ · · · ∩ πiq . Since
A is appropriate for every rule in R and using Proposition 3.2, we know
di1 , . . . , diq ²A d1 C π′. On the other hand, by induction hypothesis, we know
s1, . . . , sp ²A dij C πij for j = 1, . . . , q. Therefore, by Proposition 3.1 (idempo-
tent) we obtain the envisaged result. QED
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A sequent logic L = 〈Σ,R,A〉 is said to be structural/order/modal if its
calculus 〈Σ,R〉 is structural/order/modal, respectively.

Within a modal logic, besides the local and global notions of proof-theoretic
consequence presented before, we can also introduce their model-theoretic coun-
terparts:

• ψ1, . . . , ψk ²g
A ϕ iff ²A > ≤ ψ1, . . . ,> ≤ ψk → > ≤ ϕ;

• ψ1, . . . , ψk ²`
A ϕ iff ²A Ωy1,y1 ≤ ψ1, . . . ,y1 ≤ ψk → y1 ≤ ϕ.

The following result is the semantic counterpart of Proposition 2.4.

Proposition 3.5 Within the context of a sound modal sequent logic L =
〈Σ,R,A〉: ψ1, . . . , ψk ²`

A ϕ iff ²g
A (ψ1 ∧ . . . ∧ ψk)⇒ ϕ.

Proof: Taking into account Theorem 3.4, from Lemma 2.3 we obtain:

1. Ωy1,y1 ≤ ψ1, . . . ,y1 ≤ ψk → y1 ≤ ϕ ²A → > ≤ ((ψ1 ∧ . . . ∧ ψk)⇒ ϕ);

2. → > ≤ ((ψ1 ∧ . . . ∧ ψk)⇒ ϕ) ²A Ωy1,y1 ≤ ψ1, . . . ,y1 ≤ ψk → y1 ≤ ϕ.

Therefore, ψ1, . . . , ψk ²`
A ϕ iff ²A Ωy1,y1 ≤ ψ1, . . . ,y1 ≤ ψk → y1 ≤ ϕ iff

(from 1. and 2. taking into account idempotence in Proposition 3.1) ²A → > ≤
((ψ1 ∧ . . . ∧ ψk)⇒ ϕ) iff ²g

A (ψ1 ∧ . . . ∧ ψk)⇒ ϕ. QED

3.2 Algebraic completeness

A set S of closed sequents is said to be consistent if for no closed assertion δ
both → δ ∈ S and → δ ∈ S hold. And it is said to be maximal consistent if for
every closed assertion δ either → δ ∈ S or → δ ∈ S but not both.

Given a sequent calculus C = 〈Σ,R〉 and a maximal consistent set S of
closed sequents over Σ, the syntactic algebra induced by C and S is the following
Σ-algebra:

A(C, S) = 〈cgF(Σ), cgT(Σ), ·A(C,S)〉
where:

• cA(C,S) = λf1 . . . fk. c(f1, . . . , fk);

• oA(C,S) = λt1 . . . tk. o(t1, . . . , tk);

• #A(C,S) = λf. #f ;

• θ ∈ ΩA(C,S) iff S `C → Ωθ;

• 〈θ, θ′〉 ∈ vA(C,S) iff S `C → θ v θ′;

• 〈θ, ϕ〉 ∈ ≤A(C,S) iff S `C → θ ≤ ϕ.
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Let ϕ ∈ gF(Σ). Given an unbounded variable assignment α over a syntactic
algebra A(C, S), we denote by ϕα the closed simple formula obtained from ϕ
by replacing each variable z ∈ Z by α(z).

Let θ ∈ gT(Σ). Given an unbounded variable assignment α and a bounded
variable assignment β both over a syntactic algebra A(C, S), we denote by θαβ
the closed term obtained from θ by replacing each variable x ∈ X by α(x) and
each variable y ∈ Y by β(y).

This notation is extended to ground assertions and bags of ground assertions
by identifying ϕαβ with ϕα.

Lemma 3.6 Let C be a structural calculus, S a maximal consistent set of
closed sequents, α an unbound variable assignment over A(C, S), β a bound
variable assignment over A(C, S), ϕ a ground simple formula, and θ a ground
term. Then:

• [[ϕ]]A(C,S)α = ϕα;

• [[θ]]A(C,S)αβ = θαβ.

Proof: Straightforward induction on the complexity of simple formula ϕ and
term θ, respectively. QED

Lemma 3.7 Let C be a structural calculus, S a maximal consistent set of closed
sequents, α an unbound variable assignment over A(C, S), β a bound variable
assignment over A(C, S), and δ a ground assertion. Then:

A(C, S)αβ ° δ iff S `C → δαβ .

Proof:

(i) A(C, S)αβ ° Ωθ iff [[θ]]A(C,S)αβ ∈ ΩA(C,S) iff (by Lemma 3.6) θαβ ∈ ΩA(C,S)

iff S `C → Ω(θαβ) iff S `C → (Ωθ)αβ.

(ii) Both A(C, S)αβ ° θ v θ′ iff S `C → (θ v θ′)αβ and A(C, S)αβ ° θ ≤ ϕ iff
S `C → (θ ≤ ϕ)αβ are obtained in a similar way.

(iii) A(C, S)αβ ° fθ iff [[θ]]A(C,S)αβ 6∈ ΩA(C,S) iff (by Lemma 3.6) θαβ 6∈ ΩA(C,S)

iff S 6`C → Ω(θαβ) iff (since S is maximal consistent) S `C → f(θαβ) iff
S `C → (fθ)αβ.

(iv) Again, both A(C, S)αβ ° θ 6v θ′ iff S `C → (θ 6v θ′)αβ and A(C, S)αβ °
θ 6≤ ϕ iff S `C → (θ 6≤ ϕ)αβ are obtained in a similar way. QED

Lemma 3.8 (Lifting) Let C be a structural calculus, S a maximal consistent
set of closed sequents, α an unbound variable assignment over A(C, S), β a
bound variable assignment over A(C, S), and ∆′ → ∆′′ a ground sequent. Then:

A(C, S)αβ ° ∆′ → ∆′′ iff S `C ∆′αβ → ∆′′αβ .
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Proof: Indeed, A(C, S)αβ ° ∆′ → ∆′′ iff A(C, S)αβ ° δ for some δ ∈ ∆′′ ∪∆′
iff (Lemma 3.7) S `C → δαβ for some δ ∈ ∆′′ ∪∆′ iff S `C → δ for some δ ∈
∆′′αβ∪∆′αβ iff (see justification below) S `C → ∆′′αβ, ∆′αβ iff (Theorem 2.5),
S `C ∆′αβ → ∆′′αβ. It remains to explain:
(1) If S `C → δ for some δ ∈ ∆′′αβ ∪ ∆′αβ then S `C → ∆′′αβ, ∆′αβ. This
fact is trivially obtained by applications of right weakening.
(2) If S `C → ∆′′αβ, ∆′αβ then S `C → δ for some δ ∈ ∆′′αβ ∪∆′αβ. Indeed,
otherwise, since S is maximal consistent, S `C → δ for every δ ∈ ∆′′αβ∪∆′αβ.
Then, using Theorem 2.6, we would be able to show that every closed assertion
is derivable from S, therefore contradicting that S is consistent. QED

Observe that, in the conditions of the previous lemma, if, furthermore, the
sequent ∆′ → ∆′′ is closed then we have:

A(C, S) ° ∆′ → ∆′′ iff S `C ∆′ → ∆′′ .

Lemma 3.9 (Appropriateness) The class of all syntactic algebras induced
by a sequent calculus is appropriate for it.

Proof: Let r = s1...sp

s be a ground instance of a (proper) rule of a sequent
calculus C. Let α be an arbitrary unbound variable assignment over a syntactic
algebra A(C, S). Assume that A(C, S)α ° si for each i = 1, . . . , p. That is, for
every bound variable assignment β, A(C, S)αβ ° si for each i = 1, . . . , p. So, by
Lemma 3.8, for every such β, S `C siαβ, say with derivation sequence Dsiαβ, for
each such i. Then, it is straightforward to build, for every pair α, β, a derivation
sequence for S `C sαβ using rule r and those derivation sequences. Thus, again
by Lemma 3.8, for every such β, A(C, S)αβ ° s. That is, A(C, S)α ° s. QED

Lemma 3.10 (Consistent extension) Let C be a structural sequent calculus
with rules endowed with persistent provisos. If S is a consistent set of closed
sequents and S 6`C→ υ1, . . . , υm for closed assertions υ1, . . . , υm then the set
S ∪ {→υ1, . . . ,→υm} is still consistent.

Proof: Assume that S ∪ {→υ1, . . . ,→υm} is inconsistent. Then, there is a
closed assertion δ such that S,→υ1, . . . ,→υm `C → δ and S,→υ1, . . . ,→υm `C
→ δ. So, using the metatheorem of contradiction (Theorem 2.6),

S,→υ1, . . . ,→υm `C → υ1 .

Therefore, using the metatheorem of deduction (Theorem 2.7),

S `C υ1, . . . , υm → υ1 .

Thus, applying the metatheorem of conjugation (Theorem 2.5), we get

S `C → υ1, υ1, υ2, . . . , υm

and, by right contraction,

S `C → υ1, . . . , υm

which contradicts the second hypothesis. QED



29

Theorem 3.11 (Algebraic completeness) Every full structural sequent logic
with rules endowed with persistent provisos is complete.

Proof: Consider the logic L = 〈Σ,R,A〉 and let C = 〈Σ,R〉. Assume that
S 6`R ∆′ → ∆′′ with S ∪ {∆′ → ∆′′} composed of closed sequents.
Given an enumeration υn with n ∈ N of the set of closed assertions, we start
by extending S to a maximal consistent set S• as follows:

• S0 = S ∪ {→δ : δ ∈ ∆′′ ∪∆′};

• Sn+1 =
{

S ∪ {→υn} provided that Sn `R → υn

S ∪ {→υn} otherwise
;

• S• =
⋃

n∈N
Sn.

Observe that S• is still consistent thanks to Lemma 3.10. Furthermore, by
construction, it is maximal consistent. Therefore, S• 6`R ∆′ → ∆′′ because
otherwise S• `R → δ for some δ ∈ ∆′′ ∪∆′ (using the same reasoning as in jus-
tification (2) in the proof of Lemma 3.8) and, hence, S• would be inconsistent.
Thus, by Lemma 3.8 applied to a closed sequent, A(C, S•) 6° ∆′ → ∆′′.
On the other hand, for every s ∈ S we know that S `R s and, thus, again
thanks to Lemma 3.8, A(C, S•) ° s.
Since the logic is full and taking into account Lemma 3.9, A(C, S•) is in A.
Hence, S 6²A ∆′ → ∆′′. QED

Corollary 3.12 (Modal algebraic completeness) Within the context of a
full modal sequent logic L = 〈ΣK ,R,A〉:

1. ψ1, . . . , ψk `g
R ϕ iff ψ1, . . . , ψk ²g

A ϕ;

2. ψ1, . . . , ψk ``
R ϕ iff ψ1, . . . , ψk ²`

A ϕ.

Proof:
1. ψ1, . . . , ψk `g

R ϕ iff (by definition) `R > ≤ ψ1, . . . ,> ≤ ψk → > ≤ ϕ iff (⇒:
since L is full and therefore sound; ⇐: thanks to the completeness theorem
above, since we are dealing with closed sequents and modal logics are assumed
to use only persistent provisos) ²A > ≤ ψ1, . . . ,> ≤ ψk → > ≤ ϕ iff (by
definition) ψ1, . . . , ψk ²g

A ϕ.

2. ψ1, . . . , ψk ``
R ϕ iff (by Proposition 2.4) `g

R (ψ1 ∧ . . . ∧ ψk)⇒ ϕ iff (by 1.)
²g
A (ψ1 ∧ . . . ∧ ψk)⇒ ϕ iff (by Proposition 3.5) ψ1, . . . , ψk ²`

A ϕ. QED

3.3 Kripke completeness

We now turn our attention to the traditional semantics of modal logic (based
on, possibly general, Kripke structures). Namely, it is worthwhile to analyze the
class of Kripke structures characterized by a given set of rules. More precisely,
we would like to prove that, for instance, rule T does characterize the reflexive
frames. It would also be nice to establish soundness and completeness results
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over general Kripke semantics by capitalizing on the algebraic completeness
theorem proved in the previous subsection.

Given a suitable choice function needed for interpreting I, it is straight-
forward to extract from any (possibly general) Kripke structure a ΣK-algebra
while respecting the denotation of ground simple formulae. Recall that ΣK =
〈C,O, X, Y, Z〉 is the modal signature introduced in Subsection 2.5.

Let K = 〈W,Ã,B, V 〉 be a general Kripke structure over C where W is
the non-empty set of worlds, Ã is the accessibility relation between worlds,
B ⊆ ℘W is the set of admissible truth values, and the valuation V maps each
propositional symbol pi to an admissible truth value. Let ι be a choice function
for W . Then, the ΣK-algebra Alg(K) = 〈F, T, ·Alg(K)〉 induced byK is as follows:

• F = B;

• T = ℘W ;

• #Alg(K) = λb. b;

• a ∈ ΩAlg(K) iff a is a singleton;

• 〈a, a′〉 ∈ vAlg(K) iff a ⊆ a′;

• 〈a, b〉 ∈ ≤Alg(K) iff a ⊆ b;

• ⊥Alg(K) = ∅;
• >Alg(K) = W ;

• IAlg(K) = λa. ι(a);

• NAlg(K) = λa. {w′ ∈ W : exists w ∈ a such that w Ã w′};
• lbAlg(K) = λaa′. a ∩ a′;

• fAlg(K) = ∅;
• tAlg(K) = W ;

• piAlg(K) = V (pi);

• ¬Alg(K) = λb. W \ b;

• ¤Alg(K) = λb. {w ∈ W : NAlg(K)({w}) ⊆ b};
• ♦Alg(K) = λb. {w ∈ W : NAlg(K)({w}) ∩ b 6= ∅};
• ∧Alg(K) = λbb′. b ∩ b′;

• ∨Alg(K) = λbb′. b ∪ b′;

• ⇒Alg(K) = λbb′. (W \ b) ∪ b′.

It is straightforward to verify the following facts that will allow us later on
to concentrate on the semantics of f ,pi,¬,¤,∨.
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• tAlg(K) = ¬Alg(K)(fAlg(K));

• ♦Alg(K)(b) = ¬Alg(K)(¤Alg(K)(¬Alg(K)(b)));

• ⇒Alg(K)(b, b′) = ∨Alg(K)(¬Alg(K)(b), b′);

• ∧Alg(K)(b, b′) = ¬Alg(K)(∨Alg(K)(¬Alg(K)(b),¬Alg(K)(b′))).

The following results show that the semantics of closed simple formulae is
preserved when we move from a general Kripke structure to the corresponding
ΣK-algebra. In the sequel we use [[ϕ]]K for the denotation of ϕ over the general
Kripke structure K. This denotation is inductively defined over the structure
of ϕ in the usual way.

Lemma 3.13 Let K be a general Kripke structure. Then, for every closed
simple formula ϕ, [[ϕ]]K = [[ϕ]]Alg(K).

Proof:

The proof is carried out by induction on the complexity of ϕ:

(Base) We have to consider only two representative cases:
(i) ϕ is f . Then:

[[f ]]K = ∅ = fAlg(K) = [[f ]]Alg(K) .

(ii) ϕ is pi. Then:

[[pi]]K = V (pi) = piAlg(K) = [[pi]]Alg(K) .

(Step) We have to consider only three representative cases:
(i) ϕ is ¬ϕ′. Then:

[[¬ϕ′]]K = W \ [[ϕ′]]K = W \ [[ϕ′]]Alg(K) =
¬Alg(K)([[ϕ′]]Alg(K)) = [[¬ϕ′]]Alg(K) .

(ii) ϕ is ¤ϕ′. Then:

[[¤ϕ′]]K = {w ∈ W : w Ã w′ implies w′ ∈ [[ϕ′]]K for every w′ ∈ W} =
{w ∈ W : w′ ∈ NAlg(K)({w}) implies w′ ∈ [[ϕ′]]Alg(K) for every w′ ∈ W} =
{w ∈ W : NAlg(K)({w}) ⊆ [[ϕ′]]Alg(K)} = ¤Alg(K)([[ϕ′]]Alg(K)) = [[¤ϕ′]]Alg(K) .

(iii) ϕ is ϕ′ ∨ ϕ′′. Then:

[[ϕ′ ∨ ϕ′′]]K = [[ϕ′]]K ∪ [[ϕ′′]]K = [[ϕ′]]Alg(K) ∪ [[ϕ′′]]Alg(K) =
∨Alg(K)([[ϕ′]]Alg(K), [[ϕ′′]]Alg(K)) = [[ϕ′ ∨ ϕ′′]]Alg(K) . QED

Proposition 3.14 Given a general Kripke structure K and a closed simple
formula ϕ, K ° ϕ iff Alg(K) ° > ≤ ϕ.

Proof:
K ° ϕ iff [[ϕ]]K = W iff W ⊆ [[ϕ]]K iff >Alg(K) ⊆ [[ϕ]]Alg(K) iff [[>]]Alg(K) ⊆
[[ϕ]]Alg(K) iff 〈[[>]]Alg(K), [[ϕ]]Alg(K)〉 ∈ ≤Alg(K) iff Alg(K) ° > ≤ ϕ. QED
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Proposition 3.15 Given a general Kripke structure K, an unbound variable
assignment β over Alg(K) such that β(y1) = {w} and a ground simple formula
ϕ, Kw ° ϕ iff Alg(K)β ° y1 ≤ ϕ.

Proof:
Kw ° ϕ iff w ∈ [[ϕ]]K iff {w} ⊆ [[ϕ]]K iff β(y1) ⊆ [[ϕ]]Alg(K) iff [[y1]]Alg(K)β ⊆
[[ϕ]]Alg(K) iff 〈[[y1]]Alg(K)β, [[ϕ]]Alg(K)〉 ∈ ≤Alg(K) iff Alg(K) ° y1 ≤ ϕ. QED

Given a classK of general Kripke structures, let Alg(K) be the class {Alg(K) :
K ∈ K}, and ²g

K , ²`
K be the global, local entailment over K, respectively.

Theorem 3.16 Given a class K of general Kripke structures:

1. ψ1, . . . , ψk ²g
K ϕ iff ψ1, . . . , ψk ²g

Alg(K) ϕ;

2. ψ1, . . . , ψk ²`
K ϕ iff ψ1, . . . , ψk ²`

Alg(K) ϕ.

Proof: Without loss of generality consider k = 2:

1. ψ1, ψ2 ²g
K ϕ iff, for every K ∈ K, K ° ϕ whenever K ° ψ1 and K ° ψ2

iff (thanks to Proposition 3.14), for every A ∈ Alg(K), A ° > ≤ ϕ whenever
A ° > ≤ ψ1 and A ° > ≤ ψ2 iff ψ1, ψ2 ²g

Alg(K) ϕ.

2. ψ1, ψ2 ²`
K ϕ iff, for every K ∈ K and w ∈ W , Kw ° ϕ whenever Kw ° ψ1

and Kw ° ψ2 iff (thanks to Proposition 3.15), for every A ∈ Alg(K) and every
assignment β such that β(y1) = {w}, Aβ ° y1 ≤ ϕ whenever Aβ ° y1 ≤ ψ1 and
Aβ ° y1 ≤ ψ2 iff for every A ∈ Alg(K) and every assignment β, Aβ ° y1 ≤ ϕ
whenever Aβ ° y1 ≤ ψ1, Aβ ° y1 ≤ ψ2 and Aβ ° Ωy1 iff ψ1, ψ2 ²g

Alg(K) ϕ.
QED

Theorem 3.17 For every general Kripke structure K, the ΣK-algebra Alg(K)
is appropriate for each rule in RK .

Proof:

(i) The algebra Alg(K) is appropriate for each structural rule thanks to Theo-
rem 3.3.

(ii) The algebra Alg(K) is appropriate for each order rule in Subsection 2.4
because inclusion does fulfill the properties imposed by those rules.
For instance, consider rule RgenF. Let ρ be a ground substitution such that
(τ2 : y)(ρ) = 1 and (τ2 /∈ τ1, Γ1,Γ2)(ρ) = 1. So τ2ρ is a variable, say yi, that is
fresh.
Let α be an arbitrary unbound variable assignment over Alg(K). Assume that
the pair Alg(K)α satisfies the premise Ωyi,yi v τ1ρ, Γ1ρ → Γ2ρ,yi ≤ ξ1ρ. We
have to prove that the pair Alg(K)α satisfies the conclusion Γ1ρ → Γ2ρ, τ1ρ ≤
ξ1ρ where yi does not occur.
Since Alg(K)α satisfies the premise, we know that, for every bound variable
assignment β, there is δβ in Γ2ρ∪ {yi ≤ ξ1ρ} ∪ {fyi,yi 6v τ1ρ} ∪Γ1ρ such that
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the triple Alg(K)αβ satisfies δβ.
For each β we have to consider the following two cases:
(a) there is δβ in Γ2ρ ∪ Γ1ρ such that Alg(K)αβ ° δβ which immediately es-
tablishes that Alg(K)αβ satisfies Γ1ρ → Γ2ρ and, hence, the conclusion of the
rule.
(b) Otherwise, we know that there is δβ in {yi ≤ ξ1ρ}∪{fyi,yi 6v τ1ρ} such that
Alg(K)αβ ° δβ. Furthermore, we also know that, for every assignment η yi-
equivalent to β, there is δη in Γ2ρ∪{yi ≤ ξ1ρ}∪{fyi,yi 6v τ1ρ}∪Γ1ρ such that
Alg(K)αη ° δη. Moreover, since yi does not occur in Γ2ρ∪Γ1ρ, Alg(K)αη 6°→
Γ2ρ,Γ1ρ. So, for every such η, there is δη in {yi ≤ ξ1ρ} ∪ {fyi,yi 6v τ1ρ} such
that Alg(K)αη ° δη. In particular, for every η yi-equivalent to β and such that
η(yi) is a singleton and is included in [[τ1ρ]]Alg(K)β, we know that Alg(K)αη sat-
isfies yi ≤ ξ1ρ, that is, we know that η(yi) is included in [[ξ1ρ]]Alg(K)α. Therefore,
[[τ1ρ]]Alg(K)αβ is included in [[ξ1ρ]]Alg(K)α. So, Alg(K)αβ satisfies → τ1ρ ≤ ξ1ρ
and, hence, the conclusion of the rule.

(iii) It remains to check that Alg(K) is appropriate for each specific rule of the
modal calculus K given in Subsection 2.5.
For instance, consider rule R♦. Let ρ be any ground substitution. Assume that
Alg(K)α satisfies the premises of the rule Ωτ1ρ, Ωτ2ρ, Γ1ρ → Γ2ρ, τ2ρ v N(τ1ρ),
Ωτ1ρ,Ωτ2ρ,Γ1ρ → Γ2ρ, τ2ρ ≤ ξ1ρ and Ωτ1ρ,Γ1ρ → Γ2ρ, Ωτ2ρ. We have to prove
that Alg(K)α satisfies the conclusion Ωτ1ρ, Γ1ρ → Γ2ρ, τ1ρ ≤ (♦ξ1ρ).
Since Alg(K)α satisfies the premises, we know that, for every bound variable
assignment β, there are:

• δ1 in Γ2ρ∪{τ2ρ v N(τ1ρ)}∪{fτ1ρ,fτ2ρ}∪Γ1ρ such that Alg(K)αβ ° δ1;

• δ2 in Γ2ρ ∪ {τ2ρ ≤ ξ1ρ} ∪ {fτ1ρ,fτ2ρ} ∪ Γ1ρ such that Alg(K)αβ ° δ2;

• and δ3 in Γ2ρ ∪ {Ωτ2ρ} ∪ {fτ1ρ} ∪ Γ1ρ such that Alg(K)αβ ° δ3.

For each β, we have to consider two cases:
(a) Alg(K)αβ ° δi with δi in Γ2ρ ∪ {fτ1ρ} ∪ Γ1ρ for some i = 1, . . . , 3 which
immediately establishes the conclusion of the rule.
(b) Otherwise, we know that:

• Alg(K)αβ ° Ωτ1ρ;

• Alg(K)αβ ° δ1 for some δ1 in {τ2ρ v N(τ1ρ),fτ2ρ};
• Alg(K)αβ ° δ2 for some δ2 in {τ2ρ ≤ ξ1ρ,fτ2ρ};
• Alg(K)αβ ° δ3 for some δ3 in {Ωτ2ρ}, that is, Alg(K)β ° Ωτ2ρ.

That is:

• Alg(K)αβ ° Ωτ1ρ;

• Alg(K)αβ ° τ2ρ v N(τ1ρ);

• Alg(K)αβ ° τ2ρ ≤ ξ1ρ;
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• Alg(K)αβ ° Ωτ2ρ.

Let w1, w2 be such that [[τ1ρ]]Alg(K)αβ = {w1} and [[τ2ρ]]Alg(K)αβ = {w2}. Thus:

• {w2} ⊆ NAlg(K)({w1});
• {w2} ⊆ [[ξ1ρ]]Alg(K)α.

Hence, NAlg(K)({w1})∩ [[ξ1ρ]]Alg(K)α 6= ∅. So, {w1} ⊆ {w ∈ W : NAlg(K)({w})∩
[[ξ1ρ]]Alg(K)α 6= ∅}. That is, [[τ1ρ]]Alg(K)α ⊆ ♦Alg(K)([[ξ1ρ]]Alg(K)α) which estab-
lishes that Alg(K)αβ ° τ1ρ ≤ (♦ξ1ρ) and, so, the conclusion of the rule. QED

In order to state and prove the envisaged characterization results, we need
some notation:

• P denotes a property of the accessibility relation among those considered
in Subsection 2.6;

• rP denotes the corresponding sequent rule as indicated in Subsection 2.6;

• KP denotes the class of all general Kripke structures fulfilling P ;

• CP denotes the sequent modal calculus with the extra rule rP ;

• app(CP ) denotes the class of algebras appropriate for CP .

We also extend this notation to any finite set P of such properties in the obvious
way.

Theorem 3.18 (Characterization) For each property P of the accessibility
relation and each general Kripke structure K:

K ∈ KP iff Alg(K) ∈ app(CP ) .

Proof: The proof is straightforward for each of the properties in Subsection 2.6.
We provide the details only for two cases:

(rule X) Let P state that the relation is irreflexive. Then: K ∈ KP iff w 6Ã w
for every w ∈ W iff {w} 6⊆ NAlg(K)(w) for every w ∈ W . We have to show that
the latter holds iff, for every Γ1, Γ2, ρ, α, β, Alg(K)αβ ° Ωτ1ρ,Γ1ρ → Γ2ρ, τ1ρ 6v
N(τ1ρ).

(⇒) Assume that, for every w ∈ W , {w} 6⊆ NAlg(K)(w). It is sufficient to
show that Alg(K)αβ ° Ωτ1ρ → τ1ρ 6v N(τ1ρ), that is, Alg(K)αβ °→ τ1ρ 6v
N(τ1ρ),fτ1ρ. We have to consider two cases:
(a) Alg(K)αβ ° fτ1ρ which immediately establishes the result.
(b) Otherwise, we know Alg(K)αβ ° Ωτ1ρ and, hence, that [[τ1ρ]]Alg(K)αβ is a
singleton. So, from the hypothesis, we get [[τ1ρ]]Alg(K)αβ 6⊆ NAlg(K)([[τ1ρ]]Alg(K)αβ).
Hence, Alg(K)αβ ° τ1ρ 6v N(τ1ρ).

(⇐) Assume that, for every Γ1,Γ2, ρ, α, β, Alg(K)αβ ° Ωτ1ρ,Γ1ρ → Γ2ρ, τ1ρ 6v
N(τ1ρ). Then, for each w ∈ W , choose Γ1 = Γ2 = ∅, ρ such that ρ(τ1) = x1,
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and α such that α(x1) = {w}. Therefore, Alg(K)α ° τ1ρ 6v N(τ1ρ) and, so,
{w} 6⊆ NAlg(K)(w).

(rule W) Let P state that the relation is transitive and well bounded.

(⇒) Assume that the relation is transitive and well bounded and that rule W
does not hold. Then, there is ρ fulfilling the proviso and an assignment α such
that Alg(K)αβ ° Ωτ1ρ,Ωτ3ρ, τ3ρ v N(τ1ρ), Γ1ρ → Γ2ρ, τ1ρ v τ2ρ,N(τ3ρ) 6v
τ2ρ for all assignments β and Alg(K)α 6° Ωτ1ρ, Γ1ρ → Γ2ρ,N(τ1ρ) v τ2ρ. So,
Alg(K)α ° τ1ρ, Alg(K)α ° Γ1ρ, Alg(K)α 6° γ2ρ for every γ2ρ ∈ Γ2ρ and
Alg(K)α 6° N(τ1ρ) v τ2. So, there is w such that {w} ⊆ NAlg(K)([[τ1ρ]]Alg(K)α)
and {w} 6⊆ [[τ2ρ]]Alg(K)α. Since the relation is transitive and well bounded, we
can choose a maximal w fulfilling the previous conditions, that is, if {w′} ⊆
NAlg(K)({w}) then either {w′} 6⊆ NAlg(K)([[τ1ρ]]Alg(K)α) or {w′} ⊆ [[τ2ρ]]Alg(K)α.
Consider β such that [[τ3ρ]]Alg(K)αβ = {w}, then Alg(K)αβ ° τ3ρ v N(τ1ρ),
Alg(K)αβ ° Ωτ1ρ, Alg(K)αβ ° Ωτ3ρ and Alg(K)αβ ° Γ1ρ. On the other hand,
Alg(K)αβ 6° γ2ρ for all γ2ρ ∈ Γ2ρ and Alg(K)αβ 6° τ3ρ v τ2ρ. So it remains to
show that Alg(K)αβ 6° N(τ3ρ) 6v τ2ρ. Assume that Alg(K)αβ ° N(τ3ρ) 6v τ2ρ,
then there is a {w′} ⊆ NAlg(K)({w}) such that {w′} 6⊆ [[τ2ρ]]Alg(K)α. By transi-
tivity {w′} ⊆ NAlg(K)([[τ1ρ]]Alg(K)α) and so, since {w′} 6⊆ [[τ2ρ]]Alg(K)α, w would
not be maximal. Hence, Alg(K)αβ 6° N(τ3ρ) 6v τ2ρ. Therefore there is β such
that the premise of W is not fulfilled, which contradicts our hypothesis.

(⇐) Assume that rule W holds.
(a) Assume that the relation is not transitive. Then, there are w1, w2, w3 such
that {w2} ⊆ NAlg(K)(w1), {w3} ⊆ NAlg(K)(w2) and {w3} 6⊆ NAlg(K)(w1).
Consider the ground substitution ρ such that Γ1ρ = Γ2ρ = ∅, τ1ρ = x1,
τ2ρ = x2 and τ3ρ = y1. Let α be an assignment such that α(x1) = {w1} and
α(x2) = W \ {w1, w2, w3}. Then Alg(K)α 6° fx1 and Alg(K)α 6° N(x1) v x2

and so Alg(K)α 6° Ωx1 → N(x1) v x2. Next we show that Alg(K)α °
Ωx1,Ωy1,y1 v N(x1) → y1 v x2,N(y1) 6v x2 by considering all possibili-
ties for β(y1): (i) if β(y1) is not a singleton then the result follows straightfor-
wardly; (ii) if β(y1) = {w2} then Alg(K)αβ ° N(y1) 6v x2; (iii) if β(y1) = {w1}
or β(y1) = {w3} then Alg(K)αβ 6° y1 v N(x1); (iv) if β(y1) ∈ W \{w1, w2, w3}
then Alg(K)αβ ° y1 v x2). Therefore the rule does not hold, which is a con-
tradiction with the hypothesis.
(b) Assume that the relation is transitive but not well bounded. Then, there is
a sequence {wi}i∈N such that {wi+1, wi+2, . . . } ⊆ NAlg(K)(wi) for all i ∈ N.
Consider the ground substitution ρ such that Γ1ρ = Γ2ρ = ∅, τ1ρ = x1,
τ2ρ = x2 and τ3ρ = y1. Let α be an assignment such that α(x1) = {w0} and
α(x2) = W \ {w0, w1, . . . }. Then Alg(K)α 6° fx1 and Alg(K)α 6° N(x1) v x2

and so Alg(K)α 6° Ωx1 → N(x1) v x2. Next we show that Alg(K)α °
Ωx1,Ωy1 → y1 v x2,N(y1) 6v x2 by considering all possibilities for β(y1):
(i) if β(y1) is not a singleton then the result follows straightforwardly; (ii) as-
sume that β(y1) = {wi}, then Alg(K)αβ ° N(y1) 6v x2; (iii) assume that
β(y1) ∈ W \ {w0, w1, . . . }, then Alg(K)αβ ° y1 v x2. Therefore the rule does
not hold, which is a contradiction with the hypothesis. QED
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Observe that the characterization theorem above shows that the rules pro-
posed in Subsection 2.6 characterize the envisaged properties of the accessibility
relation even among general Kripke structures.

We now turn our attention to soundness and completeness of the modal
sequent calculi over the general Kripke semantics. Soundness is easy to obtain,
but, in order to establish completeness, we have to start by showing how to
extract a general Kripke structure from a ΣK-algebra appropriate for the se-
quent rules of a modal system. Recall that ΣK = 〈C,O, X, Y, Z〉 is the modal
signature introduced in Subsection 2.5.

Let A = 〈F, T, ·A〉 be a ΣK-algebra. Consider Kpk(A) = 〈W,Ã,B, V 〉
where:

• W = ΩA

• t Ã t′ iff t′ vA NA(t);

• B = {〈f〉A : f ∈ F} where 〈f〉A denotes the set {t ∈ ΩA : t ≤A f};
• V (pi) = 〈piA〉A.

In the sequel, we may write 〈f〉 for 〈f〉A when the underlying algebra is
clear from the context.

Proposition 3.19 Given a ΣK-algebra A appropriate for CK , the tuple Kpk(A)
is a general Kripke structure over C.

Proof:

(1) W is non empty. Indeed, by absurd, assume that W = ΩA = ∅. Then, since
A is appropriate for rules cons and Ω, we would conclude that > ∈ ΩA.

(2) W ∈ B. Indeed, W = 〈[[t]]A〉 since A is appropriate for rule Rt.

(3) B is closed for complements. More precisely, we have to show that if 〈f〉 ∈ B
then (W \ 〈f〉) ∈ B. Observe that W \ 〈f〉 = {t ∈ W : t 6≤A f}. We show below
that {t ∈ W : t 6≤A f} = {t ∈ W : t ≤A ¬A(f)}. Thus, the result follows since
the latter set is 〈¬A(f)〉 which is in B.
(i) {t ∈ W : t 6≤A f} ⊆ {t ∈ W : t ≤A ¬A(f)}. Indeed, assume that t 6≤A
f whenever t ∈ ΩA. So, by definition of satisfaction, choosing α such that
α(x1) = t and α(z1) = f , we have Aα ° Ωx1 → x1 6≤ z1. Observe that
Ωx1 → x1 6≤ z1 `CK

Ωx1 → x1 ≤ ¬ z1:

1 Ωx1 → x1 ≤ ¬ z1 R¬ : 2

2 x1 ≤ z1, Ωx1 → LxeF : 3

3 Ωx1 → x1 6≤ z1 hyp

Therefore, by Theorem 3.4, Ωx1 → x1 6≤ z1 ²app(CK) Ωx1 → x1 ≤ ¬ z1. Hence,
Aα ° Ωx1 → x1 ≤ ¬ z1. Again by definition of satisfaction and taking into
account the choice of α, we get t ≤A ¬A(f) whenever t ∈ ΩA.
(ii) {t ∈ W : t 6≤A f} ⊇ {t ∈ W : t ≤A ¬A(f)}. The proof is similar taking into
account Ωx1 → x1 ≤ ¬ z1 `CK

Ωx1 → x1 6≤ z1:
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1 Ωx1 → x1 6≤ z1 cutF : 2, 3

2 Ωx1 → x1 6≤ z1,x1 ≤ ¬ z1 RwF : 4

3 x1 ≤ ¬ z1, Ωx1 → x1 6≤ z1 L¬ : 5

4 Ωx1 → x1 ≤ ¬ z1 hyp

5 Ωx1 → x1 6≤ z1,x1 ≤ z1 RxiF : 6

6 x1 ≤ z1, Ωx1 → x1 ≤ z1 ax

(4) B is closed for unions. More precisely, we have to show that if 〈f〉, 〈g〉 ∈ B
then (〈f〉 ∪ 〈g〉) ∈ B. Observe that 〈f〉 ∪ 〈g〉 = {t ∈ W : t ≤A f or t ≤A g}. We
show below that {t ∈ W : t ≤A f or t ≤A g} = {t ∈ W : t ≤A ∨A(f, g)}. Thus,
the result follows since the latter set is 〈∨A(f, g)〉 which is in B.
(i) {t ∈ W : t ≤A f or t ≤A g} ⊆ {t ∈ W : t ≤A ∨A(f, g)}. Indeed, assume that
t ≤A f or t ≤A g whenever t ∈ ΩA. So, by definition of satisfaction, choosing
α such that α(x1) = t, α(z1) = f and α(z2) = g we have Aα ° Ωx1 → x1 ≤
z1,x1 ≤ z2. Observe that Ωx1 → x1 ≤ z1,x1 ≤ z2 `CK

Ωx1 → x1 ≤ (z1 ∨ z2)
by rule R∨. Therefore, by Theorem 3.4, Ωx1 → x1 ≤ z1,x1 ≤ z2 ²app(CK)

Ωx1 → x1 ≤ (z1 ∨ z2). Hence, Aα ° Ωx1 → x1 ≤ (z1 ∨ z2). Again by definition
of satisfaction and taking into account the choice of α, we get t ≤A ∨A(f, g)
whenever t ∈ ΩA.
(ii) {t ∈ W : t ≤A f or t ≤A g} ⊇ {t ∈ W : t ≤A ∨A(f, g)}. The proof is similar
taking into account Ωx1 → x1 ≤ (z1 ∨ z2) `CK

Ωx1 → x1 ≤ z1,x1 ≤ z2:

1 Ωx1 → x1 ≤ z1

x1 ≤ z2
cutF : 2, 3

2 Ωx1 →
x1 ≤ (z1 ∨ z2)
x1 ≤ z1

x1 ≤ z2

RwF : 4

3
x1 ≤ (z1 ∨ z2)
Ωx1

→ x1 ≤ z1

x1 ≤ z2
L∨ : 5, 6

4 Ωx1 → x1 ≤ (z1 ∨ z2) hyp

5
x1 ≤ z1

Ωx1
→ x1 ≤ z1

x1 ≤ z2
ax

6
x1 ≤ z2

Ωx1
→ x1 ≤ z1

x1 ≤ z2
ax

(5) B is closed for necessitations. More precisely, denoting by L(〈f〉) the set
{t ∈ W : t Ã t′ implies t′ ∈ 〈f〉 for every t′ ∈ W}, we have to show that if 〈f〉 ∈
B then L(〈f〉) ∈ B. Observe that L(〈f〉) = {t ∈ W : t′ vA NA(t) implies t′ ∈
〈f〉 for every t′ ∈ W} = {t ∈ W : t′ vA NA(t) implies t′ ≤A f for every t′ ∈
W}. We show below the latter set is equal to {t ∈ W : t ≤A ¤A(f)}. Thus, the
result follows since the latter set is 〈¤A(f)〉 which is in B.
(i) L(〈f〉) ⊆ {t ∈ W : t ≤A ¤A(f)}. Indeed, assume that if t ∈ ΩA then for
every t′ ∈ ΩA we have t′ ≤A f whenever t′ vA NA(t). So, by definition of
satisfaction, choosing α such that α(x1) = t and α(z1) = f , we have

Aα ° Ωx1, Ωy1,y1 v N(x1) → y1 ≤ z1 .

Observe that Ωx1, Ωy1,y1 v N(x1) → y1 ≤ z1 `CK
Ωx1 → x1 ≤ ¤z1 by

rules R¤ and Rgen. Therefore, by Theorem 3.4 Ωx1, Ωy1,y1 v N(x1) →
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y1 ≤ z1 ²app(CK) Ωx1 → x1 ≤ ¤z1. Hence, Aα ° Ωx1 → x1 ≤ ¤z1. Again
by definition of satisfaction and taking into account the choice of α, we get
t ≤A ¤A(f) whenever t ∈ ΩA.
(ii) L(〈f〉) ⊇ {t ∈ W : t ≤A ¤A(f)}. The proof is similar taking into account
Ωx1 → x1 ≤ ¤z1 `CK

Ωx1, Ωy1,y1 v N(x1) → y1 ≤ z1:

1
Ωx1

Ωy1

y1 v N(x1)
→ y1 ≤ z1 cutF : 2, 3

2
Ωx1

Ωy1

y1 v N(x1)
→ x1 ≤ �z1

y1 ≤ z1
w : 4

3

x1 ≤ �z1

Ωx1

Ωy1

y1 v N(x1)

→ y1 ≤ z1 L� : 5, 6, 7

4 Ωx1 → x1 ≤ �z1 hyp

5

Ωy1

x1 ≤ �z1

Ωx1

Ωy1

y1 v N(x1)

→ y1 v N(x1)
y1 ≤ z1

ax

6

Ωy1

y1 ≤ z1

x1 ≤ �z1

Ωx1

Ωy1

y1 v N(x1)

→ y1 ≤ z1 ax

7

x1 ≤ �z1

Ωx1

Ωy1

y1 v N(x1)

→ Ωy1

y1 ≤ z1
ax

QED

The following results show that the semantics of ground simple formulae is
preserved when we move from a ΣK-algebra appropriate for CK to the corre-
sponding general Kripke structure.

Lemma 3.20 Let A be a ΣK-algebra appropriate for CK . Then, for every
ground simple formula ϕ, 〈[[ϕ]]A〉 = [[ϕ]]Kpk(A).

Proof:

The proof is carried out by induction on the complexity of ϕ:

(Base) We have to consider only two representative cases:
(i) ϕ is f . Then: 〈[[f ]]A〉 = 〈fA〉 = {u ∈ ΩA : u ≤A fA} which coincides
with {u ∈ ΩA : u vA ⊥A} since A is appropriate for rule Rf . Moreover,
{u ∈ ΩA : u vA ⊥A} = ∅ since A is appropriate for rule Ω⊥. Therefore,
〈[[f ]]A〉 = fKpk(A) = [[f ]]Kpk(A).
(ii) ϕ is pi. Then: 〈[[pi]]A〉 = 〈piA〉 = V (pi) = [[pi]]Kpk(A).

(Step) We have to consider only three representative cases:
(i) ϕ is ¬ϕ′. Then: 〈[[¬ϕ′]]A〉 = 〈¬A([[ϕ′]]A)〉 = {u ∈ ΩA : u ≤A ¬A([[ϕ′]]A)}
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which coincides with {u ∈ ΩA : u 6≤A [[ϕ′]]A} as seen in part (2) of the proof
of Proposition 3.19. Therefore, 〈[[¬ϕ′]]A〉 = ΩA \ {u ∈ ΩA : u ≤A [[ϕ′]]A} =
ΩA \〈[[ϕ′]]A〉 which, by the induction hypothesis, is equal to ΩA \ [[ϕ′]]Kpk(A) and,
so, identical to [[¬ϕ′]]Kpk(A).
(ii) ϕ is ¤ϕ′. Then: 〈[[¤ϕ′]]A〉 = 〈¤A([[ϕ′]]A)〉 = {u ∈ ΩA : u ≤A ¤A([[ϕ′]]A)}
which coincides with L(〈[[ϕ′]]A〉) as seen in part (4) of the proof of Proposi-
tion 3.19. Therefore, by the induction hypothesis,〈[[¤ϕ′]]A〉 = L([[ϕ′]]Kpk(A))
and, so, identical to [[¤ϕ′]]Kpk(A).
(iii) ϕ is ϕ′∨ϕ′′. Then: 〈[[ϕ′ ∨ ϕ′′]]A〉 = 〈∨A([[ϕ′]]A, [[ϕ′′]]A)〉 which coincides with
{u ∈ ΩA : u ≤A [[ϕ′]]A or u ≤A [[ϕ′′]]A} as seen in part (3) of the proof of Propo-
sition 3.19. Therefore, 〈[[ϕ′ ∨ ϕ′′]]A〉 = {u ∈ ΩA : u ≤A [[ϕ′]]A} ∪ {u ∈ ΩA : u ≤A
[[ϕ′′]]A} which, by the induction hypothesis, is equal to [[ϕ′]]Kpk(A) ∪ [[ϕ′′]]Kpk(A)

and, so, identical to [[ϕ′ ∨ ϕ′′]]Kpk(A). QED

Proposition 3.21 Given a ΣK-algebra A appropriate for CK and a ground
simple formula ϕ, A ° > ≤ ϕ iff Kpk(A) ° ϕ.

Proof:

(⇒) Assume A ° > ≤ ϕ. Then, >A ≤A [[ϕ]]A. Since A is appropriate for rules
> and transF, for every t ∈ T , t ≤A [[ϕ]]A. In particular, for every u ∈ ΩA,
u ≤A [[ϕ]]A. Therefore, {u ∈ ΩA : u ≤A [[ϕ]]A} = ΩA. Thus, 〈[[ϕ]]A〉 = ΩA and,
so, [[ϕ]]Kpk(A) = W which means Kpk(A) ° ϕ.
(⇐) Assume Kpk(A) ° ϕ. Then, {u ∈ ΩA : u ≤A [[ϕ]]A} = ΩA. Thus, since A is
appropriate for rule Ω>, >A ≤A [[ϕ]]A, and, so, A ° > ≤ ϕ. QED

Proposition 3.22 Given a ΣK-algebra A appropriate for CK , an assignment β
over A such that β(y1) = u ∈ ΩA and a ground simple formula ϕ, Aαβ ° y1 ≤ ϕ
iff Kpk(A)u ° ϕ.

Proof: Aαβ ° y1 ≤ ϕ iff β(y1) ≤A [[ϕ]]A iff u ∈ 〈[[ϕ]]A〉A iff u ∈ [[ϕ]]Kpk(A) iff
Kpk(A)u ° ϕ. QED

Given a class A of ΣK-algebras appropriate for the sequent rules of modal
system K, let Kpk(A) be the class {Kpk(A) : A ∈ A}.
Theorem 3.23 Given a class A of ΣK-algebras appropriate for CK :

• ψ1, . . . , ψk ²g
A ϕ iff ψ1, . . . , ψk ²g

Kpk(A) ϕ;

• ψ1, . . . , ψk ²`
A ϕ iff ψ1, . . . , ψk ²`

Kpk(A) ϕ.

Proof: Immediate using the two propositions above. QED

We are now ready to establish the counterpart of Theorem 3.18.

Theorem 3.24 (Cocharacterization) For each property P of the accessibil-
ity relation and each ΣK-algebra A appropriate for CK :

Kpk(A) ∈ KP iff A ∈ app(CP ) .
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Proof: Straightforward for each of the properties in Subsection 2.6. For in-
stance, let P state that the relation is irreflexive. Then: Kpk(A) ∈ KP iff u 6Ã u
for every u ∈ W = ΩA iff u 6vA NA(u) for every u ∈ W . So, we have to show
that the latter holds iff, for every Γ1, Γ2, ρ, α, β, Aαβ ° Ωτ1ρ,Γ1ρ → Γ2ρ, τ1ρ 6v
N(τ1ρ). QED

And, finally, we are now able to prove the envisaged completeness result
over general Kripke semantics.

Theorem 3.25 (Modal Kripke soundness and completeness) For each fi-
nite set P of properties of the accessibility relation:

• ψ1, . . . , ψk ²g
KP ϕ iff ψ1, . . . , ψk `g

CP ϕ;

• ψ1, . . . , ψk ²`
KP ϕ iff ψ1, . . . , ψk ``

CP ϕ.

Proof:

(Soundness) Immediate by induction on the length of the derivation using (⇒)
of Theorem 3.18, Theorem 3.17 and Theorem 3.16.

(Global completeness) Assume that ψ1, . . . , ψk 6 `g
CP ϕ. Then, by Corollary 3.12,

ψ1, . . . , ψk 6 ²g
app(CP ) ϕ. That is, there is A ∈ app(CP) such that A ° > ≤ ψi for

i = 1, . . . , k and A 6° > ≤ ϕ. Let A be such an algebra and K = Kpk(A). Then,
by Theorem 3.24, we know that K ∈ KP . Furthermore, by Proposition 3.21,
K ° ψi for i = 1, . . . , k and K 6° ϕ. Therefore, ψ1, . . . , ψk 6 ²g

KP ϕ.

(Local completeness) Assume that ψ1, . . . , ψk 6 ``
CP ϕ. Then, by Proposition 2.4,

6 `g
CP (ψ1 ∧ . . . ∧ ψk) ⇒ ϕ. So, by global completeness as proved above, 6 ²g

KP
(ψ1 ∧ . . . ∧ ψk)⇒ ϕ. Therefore, by Proposition 3.5, ψ1, . . . , ψk 6 ²`

KP ϕ. QED

It is straightforward to adapt the results in this subsection (about CK and
its extensions) to the hybrid calculi introduced in Subsection 2.7.

We refrain to develop the details on this side issue, but it is worthwhile to
comment on the nature of Kpk(A) when A is appropriate for C@

K . Since, FA
contains elements representing all elements of ℘W , B collapses into ℘W in the
resulting Kripke structure. Therefore, denoting by sKP the class of all standard
Kripke structures with set P of properties imposed on the accessibility relation,
the theorem above becomes:

Theorem 3.26 For each finite set P of properties of the accessibility relation:

• ψ1, . . . , ψk ²g
sKP ϕ iff ψ1, . . . , ψk `g

C@
P

ϕ;

• ψ1, . . . , ψk ²`
sKP ϕ iff ψ1, . . . , ψk ``

C@
P

ϕ.
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3.4 Duality between sober algebras and Kripke structures

In the previous subsection, we saw how to extract a ΣK-algebra appropriate for
CK from a general Kripke structure and vice versa. It is natural to ask what is
the relationship, if any, between A and Alg(Kpk(A)) and also between K and
Kpk(Alg(K)). In order to answer these questions, first we need to set up the
category of Σk-algebras and the category of general Kripke structures.

Recall that a p-morphism h : 〈W,Ã,B, V 〉 → 〈W ′, Ã′,B′, V ′〉 is a map
h : W → W ′ such that:

a) if w1 Ã w2 then h(w1) Ã′ h(w2);

b) if h(w1) Ã′ w′2 then there is w2 such that h(w2) = w′2 and w1 Ã w2;

c) h−1(B′) ∈ B for every B′ ∈ B′;
d) w ∈ V (pi) iff h(w) ∈ V ′(pi).

General Kripke structures together with p-morphisms constitute the cate-
gory K. Observe that condition d) is equivalent to

d′) V (pi) = h−1(V ′(pi)).

In order to set up the envisaged category of ΣK-algebras appropriate for
CK , we propose the following notion of morphism between such algebras. To
this end, we need the following notation:

• f1 ∼A f2 iff 〈f1〉A = 〈f2〉A, that is, iff {u ∈ ΩA : u ≤A f1} = {u ∈ ΩA :
u ≤A f2};

• dteA = {u ∈ ΩA : u vA t};
• t1 ≈A t2 iff t1 vA t2 and t2 vA t1, that is, iff dt1eA = dt2eA.

A morphism h : 〈F, T, ·A〉 → 〈F ′, T ′, ·A′〉 is a pair 〈−→h ,
←−
h 〉 where:

• −→h : F → F ′;

• ←−h : T ′ → T ;

such that

1)
−→
h (cA(f1, . . . , fk)) ∼A′ cA′(

−→
h (f1), . . . ,

−→
h (fk));

2) d←−h (t′)eA ⊆
←−
h (dt′eA′);

3)
←−
h (⊥A′) vA ⊥A;

4) NA(
←−
h (t′)) ≈A

←−
h (NA′(t′));

5) if t′ ∈ ΩA′ then
←−
h (t′) ∈ ΩA;

6) if t′1 vA′ t′2 then
←−
h (t′1) vA

←−
h (t′2);
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7)
←−
h (t′) ≤A f iff t′ ≤A′

−→
h (f) whenever t′ ∈ ΩA′ .

It is straightforward to verify that the ΣK-algebras appropriate for CK together
with these morphisms constitute a category that we denote by A.

This notion of morphism is sufficiently strong to ensure the preservation
and reflection of satisfaction of labelled formula. To this end, it is convenient
to make explicit the structure of an unbound variable assignment α over a
Σ-algebra by identifying each such α with the pair 〈α|X , α|Z〉.

Theorem 3.27 (Satisfaction condition) Let h : A → A′ be a morphism,
θ ∈ gT(ΣK) without bounded variables, ϕ ∈ gF(ΣK), α an unbounded variable
assignment over A, and α′ an unbounded variable assignment over A′. Then:

A〈←−h ◦ α′|X , α|Z〉 ° θ ≤ ϕ iff A′〈α′|X ,
−→
h ◦ α|Z〉 ° θ ≤ ϕ .

Proof: The following two equalities can be proved by induction on the com-
plexity of θ and ϕ, respectively:

1. [[θ]]A←−h ◦α′|X =
←−
h ([[θ]]A′α′|X );

2.
−→
h ([[ϕ]]Aα|Z ) = [[ϕ]]A′−→h ◦α|Z .

Now we have: A〈←−h ◦ α′|X , α|Z〉 ° θ ≤ ϕ iff [[θ]]A←−h ◦α′|X ≤A [[ϕ]]Aα|Z iff (by 1.)
←−
h ([[θ]]A′α′|X ) ≤A [[ϕ]]Aα|Z iff (by property 7 of h) [[θ]]A′α′|X ≤A′

−→
h ([[ϕ]]Aα|Z ) iff

(by 2.) [[θ]]A′α′|X ≤A′ [[ϕ]]A′−→h ◦α|Z iff A′〈α′|X ,
−→
h ◦ α|Z〉 ° θ ≤ ϕ. QED

Corollary 3.28 Let h : A → A′ be a morphism, θ ∈ cgT(ΣK) and ϕ ∈
cgF(ΣK). Then:

A ° θ ≤ ϕ iff A′ ° θ ≤ ϕ .

We now turn our attention towards extending the maps Alg and Kpk to
functors.

Proposition 3.29 Given a p-morphism h : K → K′, the pair 〈h−1, h〉 is a
morphism from Alg(K′) → Alg(K).

Proof:

1) h−1(cAlg(K′)(B′
1, . . . , B

′
k)) = cAlg(K)(h−1(B′

1), . . . , h
−1(B′

k)) is established for
each representative modal constructor:
(f) h−1(fAlg(K′)) = h−1(∅) = ∅ = fAlg(K).
(pi) h−1(piAlg(K′)) = h−1(V ′(pi)) which by condition d′) is identical to V (pi) =
piAlg(K).
(¬) h−1(¬Alg(K′)(B′)) = h−1(W ′ \B′) = W \ h−1(B′) = ¬Alg(K)(h−1(B′)).
(¤) h−1(¤Alg(K′)(B′)) = h−1({w′ : NAlg(K′)({w′}) ⊆ B′}) which is identical
to {w : NAlg(K′)({h(w)}) ⊆ B′} which thanks to 4) below coincides with {w :
h(NAlg(K)({w})) ⊆ B′} = {w : NAlg(K)({w}) ⊆ h−1(B′)} = ¤Alg(K)(h−1(B′)).
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(∨) h−1(∨Alg(K′)(B′
1, B

′
2)) = h−1(B′

1 ∪ B′
2) which coincides with h−1(B′

1) ∪
h−1(B′

2) = ∨Alg(K)(h−1(B′
1), h

−1(B′
2)).

2) dh(U)eAlg(K′) = h(dUeAlg(K)). Indeed, dh(U)eAlg(K′) = {{u′} : u′ ∈ h(U)} =
{{h(u)} : u ∈ U} = h({{u} : u ∈ U}) = h(dUeAlg(K)).

3) h(∅) vAlg(K′) ∅. Indeed: h(∅) = ∅.
4) NAlg(K′)(h(U)) = h(NAlg(K)(U)). Indeed:
(⊆) Consider any w′ ∈ NAlg(K′)(h(U)). Then, by definition of Alg(K′), there is
u ∈ U such that h(u) Ã′ w′. So, by property b) of the p-morphism, there is
w ∈ W such that h(w) = w′ and u Ã w. That is, thanks to the definition of
Alg(K), w ∈ NAlg(K)({u}) and, therefore, h(w) = w′ is in h(NAlg(K)(U)).
(⊇) Consider any w ∈ NAlg(K)(U). Then, there is u ∈ U such that u Ã
w. So, by property a) of the p-morphism, h(u) Ã′ h(w). Hence, h(w) ∈
NAlg(K′)(h(U)).
Since Alg(K′) is appropriate for rule ref, we obtain NAlg(K′)(h(U)) vAlg(K′)
h(NAlg(K)(U)) and h(NAlg(K)(U)) vAlg(K′) NAlg(K′)(h(U)).

5) h({w}) ∈ ΩAlg(K′) for every {w} ∈ ΩAlg(K). Immediate: h({w}) = {h(w)}.
6) h(U1) vAlg(K′) h(U2) for every U1 vAlg(K) U2. Immediate: h(U1) ⊆ h(U2)
whenever U1 ⊆ U2.

7) h({w}) ≤Alg(K′) B′ iff {w} ≤Alg(K) h−1(B′) for every {w} ∈ ΩAlg(K). Imme-
diate: h(w) ∈ B′ iff w ∈ h−1(B′). QED

It is now straightforward to verify that the map Alg can be extended to a
functor from K to Aop. Furthermore, the map Kpk can also be extended to a
functor from Aop to K thanks to the following result.

Proposition 3.30 Given a morphism h : A′ → A, the map
←−
h |ΩA is a p-

morphism from Kpk(A) → Kpk(A′).

Proof:

a) For every t1, t2 ∈ W , if t1 Ã t2 then
←−
h |ΩA(t1) Ã′ ←−h |ΩA(t2). Indeed: Assume

that t1 Ã t2. Then, by definition of Kpk(A), t2 vA NA(t1). So, by property 6)
of the algebra morphism,

←−
h |ΩA(t2) vA′

←−
h |ΩA(NA(t1)). Hence, by property 4) of

the algebra morphism and since A′ is appropriate for rule transT,
←−
h |ΩA(t2) vA′

NA′(
←−
h |ΩA(t1)). That is, by definition of Kpk(A′),

←−
h |ΩA(t1) Ã′ ←−h |ΩA(t2).

b) For every t1 ∈ W and t′2 ∈ W ′, if
←−
h |ΩA(t1) Ã′ t′2 then there is t2 ∈ W such

that
←−
h |ΩA(t2) = t′2 and t1 Ã t2. Indeed: Assume

←−
h |ΩA(t1) Ã′ t′2. Then, by con-

struction of Kpk(A′), t′2 vA′ NA′(
←−
h |ΩA(t1)). So, by property 4) of the algebra

morphism and since A′ is appropriate for rule transT, t′2 ∈ d
←−
h |ΩA(NA(t1))eA′

and, therefore by property 2) of the algebra morphism, t′2 ∈
←−
h |ΩA(dNA(t1)eA).

Thus, there is t2 ∈ dNA(t1)eA such that
←−
h |ΩA(t2) = t′2. That is, there is

t2 vA NA(t1) such that
←−
h |ΩA(t2) = t′2. Or, equivalently, there is t2 ∈ W such
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that t1 Ã t2 and
←−
h |ΩA(t2) = t′2.

c) For each f ′ ∈ F ′, (
←−
h |ΩA)

−1
(〈f ′〉) ∈ B. Indeed, (

←−
h |ΩA)

−1
(〈f ′〉) is the set

{u ∈ ΩA :
←−
h |ΩA(u) ≤A′ f ′} which coincides, thanks to property 7) of the al-

gebra morphism, with {u ∈ ΩA : u ≤A
−→
h (f ′)}. The latter set is by definition

〈−→h (f ′)〉 which belongs to B.

d′) V (pi) = (
←−
h |ΩA)

−1
(V ′(pi)). Indeed, (

←−
h |ΩA)

−1
(V ′(pi)) = (

←−
h |ΩA)

−1
(〈piA′〉)

which, following the same reasoning as in c) above, is 〈−→h (piA′)〉 and, so, by
property 1) of the algebra morphism, is identical to 〈piA〉 which coincides with
V (pi). QED

We are now ready to address the questions stated at the beginning of this
subsection. The relationship between K and Kpk(Alg(K)) is easy to establish.

Proposition 3.31 Let K be a general Kripke structure. Then, K is isomorphic
in K to Kpk(Alg(K)).

Proof: Consider the map h : WK → WKpk(Alg(K)) such that h(w) = {w}. It is
straightforward to show that it is a p-morphism. Furthermore, h is a bijective
map and its inverse is also a p-morphism. QED

On the other hand, the relationship between A and Alg(Kpk(A)) is not so
simple. Indeed, the best that we can do is to establish an adjunction between K
and the dual of the subcategory of A containing the ΣK-algebras appropriate
for CK where ∼ / ≈ is the diagonal relation in F/T , respectively. More precisely,
a ΣK-algebra is said to be sober iff:

• f1 ∼A f2 iff f1 = f2;

• t1 ≈A t2 iff t1 = t2.

The full subcategory of A with all sober algebras is denoted by sA. It is
straightforward to establish the inclusion functor I : sA → A. In the opposite
direction, the quotient functor Q : A → sA can be obtained by the composition
Q2 ◦Q1 where:

• Q1 : A → s̃A, denoting by s̃A the full subcategory of A with all algebras
that are sober with respect to ∼ (but not necessarily with respect to ≈),
defined as follows:

– Q1(A) = 〈F/ ∼A, T, ·Q1(A)〉 where:

∗ cQ1(A)([f1]∼A , . . . , [fk]∼A) = [cA(f1, . . . , fk)]∼A ;
∗ oQ1(A) = oA;
∗ ΩQ1(A) = ΩA;
∗ vQ1(A)=vA;
∗ ≤Q1(A)= {〈t, [f ]∼A〉 : 〈t, f〉 ∈≤A}.
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Note that Q1(A) is well defined since ∼A is a congruence relation.

– Q1(h : A→ A′) : Q1(A) → Q1(A′) is the pair 〈−−−→Q1(h),
←−
h 〉 where:

∗ −−−→Q1(h)([f ]∼A) = [
−→
h (f)]∼A′ .

Observe that Q1(h) is well defined thanks to property 7) of h.

• Q2 : s̃A → sA defined as follows:

– Q2(A) = 〈F, T/ ≈A, ·Q2(A)〉 where:

∗ cQ2(A) = cA;
∗ oQ2(A)([t1]≈A , . . . , [tk]≈A) = [oA(t1, . . . , tk)]≈A ;
∗ ΩQ2(A) = {[u]≈A : u ∈ ΩA};
∗ vQ2(A)= {〈[t1]≈A , [t2]≈A〉 : 〈t1, t2〉 ∈vA};
∗ ≤Q2(A)= {〈[t]≈A , f〉 : 〈t, f〉 ∈≤A}.

Note that Q2(A) is well defined since ≈A is a congruence relation.

– Q2(h : A→ A′) : Q2(A) → Q2(A′) is the pair 〈−→h ,
←−−−
Q2(h)〉 where:

∗ ←−−−Q2(h)([t′]≈A′ ) = [
←−
h (t′)]≈A .

Observe that Q2(h) is well defined thanks to property 6) of h.

Let I1 : s̃A → A and I2 : sA → s̃A be the inclusion functors. Then, it is
straightforward to show that Q1 is left adjoint for I1 and Q2 is right adjoint
for I2. Hence, sA is a coreflective subcategory of s̃A and s̃A is a reflective
category of A. So, Q corresponds to a canonical construction, in this case by
composition of two universal constructions.

In fact, for the purposes of this paper, we could work within sA instead of
working in A since the following result holds:

Proposition 3.32

Aαβ ° δ iff Q(A)([ ] ◦ α)([ ] ◦ β) ° δ .

Proof: The result follows straightforwardly, by noting that the two equalities
hold: [[[θ]]Aαβ]∼A = [[θ]]Q(A)([ ]◦α)([ ]◦β) and [[[ϕ]]Aα]≈A = [[ϕ]]Q(A)([ ]◦α). QED

Furthermore, observe that Alg(K) is in sA. So, the functor Alg : K → A
induces a functor from K to sA that we denote by sAlg. Letting sKpk be
the restriction of functor Kpk to sA, we now establish the envisaged duality
between sober algebras and general Kripke structures.

We start by giving the “road map” of the proof of the theorem:

• we introduce a candidate morphism ηA : sAlgsKpk(A) → A for each A
(the unit of the adjunction) namely proposing the definition of the truth
value map ←−ηA and the formula map −→ηA;

• we show that ηA is a morphism in sAop (done in step (i)). According to
the definition this requires checking properties:
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– −→ηA(csAlg(sKpk(A))(〈f1〉A, . . . , 〈fk〉A)) ∼A cA(f1, . . . , fk)
(done in substep (1) for each constructor);

– d←−ηA(t)esAlg(sKpk(A)) ⊆ ←−ηA(dteA)
(done in substep (2));

– ←−ηA(⊥A) vsAlg(sKpk(A)) ⊥sAlg(sKpk(A))

(done in substep (3));

– NsAlg(sKpk(A))(
←−ηA(t)) ≈sAlg(sKpk(A))

←−ηA(NA(t))
(done in substep (4));

– if t ∈ ΩA then ←−ηA(t) ∈ ΩsAlg(sKpk(A))

(done in substep (5));

– if t1 vA t2 then ←−ηA(t1) vsAlg(sKpk(A))
←−ηA(t2)

(done in substep (6));

– ←−ηA(t) ≤sAlg(sKpk(A)) 〈f〉A iff t ≤A −→ηA(〈f〉A) whenever t ∈ ΩA

(done in substep (7));

• we show the universal property: given any K′ in K and any morphism
h : A→ sAlg(K′) in sAop, there is a unique morphism h′ : sKpk(A) → K′
in K such that sAlg(h′) ◦ ηA = h (done in step (ii));

– definition of candidate morphism h′ (substep existence);

– we show that h′ is a a morphism in K:

∗ if w1 ÃsKpk(A) w2 then h′(w1) ÃK′ h′(w2)
(done in substep (a));

∗ if h′(w1) ÃK′ w′2 then there is w2 such that h′(w2) = w′2 and
w1 ÃsKpk(A) w2

(done in substep (b));
∗ h′−1(B′) ∈ BsKpk(A) for every B′ ∈ BK′

(done in substep (c));
∗ VsKpk(A)(pi) = h′−1(VK′(pi))

(done in substep (d’));

– we show the commutativity of the truth value maps;
(done in substep (e));

– we show the commutativity of the formula maps;
(done in substep (f));

– finally, we show the unicity of h′

(done in substep (unicity)).

Theorem 3.33 (Duality) Functor sKpk : sAop → K is left adjoint for func-
tor sAlg : K → sAop.
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Proof:

Let A = 〈F, T, ·A〉 be a sober ΣK-algebra. Denote the set {〈f〉A : f ∈ F} by
〈F 〉A. Consider the maps:

• −→ηA : 〈F 〉A → F defined as follows: −→ηA(〈f〉A) = f ;

• ←−ηA : T → ℘ΩA defined as follows: ←−ηA(t) = dteA.

(i) We first show that the pair ηA = 〈−→ηA,←−ηA〉 is a morphism in sAop from A
to sAlg(sKpk(A)). That is, ηA is a morphism in sA from sAlg(sKpk(A)) to A.
Indeed:

(1) −→ηA(csAlg(sKpk(A))(〈f1〉A, . . . , 〈fk〉A)) ∼A cA(f1, . . . , fk) holds for each repre-
sentative constructor:

(f) Observe that fsAlg(sKpk(A)) = ∅ by definition of sAlg. And so is 〈fA〉A be-
cause A is appropriate for rules Rf and Ω⊥. Therefore: 〈−→ηA(fsAlg(sKpk(A)))〉A =
〈−→ηA(∅)〉A = 〈−→ηA(〈fA〉A)〉A = 〈fA〉A.

(pi) Note that pisAlg(sKpk(A)) = VsKpk(A)(pi) by definition of sAlg. And the
latter is equal to 〈piA〉A by definition of sKpk. Thus: 〈−→ηA(pisAlg(sKpk(A)))〉A =
〈−→ηA(VsKpk(A)(pi))〉A = 〈−→ηA(〈piA〉A)〉A = 〈piA〉A.

(¬) −→ηA(¬sAlg(sKpk(A))(〈f〉A)) = −→ηA(ΩA \ 〈f〉A) = −→ηA({u ∈ ΩA : u 6≤A f}) which,
as seen in part (3) of Proposition 3.19, is −→ηA({u ∈ ΩA : u ≤A ¬A(f)}) =−→ηA(〈¬A(f)〉A) = ¬A(f) = ¬A(−→ηA(〈f〉A)).

(¤) −→ηA(¤sAlg(sKpk(A))(〈f〉A)) = −→ηA({u ∈ ΩA : NsAlg(sKpk(A))({u}) ⊆ 〈f〉A}) =−→ηA({v ∈ ΩA : u ÃsKpk(A) v implies v ∈ 〈f〉A}) which, as seen in part (5) of
Proposition 3.19, coincides with −→ηA({u ∈ ΩA : u ≤A ¤A(f)}) and, therefore, is
equal to −→ηA(〈¤A(f)〉A) = ¤A(f) = ¤A(−→ηA(〈f〉A)).

(∨) −→ηA(∨sAlg(sKpk(A))(〈f〉A, 〈g〉A)) = −→ηA({u ∈ ΩA : u ≤A f or u ≤A g}) and, so,
as in part (4) of Proposition 3.19, equal to −→ηA({u ∈ ΩA : u ≤A ∨A(f, g)}) =−→ηA(〈∨A(f, g)〉A) = ∨A(f, g) = ∨A(−→ηA(〈f〉A),−→ηA(〈g〉A)).

(2) d←−ηA(t)esAlg(sKpk(A)) ⊆ ←−ηA(dteA). Indeed, assume {u} ∈ d←−ηA(t)esAlg(sKpk(A)).
Therefore, u ∈ ΩA. Furthermore, {u} ⊆ ←−ηA(t). So, {u} ⊆ dteA. That is,
u ∈ dteA and, so, u vA t. On the other hand, ←−ηA(dteA) = {dveA : v ∈
ΩA and v vA t} which, since A is sober and appropriate for rule Rasym, is
equal to {{v} : v ∈ ΩA and v vA t} which obviously contains {u}.
(3) ←−ηA(⊥A) vsAlg(sKpk(A)) ⊥sAlg(sKpk(A)). Indeed, thanks to the definition of
sAlg, this assertion is equivalent to ←−ηA(⊥A) ⊆ ∅. Moreover, ←−ηA(⊥A) = {u ∈
ΩA : u vA ⊥A} which is the empty set since A is appropriate for rule Ω⊥.

(4) NsAlg(sKpk(A))(
←−ηA(t)) ≈sAlg(sKpk(A))

←−ηA(NA(t)). Indeed, the former set is
equal to NsAlg(sKpk(A))({u ∈ ΩA : u vA t}) which, by the definition of the two
functors, coincides with {v ∈ ΩA : there is u ∈ ΩA such that u vA t and v vA
NA(u)}. Finally, this set is equal to {v ∈ ΩA : v vA NA(t)} because A is
appropriate for rules RNΩ and LNΩ.

(5) If t ∈ ΩA then ←−ηA(t) ∈ ΩsAlg(sKpk(A)). Indeed, assume t ∈ ΩA. Then,
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←−ηA(t) = {u ∈ ΩA : u vA t} which is the singleton set {t} since t is atomic
and A is sober and appropriate for rule Rasym. Therefore, ←−ηA(t) is atomic in
sAlg(sKpk(A)).

(6) If t1 vA t2 then ←−ηA(t1) vsAlg(sKpk(A))
←−ηA(t2). Indeed, the latter assertion is

equivalent to {u ∈ ΩA : u vb At1} ⊆ {u ∈ ΩA : u vb At2}. Assuming that
t1 vA t2, the assertion holds thanks to the fact that A is appropriate for rule
transT.

(7)←−ηA(t) ≤sAlg(sKpk(A)) 〈f〉A iff t ≤A −→ηA(〈f〉A) whenever t ∈ ΩA. Indeed, ←−ηA(t) =
{v ∈ ΩA : v vA t} = {t} as seen in (5) above. So, ←−ηA(t) ≤sAlg(sKpk(A)) 〈f〉A iff
{t} ⊆ 〈f〉A iff {t} ⊆ {v ∈ ΩA : v ≤A f} iff t ≤A f iff t ≤A −→ηA(〈f〉A).

(ii) We now show that the family η, where each ηA is the morphism in sAop

from A to sAlg(sKpk(A)) defined above, is the unit of the envisaged adjunc-
tion. More precisely, we show that, given any K′ in K and any morphism
h : A→ sAlg(K′) in sAop, there is a unique morphism h′ : sKpk(A) → K′ in K
such that sAlg(h′) ◦ ηA = h.

(existence) Consider h′ defined as follows: for each world w ∈ WsKpk(A) = ΩA,

h′(w) = ι({←−h (w)}) =
←−
h (w). Observe that h′ is well defined because of prop-

erty 5) of h and the fact that the atomic elements in sAlg(K′) are the singleton
subsets of WK′ . First, we show that the map h′ is a morphism in K from
sKpk(A) to K′:

(a) If w1 ÃsKpk(A) w2 then h′(w1) ÃK′ h′(w2). Indeed, assume w1 ÃsKpk(A) w2.

Then, w2 vA NA(w1). So, by property 6) of morphism h,
←−
h (w2) vsAlg(K′)←−

h (NA(w1)). Hence, by property 4) of h,
←−
h (w2) vsAlg(K′) NsAlg(K′)(

←−
h (w1)).

Hence, h′(w1) ÃK′ h′(w2).

(b) If h′(w1) ÃK′ w′2 then there is w2 such that h′(w2) = w′2 and w1 ÃsKpk(A)

w2. Indeed, from h′(w1) ÃK′ w′2 we conclude {w′2} ⊆ NsAlg(K′)({h′(w1)}), that

is, {w′2} ⊆ NsAlg(K′)(
←−
h (w1)). Thus, by property 4) of h, {w′2} ⊆

←−
h (NA(w1))

and, so, {w′2} ∈ d←−h (NA(w1))esAlg(K′). Hence, thanks to property 2) of h,

{w′2} ∈ ←−
h (dNA(w1)eA). Therefore, there is

←−
h (w2) = w′2 such that w2 ∈

dNA(w1)eA. That is, there is
←−
h (w2) = w′2 such that w1 ÃsKpk(A) w2.

(c) h′−1(B′) ∈ BsKpk(A) for every B′ ∈ BK′ . Indeed, observe that h′−1(B′) =

{w ∈ ΩA : h′(w) ∈ B′} = {w ∈ ΩA :
←−
h (w) ⊆ B′}. Using property 7) of h,

the latter set coincides with {w ∈ ΩA : w vA
−→
h (B′)} = 〈−→h (B′)〉A which is in

〈FA〉 = BsKpk(A).

(d′) VsKpk(A)(pi) = h′−1(VK′(pi)). Indeed, as seen in (c) above, h′−1(VK′(pi)) =

〈−→h (VK′(pi))〉A. The latter set, by definition of sAlg(K′), is 〈−→h (pisAlg(K′))〉A
which, thanks to property 1) of h, coincides with 〈piA〉A and, so, with VsKpk(A)(pi).

We now verify that sAlg(h′) ◦ ηA = h:

(e)
←−−−−−
sAlg(h′)◦←−ηA =

←−
h . Indeed, for each t ∈ TA,

←−−−−−
sAlg(h′)(←−ηA(t)) =

←−−−−−
sAlg(h′)(dteA).



49

Furthermore, by definition of sAlg(h′), the latter is h′(dteA). We show that, for
every w′ ∈ WK′ , w′ ∈ h′(dteA) iff w′ ∈ ←−h (t):

(⇒) Assume w′ ∈ h′(dteA). Then, there is u ∈ dteA such that h′(u) = w′. That
is, there is u ∈ ΩA such that u vA t and

←−
h (u) = {w′}. Thus, by property 6)

of h, there is u ∈ ΩA such that
←−
h (u) ⊆ ←−

h (t) and
←−
h (u) = {w′}. Therefore,

w′ ∈ ←−h (t).

(⇐) Assume w′ ∈ ←−h (t). That is, {w′} ⊆ ←−
h (t). Hence, {w′} ∈ d←−h (t)esAlg(K′).

Thus, by property 3) of h, {w′} ∈ ←−h (dteA) and, so, w′ ∈ h′(dteA).

(f) −→ηA◦
−−−−−→
sAlg(h′) =

−→
h . Indeed, for each B′ ∈ FsAlg(K′) = BK′ , −→ηA(

−−−−−→
sAlg(h′)(B′)) =

−→ηA(h′−1(B′)) = −→ηA(〈−→h (B′)〉A) =
−→
h (B′).

(unicity) Observe that there is a unique choice of h′ that ensures the diagram
comutes. Namely, h′ should be chosen in order to guarantee that

←−−−−−
sAlg(h′)◦←−ηA =←−

h . So, in particular, for each w ∈ WsKpk(A) = ΩA, h′ should be chosen in order

to guarantee that h′(dweA) =
−→
h (w). That is, h′ should be chosen in order to

ensure h′({w}) =
−→
h (w), that is, {h′(w)} =

−→
h (w). Therefore, the choice of h′

is unique. QED

3.5 Analyticity of the modal sequent calculi

A rule r = 〈{s1, . . . , sp}, s, π〉 is said to be a creative rule if there are meta-
variables in {s1, . . . , sp} that do not occur in s. Most of the structural, order and
modal rules introduced in Section 2 are non creative. The obvious exceptions
are:

• structural: cutT and cutF;

• order: Ω>, Ω, transT, transF, LgenT, RgenT, LgenF and RgenF;

• system K: LNΩ, RNΩ, L♦ and R♦;

• other modal systems: 5 and C.

We distinguish two kinds of creative rules. A creative rule is said to be a
blindly creative rule if when applying the rule in a derivation, the instance of
the additional meta-variable in the premises is chosen as a fresh variable (in
our case a bounded truth value variable y). An example of a blindly creative
rule is Ω>.

On the other hand, a creative rule is said to be a strongly creative rule if
when applying the rule in a derivation, the instance of the additional meta-
variable in the premises is not necessarily a fresh variable. In the case of the
sequent calculi at hand, we have the following strongly creative rules:

• structural: cutT and cutF;

• order: transT, transF, LgenT and LgenF;
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• system K: RNΩ and R♦;

• other modal systems: 5.

A derivation 〈d1, π1〉, . . . , 〈dn, πn〉 of s′ from S is said to be analytical if the
instance of each additional meta-variable when applying strongly creative rules
at step i has to occur either in d1, . . . , di−1 or in S. A sequent calculus is said to
be analytical if all derivations are analytical. Clearly, our sequent calculus for
modal logic is not analytical since it allows derivations that are not analytical.

The importance of this concept comes from the fact that derivations can
be automated. We can make our calculus analytic by keeping all non strongly
creative rule and introducing restrictive versions of strongly creative rules as
follows:

cutT• Γ1→Γ2,τ1vτ2 τ1vτ2,Γ1→Γ2
Γ1→Γ2

C τ1, τ2 ∈ Γ1, Γ2

cutF• Γ1→Γ2,τ1≤ξ1 τ1≤ξ1,Γ1→Γ2
Γ1→Γ2

C τ1, ξ1 ∈ Γ1,Γ2

transT• Γ1→Γ2,τ1vτ2 Γ1→Γ2,τ2vτ3
Γ1→Γ2,τ1vτ3

C τ2 ∈ τ1, τ3, Γ1, Γ2

transF• Γ1→Γ2,τ1vτ2 Γ1→Γ2,τ2≤ξ1
Γ1→Γ2,τ1≤ξ1

C τ2 ∈ τ1, Γ1, Γ2

LgenT• Ωτ2,τ2vτ3,Γ1→Γ2 Ωτ2,Γ1→Γ2,τ2vτ1 τ1vτ3,Γ1→Γ2,Ωτ2
τ1vτ3,Γ1→Γ2

C τ2 ∈ τ1, τ3,Γ1,Γ2

LgenF• Ωτ2,τ2≤ξ1,Γ1→Γ2 Ωτ2,Γ1→Γ2,τ2vτ1 τ1≤ξ1,Γ1→Γ2,Ωτ2
τ1≤ξ1,Γ1→Γ2

C τ2 ∈ τ1, Γ1, Γ2

RNΩ• Ωτ2,Γ1→Γ2,Ωτ3 Ωτ3,Ωτ2,Γ1→Γ2,τ3vτ1 Ωτ3,Ωτ2,Γ1→Γ2,τ2vN(τ3)
Ωτ2,Γ1→Γ2,τ2vN(τ1)

C τ3 ∈ τ1, τ2, Γ1, Γ2

R♦• Ωτ1,Ωτ2,Γ1→Γ2,τ2vN(τ1) Ωτ1,Ωτ2,Γ1→Γ2,τ2≤ξ1 Ωτ1,Γ1→Γ2,Ωτ2
Ωτ1,Γ1→Γ2,τ1≤(♦ξ1)

C τ2 ∈ τ1, Γ1, Γ2

5• Ωτ1,Ωτ2,Ωτ3,Γ1→Γ2,τ1vN(τ3) Ωτ1,Ωτ2,Ωτ3,Γ1→Γ2,τ2vN(τ3) Ωτ1,Ωτ2,Γ1→Γ2,Ωτ3
Ωτ1,Ωτ2,Γ1→Γ2,τ1vN(τ2)

C τ3 ∈ τ1, τ2, Γ1, Γ2

where, for instance, the proviso (τ2 ∈ τ1,Γ1, Γ2)(ρ) = 1 iff ρ(τ2) occurs in
{ρ(τ1)} ∪ ρ(Γ1)∪ ρ(Γ2) or in the hypotheses. Clearly, the other provisos have a
similar meaning.

For each finite set P of properties of the accessibility relation considered in
Subsection 2.6, let also C•P denote the restricted version of CP .

Can we guarantee that by restricting ourselves only to analytical applica-
tions of these strongly creative rules nothing is lost? That is, the sequent calculi
remain complete if we restrict the use of these rules?

Fortunately, the answer is positive. Indeed, careful examination of the
proofs of the relevant metatheorems in Subsection 2.9 and of the complete-
ness result in Subsection 3.2, shows that appropriateness for each of these rules
was invoked only in its restricted form. As a consequence, we establish the
following extension of Theorem 3.11.

Theorem 3.34 (Algebraic completeness) Every full structural sequent cal-
culus endowed with rules using only persistent provisos and restrictive versions
of cutT• and cutF• is complete.
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Proof: Since this completeness result was established using strongly creative
rules in their restricted form, the proof is the same as in Theorem 3.11. QED

This result can be further extended to sequent calculi for modal logic since
the proofs in Subsection 3.3 only use strongly creative rules in their restrictive
form. As a consequence, we establish an extension of Theorem 3.25.

Theorem 3.35 (Modal Kripke soundness and completeness) For each fi-
nite set P of properties of the accessibility relation:

• ψ1, . . . , ψk ²g
KP ϕ iff ψ1, . . . , ψk `g

C•P ϕ;

• ψ1, . . . , ψk ²`
KP ϕ iff ψ1, . . . , ψk ``

C•P ϕ.

Proof: We only show the global case since the local case is similar.

Assume that ψ1, . . . , ψk ²g
KP ϕ, then by Theorem 3.25 we have ψ1, . . . , ψk `g

CP
ϕ. Since to establish the latter theorem we only used strongly creative rules in
their restrictive form, the same derivation can be used to establish ψ1, . . . , ψk `g

C•P
ϕ. The converse is straightforward. QED

4 Concluding remarks

By using truth values as labels, we were able to provide analytical labelled
sequent calculi for a wide class of normal modal systems sharing a common core
of rules (structural rules, order rules, and rules for the formula constructors).
The calculus for each modal system is obtained by adding to this common core
rules on the truth values imposing the envisaged properties of the accessibility
relation. We also managed to keep an effective separation between the sub-
calculus on the formulae and the sub-calculus on the truth values. Therefore,
the way is open for proving desirable proof-theoretic properties of, at least,
the formula sub-calculus like, for instance, the elimination of rule cutF (cf the
results in [19] where a similar separation was explored in the case of a natural
deduction calculus labelled with worlds for obtaining normalization results).

These calculi were shown to be strongly complete (for both global and local
reasoning) with respect to the novel two-sorted algebraic semantics, and, as a
corollary, also with respect to the general Kripke semantics. For this purpose,
we had to indicate how to move back and forth between such algebras and
general Kripke structures. This led to a duality between the category of sober
algebras and the category of general Kripke structures (with p-morphisms). A
simple enrichment of the language (by adding the coercion operator @) was
shown to allow reasoning complete with respect to standard Kripke structures.

It is worthwhile to comment on the nature of the two-sorted algebras. In a
sense they are halfway between general Kripke structures and modal algebras.
We may look at them as general Kripke structures without points. The main
results of the paper clearly show that the loss of the points was possible while
preserving the ability to spell out the envisaged properties of the accessibility
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relation. One might argue that we do keep points through the Ω predicate.
To some extent this is a fair observation, but we should stress that the calculi
impose very little about the atomic truth values, for sure much less than what
is implied by set theory about singletons.

The proposed sequent calculi labelled with truth values are relevant to au-
tomation and to the theory and applications of the combination of deduction
systems. Furthermore, the two-sorted algebraic semantics introduced herein
seems to achieve the right balance between modal algebras and Kripke struc-
tures by sharing the advantages of both. Indeed, while algebraic in flavor, this
new semantics still allows the specification of modal systems with rules reflect-
ing the envisaged properties of the accessibility relation, fully characterizing
those systems even among general Kripke structures.

Capitalizing on the results of this paper, several lines of research are evi-
dent at this stage. First, taking advantage of the separation between the for-
mula sub-calculus and the truth value sub-calculus, there is hope of obtaining
useful proof-theoretic results about the proposed modal calculi (for instance,
elimination of rule cutF and control of the application of other rules such as
contractions), towards making the calculi even more interesting from an au-
tomation point of view. Second, extrapolating from the preliminary ideas in
Subsection 2.7, the relationship to hybrid logic seems to be a fruitful line of re-
search, for instance towards a hybrid logic over truth values (instead of worlds).
Third, given the generality of the approach (well illustrated by the algebraic
completeness theorem that requires very little from the calculus at hand), it is
feasible to set up sequent calculi labelled with truth values for other types of
logic (like intuitionistic, relevance, many-valued logics) and develop a theory of
fibring such calculi (where the general algebraic completeness result obtained in
this paper can be used in the style of [21, 17] for establishing the preservation
of completeness by fibring).
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