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Abstract

Logics for reasoning about quantum states have been given in the
literature. In this paper, we extend one such logic with temporal con-
structs mimicking the standard computational tree logic used to reason
about classical transition systems. We investigate the model-checking
problem for this temporal quantum logic and illustrate its use by rea-
soning about the BB84 key distribution protocol.

1 Introduction

Reasoning about quantum programs has gained prominence due to a big
potential in applications such as information processing, security, distributed
systems and randomized algorithms. This has attracted research in formal
reasoning about quantum states [19, 18, 13, 7] and quantum programs [12,
16, 1, 10, 2, 17, 3, 6]. Formal methods have proved to successful in design
and verification of classical distributed systems and security protocols [9, 14].
Herein, we present a temporal logic for reasoning about evolution of quantum
systems composed of a fixed finite set of qubits.

Our starting point is the logic dEQPL for reasoning about quantum
states presented in [13, 7]. The logic dEQPL is designed around the first two
postulates of quantum mechanics. The first postulate says that a quantum
state is a unit vector in a complex Hilbert space and the second one says
that the quantum state composed of two independent quantum states is the
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tensor product of the composing states. Herein, for efficiency reasons, we
consider just a restricted sub-logic of dEQPL based on the first postulate.
The models of this logic are basically the quantum states of the finite qubit
System.

We give a sound and complete axiomatization of this state logic. The
completeness proof, which is inspired by [7, 11], also suggests a decision
procedure for the theorem-hood problem and we compute the complexity of
the decision procedure assuming that all basic integer operations (addition,
subtraction, multiplication and comparison) take unit time. Furthermore,
assuming a floating point representation of complex numbers and assuming
that basic floating point operations (addition, subtraction, multiplication
and comparison) take unit time, we compute the complexity of the model-
checking algorithm.

Next, we obtain quantum computational tree logic QCTL by replacing
the state formulas in the standard computational tree logic (CTL) [8] by
dEQPL formulas. The standard CTL is interpreted over classical states and
transition relations amongst these states. QCTL is interpreted over quan-
tum states and unitary transformations. We give a sound axiomatization of
QCTL and combine the standard CTL model-checking algorithm with the
dEQPL model-checking algorithm to obtain a model-checking algorithm for
QCTL. The completeness of QCTL is out of scope of this paper.

Finally, we note that we do not explicitly deal with measurements in this
paper, although we can reason about probabilities of outcomes of measuring
all the qubits in the standard computational basis. The rest of the paper is
organized as follows. Section 2 discusses the restricted dEQPL and Section 3
introduces QCTL. We discuss the BB84 protocol in Section 4 and summarize
our contributions in Section 5. For lack of space, the proofs are omitted in
this paper and are available at: http://wslc.math.ist.utl.pt/ftp/pub/
SernadasA/06-BCMS-quantlogl3s.pdf.

2 State logic

We discuss here briefly the restricted state logic, dEQPL. The logic is de-
signed around the first postulate of quantum mechanics which states that
each quantum system is a unit vector in a complex Hilbert space. For our
purposes, we shall only deal with a finite-dimensional Hilbert space com-
posed of a finite set of qubits. We shall thus assume a fixed finite set of
qubit symbols, qB, which will represent these qubits.

A quantum state [t)) therefore is a unit vector in Hqg = H(298), the



Hilbert space generated by the set of valuations 298. Please note that these
valuations constitute what is commonly called the standard computational
basis. Assuming that qB has n elements, the vector [¢)) is then specified
by 2™ complex numbers (v|¢)) that give the projection on the basis vectors
|v). We shall have terms in our language representing the real and complex
parts of these 2" complex numbers. Furthermore, please note that there is
a natural bijection between the subsets of gB and the set of valuations over
qB: a set A corresponds to a valuation v4 which valuates to true if gb € A
and valuates to false if gb ¢ A.

We shall also have terms in our logic that will represent the probability
of outcomes if all the qubits in qB were to be measured in the standard

computational basis. We are now ready to discuss the syntax and semantics
of dEQPL.

2.1 Language and semantics

Syntaz. The terms in dEQPL denote elements from R, the set of real num-
bers. The formulas of dEQPL, henceforth called quantum formulas, are
constructed from comparison formulas (formulas that compare terms) using
propositional connectives. We present language of dEQPL in Table 1 us-
ing an abstract version of BNF notation [15] for a compact presentation of
inductive definitions and discuss the language in detail below.

Table 1: Language of efficient EQPL

Classical formulas
a = L]gb](a=a)

Term language (with the proviso m € Z and A C gB)
t o= am[E+)[tt) [Re(|T),) [Im(IT)4) [ (Ja)

Quantum formulas
7= (<)l [(vy3Y)

The first syntactic category is that of classical formulas. Please recall
that we fixed a finite set of qubit symbols qB. Classical formulas are built
from qubit symbols in qB using the classical disjunctive connectives, falsum
1 and implication =. As usual, other classical connectives like =, A, V, <
and T are introduced as abbreviations.



For the term language, we pick a denumerable sets of variables X =
{zr : k € N} interpreted over reals. We also have a copy of integers in
the set of terms. The terms Re(|T),) and Im(|T),) denote the real and
complex parts of the logical amplitude (v4|¢)), where 1 is a quantum state
over qB and vy is the (unique) valuation corresponding to the set A. The
probability term ( [a) denotes the probability that classical formula « holds
for an outcome of measuring the all the qubits (in qB) in the standard basis.

As usual, we may define the notion of occurrence of a term #; in a term
t, and the notion of replacing zero or more occurrences of terms ¢; in t by
to. If & and ¢ are sequences of variables and terms respectively, we will write
t{Z/t} to mean the real term obtained by substituting all occurrences of z;
by ;.

The quantum formulas are built from classical formulas comparison for-
mulas (t < t) using the connectives 1L and 1. The set of comparison for-
mulas shall henceforth be called gAtom. and use 4§, ' to range over this set.
Please note that quantum bottom 1L and quantum implication 3 should
not be confused with their classical (local) counterparts.

For clarity sake, we shall often drop parenthesis in formulas and terms if
it does not lead to ambiguity. As expected, other quantum connectives will
be introduced as abbreviations. However, before introducing a whole set of
useful abbreviations, we present the semantics of the language.

Semantics. The language is interpreted over a unit vector |¢)) on the
Hilbert space Hqg spanned by all valuations over qB. For interpreting the
variables, we also need the concept of an assignment. An assignment p is a
map from X, the set of variables, such that p(x) € R. Given a classical state
formula o and a valuation v over gB, we shall also assume the definition of
satisfaction of o by v. We shall write v I, « if v satisfies a.

For interpreting the probability terms ([«), we shall use the probability
map py : ©(qB) — R defined as:

gy (0) =Y Il

velU

For the probability terms, we shall also need the extent of classical formulas
defined as:

la| = {v € p(qB) : v IF. a}.
Given a quantum state ¢ and an assignment p, the denotation of terms

and satisfaction of quantum formulas at |1) and p is inductively defined in
Table 2 (omitting the obvious ones).



Table 2: Semantics of dEQPL

Denotation of terms

[=]1)0 = p(x)

(ST yp = pyp(laly)
[Re(IT) )]y = Re({valy)))
([ T) Dy = Im({valh))

Satisfaction of quantum formulas
[W)plE (b <t2) i [ta]jyy, < [t2ljg)p
[)p AL
[W)p b (1 3y2) i [)p Iy or [P)p I 72

Please note that the assignment p is sufficient to interpret a useful sub-
language of our quantum formulas defined as:

a = z]m[(a+a)] (aa)
ko= (a<a) (L) [ (r3r)

Henceforth, the terms of this sub-language will be called analytical terms
and the formulas will be called analytical formulas.

Abbreviations. As anticipated, the proposed quantum language with the
semantics above is rich enough to express interesting properties of quantum
systems. To this end, it is quite useful to introduce other operations, connec-
tives and modalities through abbreviations. We start with some additional
quantum connectives:

e quantum negation: (H~) for (v 1);

e quantum disjunction: (v U~ys) for ((Bv1) 392);

e quantum conjunction: (1 M~2) for (B((Bv1) U (Bv2)));

e quantum equivalence: (y1 =~2) for ((y1 T72) M (2 I71)).
It is also useful to introduce some additional comparison formulas:

o (t1 <tg) for ((t1 <t2) M (B(t2 < t1)));

° (tl = tQ) for ((tl < tg) I (tg < tl)).



Given A C gB, the following abbreviation will also be useful:

o (AA) for ((Aqb,eaaby) A (Agp,ga(—abr)))-

The above formula represents the valuation v4 in the language.
The following abbreviation denotes the square of the absolute value of

(vali):

o [|T)al? for (Re(|T)4))? + (Im(]T) 4))%);
The following abbreviation is also useful:

e (o) for ([a)=1.

Intuitively, the formula (Co) means that the probability a being true of the
outcome of measuring all the qubits in the standard computational basis is
1.

2.2 Model-checking problem

For the model-checking procedure, we only consider closed formulas, i.e.,
formulas without variables. We assume that a quantum state [¢) over qB
is modeled by a 2"-array of pairs of real numbers, with n = |gB|. We also
assume that the basic arithmetical operations take O(1) time.

We also assume the definition of the length of a classical formula « or a
quantum formula ~ as the number of symbols required to write the formula.
The length of a formula £ (classical or quantum) is given is represented by
€l.

Given a quantum state 1 and a quantum formula ), the first step is to
evaluate all the terms occurring in 7. For the probability terms [ a, the
evaluation takes 2"|«| steps as we have to compute the set of valuations
©(qB) that satisfy a. Once, the terms are evaluated, the model checking
algorithm is straightforward.

Theorem 2.1 Assuming that all basic arithmetical operations take unit
time, there is an algorithm O(|y].2") to decide if a quantum state [¢)) over
qB satisfies v with |qB| = n.

Proof: First notice that the terms that consume more time to evaluate
are those of the type ([ «) (both the terms Re(|T) 4) and Im(|T) ) can be
accessed in O(1) time, since they are elements of the array). The number
of terms of type ([ @) is bounded by |7y|. To evaluate one of these terms we
require O(2") time corresponding to traveling throughout all the valuations



satisfying «, computing the square of the real and imaginary part, and
summing all these values. So, computing all ([ «) terms takes O(|y].2")
time.

After these values are obtained, the remaining computation (comparing
terms, negating a boolean value, and making implications between boolean
values) takes at most O(|y|) time. Hence, the total time to decide if a
quantum state |¢) satisfies v is O(|y].2" + |v]) = O(|v|.2"). ©

2.3 Axiomatization

We need two new concepts for the axiomatization, one of quantum tautology
and a second of valid analytical formulas and ground substitutions.

Consider propositional formulas built from a countable set of proposi-
tional symbols ) using the classical connectives = and 1. A quantum
formula -y is said to be a quantum tautology if there is a propositional tau-
tology B over Q and a map o from @ to the set of quantum formulas such
that (B, coincides with v where (3, is the quantum formula obtained from [
by replacing all occurrences of L by I, = by J and q € Q by o(q). For in-
stance, the expected formula ((y1 Jy2) J(y1 Jy2)) is tautological (obtained,
for example, from the propositional tautology ¢ = q).

Please recall that an assignment is enough to interpret analytical for-
mulas. We say that an analytical formula x is a valid analytical formula
if it holds for any assignment. It is a well-known fact from the theory of
real closed fields [4] that the set of valid analytical formulas so defined is
decidable. However, we shall not go into details of this result and will focus
our attention on reasoning about quantum aspects only.

The axioms and inference rules of dEQPL are listed in Table 3. The
only inference rule is modus ponens for quantum implication QMP.

The axiom QTaut says that a quantum tautology is an axiom. Since
the set of quantum tautologies is recursive, there is no need for spelling
out details of tautological reasoning. The axiom RCF says that if x is a
valid arithmetical formula, then any formula obtained by replacing variables
with the terms of dEQPL is a tautology. Since the set of valid arithmetical
formulas is recursive, we refrain from spelling out the details. The axiom
Unit says that a quantum state is a unit vector.

The axioms CTaut, Meas(), FAdd and Mon reasons about probability
terms ([a). These axioms are basically the axioms (or minor variations of)
the axioms of the probability logics in literature [11]. Hence, the probability
logics in [11] can be seen as a sub-logic of dEQPL.



Finally, the axiom Prob relates probabilities and amplitudes. This ax-
iom says that for any A C gB, the probability of observing the valuation v
when all qubits are measured is the square of the amplitude |T) 4.

Table 3: Axioms for dEQPL

Axioms
[QTaut]

-

~ for each quantum tautology -

[RCF] F k{Z/t} where x is a valid analytical formula,
Z and ¢ are sequences of variables and terms

[Unit] = ((ZquB HT>A|2) =1)

T+

[CTaut] (Oa) for each classical tautology «a
[Mes()] ((JL)=0)
[FAdd] = ((flax A 2)) =0)3

((Joa Vas) = (Jar) + (faz)))
Mon] = ((O(flar = a2)) 2 ((far) < (fe2)))

[Prob] = ((JAA)=[IT)A

T

Inference rules
[QMP] 1, (71 372) 2

The axiomatization presented above is sound and weakly complete. The
proof of weak completeness follows the lines of the proof in [11, 7]. The
proof of completeness also suggests an algorithm for deciding whether a
formula is theorem of dEQPL or not. In order to state the complexity of
this algorithm, we need a few definitions.

The central result in the proof is the Model Existence Lemma, namely,
if v is consistent then there is a quantum state ) and an assignment p such
that |[¢)p IF 7. A quantum formula + is said to be consistent if / (Hv). A
quantum formula -~y is a theorem if and only if (H~) is inconsistent.

Theorem 2.2 (Model Existence Theorem) If the quantum formula ~
is consistent then there is a unit vector |¢)) and a p such that [¢))p IF ~.

Proof: Given a classical state formula «, we can show using the axioms



CTaut, Meas(), FAdd and Mon that I ((fa) = 321 4cqs|valrear (JAA))-
The axiom Prob then gives us that ([«) = D {ACAB |valrea} | T) 4|2, Hence,
given a quantum formula v, we can find an equivalent quantum formula that

does not contain any probability terms.

. .- . d
Given a formula ~ free of probability terms, consider the formula ~f e

(Y (X acqs |T) 412 =1)). Now 7 is consistent iff 7' is consistent. Now, for
each A C qB, pick two fresh variables x4 and y4. Consider the formula ~f
obtained from 7' by replacing each term Re(|T) ) be 24 and Im(|T),) by
ya. Now, by axiom RCF, 4T is consistent if and only if 4T is consistent over
the reals. Observe that v!T is a purely analytical formula. Therefore there is
an assignment, say p/, that satisfies 41 or otherwise F B~'T by RCF, and
~t would not be consistent and neither would 4!, which is a contradiction.
We conclude that there is such an assignment p’, and from this assignment
we can construct |¢) and p that satisfies v as required. o

As there is an algorithm for deciding the consistency of analytical for-
mulas [4], the proof of the Model Existence Lemma suggests an algorithm
for deciding the consistency of quantum formulas. We shall now compute
the complexity of one such algorithm. We shall need a few definitions for
this.

A term t of the dEQPL is said to be a polynomial in variables x1, ...,z
if ¢ is of the form (3° my, . n,21" ... 2*). The degree of a polynomial term
is defined as expected. We will also assume for the rest of the paper that
each polynomial is in a normal form: for any two summands z}* ... z.* and

a;?/l .. .JZZ;“ there is some j such that n; # n; Now, given a set of classical
formulas A = {aq,...,an}, a set of variables V = {x1,... 2k, 24, - - -, Za,, }
and a set of polynomials P = {p1,...,ps} with variables in the set V, we
say that a comparison formula (¢t < t') is an (A, V,P)-atom if ¢’ is 0 and
there is some polynomial term p € P such that replacing all occurrences of
the variables z,, by ([«;) for each (1 < i < m) yields t. A dEQPL formula
~ is said to be a (A, V, P)-formula if each comparison formula occurring in
v is an (A, V, P)-atom. We have:

Theorem 2.3 Let the set B have n elements. Let A = {a1,...,am} be
a set of classical formulas, V = {x1, ...z, 2a, - - ., Za,, } e a set of variables
and P = {p1,...,ps} be a set of polynomials with variables in V. Let the
degree of each polynomial in P be bounded by d and let r = 2"+ + k + m.
Then, assuming that all basic integer operations take unit time, there is
an O(|y|(s + m + 1)"(max(d, 2))°)) algorithm to decide the whether an
(A, V,P)-formula v is a theorem or not.



Proof: For each o; € V compute the set B; = {A C qB |va IF o;}. Com-
putation of each B; takes at most O(2"|a;|) steps, where |o;]| is the length
of ;. Since the sum (3;.;,,|o|) is less than |y|, this whole computa-
tion takes at most O(2"|y|) steps. Please note that (27|y|) is bounded by
715 + m + 1)7 (max(d, 2))00).

Given a (A, V, P)-formula ~, let 71 be the formula obtained by replacing
all probability terms ([a;) by zq,. Now, for each A C gB, pick two fresh
variables x4 and y4 and consider the formula

Y=y (|_|1§i§m(zii _ZAeBi (wiﬁ‘yi) =0))r ((ZquB 37124""9,24) —1=0).
We make a few observations here:

e ~ is consistent iff and only if 4T is.

e 7! is purely analytical.

e ~! is built from comparison formulas of the form (p < 0) or (p = 0)
where each p is a polynomial in the set

P =PU{(23, — X acp, (@ +y2))1 < i <mPU{(X acq vh+ya) -1}

e P’ has (s +m + 1) polynomials. The degree of each polynomial is
bounded by max(d,2) and is built from r = 2"*! 4 k + m variables.

e The length of vt is O(|y| + m(max(d, 2)O(T))),

Assuming that integer operations take unit time, [4] then gives an O(|y|(s+
m~+1)" (max(d, 2))°) algorithm to decide consistency of 4 which concludes
the proof of the corollary . o

3 Temporal logic

We now introduce a temporal version of dEQPL by adopting the temporal
modalities of computational tree logic [8]. The logic is interpreted over a
transition system in which the states are quantum states and the transitions
are unitary operators. We also provide a sound proof system by enriching
the usual CTL proof system with the axioms of the quantum state logic.

10



Table 4: Language of QCTL

Temporal quantum formulas
0 = ~[(©036)] (EXO)][ (AF0) [ E[OUM],
where 7 is a dEQPL formula.

3.1 Languages and semantics

Syntaz. The formulas of Quantum Computation Tree Logic (QCTL) are
depicted in Table 4 and are obtained by enriching the quantum formulas
with CTL modalities.

The intuitive semantics of the temporal modalities is similar to those
in classical CTL. The modalities are composed by two symbols where the
first one is chosen between E or A and the second one amongst X, F, G and
the bi-modality U. The second symbol is used for temporal reasoning: X
stands for next; F for sometime in the future; G for always in the future;
and U for until. The first symbol quantifies over all computation paths: an
existential (E - for there exists) path or a universal (A - for all) paths. The
combination of the two symbols can be easily intuited. For example, the
formula (EX#) holds in a state |¢) if there exists a next state of ) (that
is, a state reachable from [¢)) with a single transition) that satisfies 6. As
usual, all CTL modalities are obtained as abbreviations from EX, AF and
EU.

o (AX0) for B (EX(B6));
EF0) for B(E[(B 1L)U6));
AGH) for B(EF(E6));
EGY) for B(AF(36));

A0, Ub5] for B(E[(B02)U(B 6, NE65)]) N (B(EG(E6))).

(
(
(
(

Semantics. In order too provide semantics to the logic, we introduce a
very simple notion of quantum transition system.

Definition 3.1 (Quantum transition system) A finite quantum transi-
tion system over qB is a tuple

T = (A, I> {Ua}aeA)

where:

11



e A is the finite set of actions;
e [ is a finite set of unit vectors in Hqp called the set of initial states;

o {U,}aca is a family of pairwise distinct unitary transition operators
over Hgg;

such that the set of reachable states ST = {Uw|tp) : w € A" |¢) € I} is
finite!. The value |S7| is called the size of 7.

The concept of quantum transition system presented above is inspired by
classical transition systems. Some modifications are needed in order to cope
with the quantum postulates, such as, the fact that states are unit vectors of
an Hilbert space and that transitions are defined by unitary transformations.

For the sake of simplicity, we are not considering generalized measure-
ments. However, we will be able to reason about protocols where measure-
ments in the standard computational basis are performed at the end of the
protocol, thanks to the probability terms [« in the state logic. Similarly,
classical states (bits) can be simulated by quantum states (qubits) that re-
main in the computational basis throughout the transitions.

The temporal language is interpreted over a quantum transition system
7T, a state |¢) € S7 and an assignment p. We also assume that, given an as-
signment, the values of the variables does not change with state transitions.
The rigorous semantics of the logic is given in Table 5.

Table 5: Semantics of QCTL

Tl)p - v it [¢)p Iy

Tloyp - (61 302) i Tip ¥ 61 or TIw)p - 0

T)p Ik (EXE) ifft TU,|¢)p IF 0 for some a € A;
T|Y)p I (AF0) iff T|)plk 0 or for all a € A there is

a word w € A* such that
TUan|¢>p I-6;

Tl)p Ik E[61U6:] iff T |¢)p Ik B2 or for some a € A there
is word w € A* such that
TUgw|t)p IF 03 and TUg|0)p I+ 64
for every prefix s < w.

'We extend the transition operators to words as expected: U, = I and Uyq = Uy .U,
with € the empty word.

12



It is easy to see that for closed formulas (that is, formulas without vari-
ables), we can drop the assignment in the interpretation side of the satisfac-
tion relation. A quantum transition system 7 is said to satisfy a temporal
formula 6, which we denote by 7 I+ 6, if 7,|¢),p IF 6 for all [¢) € I and
assignment p.

3.2 The Model-checking problem

We now address the problem of model-checking a closed temporal formula.
Following the usual model-checking technique for CTL, the goal is to com-
pute the set

Satr(6) == {4} € S1: T, ) I- 6}

for a given quantum transition system 7 and closed formula 6. This is called

the global model-checking problem. Thus, 7 IF 6 iff the set of initial states

I is contained in Satr(6).

For the model-checking algorithm, given a transition system 7 = (A, I, {Ug }aca)

with ST as the set of reachable states, we shall assume that each unitary op-

erator U, is input as a set of ordered pairs: {(¢ U, (¢2)) : ¢ € St} (instead

of the usual matrix representation. The (global) model-checking algorithm

is given in Table 6.

Table 6: Algorithm to determine Satz(6)

(v) ={l¥) € ST : [¥) IF vk

2. Satr(0; 1 609) = (S \ Satr(61)) U Satr(6s)

3. Sat7(EX8) = Uueq Uyt Satr(6);

4. Satr(AF0) = FixedPoint[AX.{N,c AU, 1 X} J X, Satr(0)];

9. SatT(E[Gerg]) ==
FixedPoint[AX.{J,c 4{U, ' X N Sat7(61)}, Sat7(62)].

Clearly, quantum transition systems require, in general, exponential
space (over the number of qubits) to simulate with classical computers due
to the exponential number of possible state superpositions (observe that we
allow arbitrary quantum states as initial states). For this reason, the model
checking algorithm takes exponential time on the number of qubits, but it

13



is polynomial on the size of the transition system and the complexity of the
formula.

Theorem 3.2 Assuming that all basic arithmetical operations take unit
time, the algorithm in Table 6 takes O(|6|%.|S7|?.2") time.

Proof: The propositional CTL model-checking algorithm takes O(||.|S7|?)
(see [8] for a detailed analysis). So, if we consider each quantum atom to
be a propositional symbol, the time complexity of the algorithm would be
O(|0].|S7|?). Finally, since checking if a quantum atom is satisfied by a
quantum states takes O(]0].2") (c.f. Theorem 2.1) we derive the desired
upper bound. Recall that we consider all arithmetic computations to be
O(1) by using floating point representation for the real numbers. o

3.3 Axiomatization

Given a complete axiomatization for the state logic it is easy to establish a
sound proof system for the CTL extension.

We are currently investigating if the system present in Table 7 is (weakly)
complete. Towards this end, we are working to establish a small model-
property for the quantum temporal logic and understand the restrictions
imposed by unitary transformations. For the moment, we only have the
following result.

Theorem 3.3 The proof system presented in Table 7 is sound.

4 Example: BB84 protocol

In this section we reason about a simplified version of the BB84 key distri-
bution protocol [5] to illustrate the power of QCTL. We assume the reader
is conversant with this protocol since it will not be presented here.

For the sake of simplicity, we consider that the protocol distributes a
key of one bit. The property we desire to model check is the soundness of
the protocol, that is, if there is no interference by Eve (and no decoherence
occurs) Alice and Bob will obtain the same key (provided they chose the
same basis).

We start by presenting the protocol as a quantum transition system with
five bits {ba,bp, k, s,e} and one qubit {m}. Bit by encodes the basis that
Alice will use to send the key k through qubit m. So, Alice sends the qubit
m to Bob at the following state depending on the values of b4 and k:

14



Table 7: Axioms for QCTL

Axioms
[QTeo] All dEQPL theorems;
[Taut] All tautologies with propositional symbols substituted
by QCTL formulas;
[EX] F (EX(6; U 69)) = (EXO;) U (EXO2)
(X] o (AX(B 1)) n(EX(B 1))
[EU] F E[91 UGQ] =65 L ((91 M (EXE[@l U@Q]))
[AU] F o A[01U6;] = 02 L (61 1 (AXA[A1U6,]))
[AG1l] F (AG(f5 3((H62) N (EX6s))))a

(65 1 (B A9 Ub)]))

AG2] - (AG(8s 1 ((BB2) 11 (8 7 (AX05)))))
(6 1 (B E[6,U)))

[AG3] F (AG(¢91 _ 92)) _ ((EX01) _ (EX@Q))

Inference rules
[QMP]  01,(61 T62) 6
[AGen]| 6+ (AGH,)

o |0)if by =k =0;

o |1)if by =0and k =1;
e 2(|0) + 1)) if by = 1 and k = 0;
e 2(|0) — 1)) if by =k = 1.

Similarly, bp encodes the basis that Bob will use to observe the qubit m he
receives. Since we only allow measurements over the computational basis,
if bp = 1 (that is, Bob should use the diagonal measurement) Bob applies
a unitary transformation to m in order to obtain the same value measuring
with the computational basis that he would using the diagonal basis.

The bits s and e are used to model the status of the protocol. Bit s takes
value 1 if Alice has just sent a message to Bob and value 0 otherwise. Bit
e indicates if the protocol has ended or not. So, the evolution of the pair
(s, e) throughout the protocol is (0,0) — (1,0) — (0, 1).

Recall that bits are modeled by qubits that remain in the computational
basis. Thus, the states of the bits b4, bp, k, s, and e will be modeled by the
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elements of the computational basis {|ba, bp, k, s,e) : ba, b, k,s,e € {0,1}}.
We consider the qubit m to be initialized to |0) and, so, the set of initial
states has eight elements: I = {|b,,bp,k,0,0,0) : by, bp, k € {0,1}}.

We consider that there is only action symbol a. The unitary transforma-
tion U, can be easily described as a concatenation of two unitary operator
U, = U,.Ug, where U, deals with Alice sending the message to Bob and U,
with Bob receiving the message. The idea is that U, behaves like the iden-
tity if the qubit was not sent by Alice while Us will behave like the identity
otherwise. Both U, and U, are easily described as controlled operations.
The operator Uy is Ugy.Ugz.Ugo.Ug1 where:

e Uqul0,b5,1,0,0,m) = |0,bp,1,0,0,1 —m) and behaves like the iden-
tity for the remaining elements of the basis;

e Usl|l,b5,0,0,0,m) = |1,bp,0,0,0) ® H|m) and behaves like the iden-
tity for the remaining elements of the basis where H is the Hadamard
transformation;

e Ugll,bp,1,0,0,m) = |1,bp,1,0,0) ® H|1 —m) and behaves like the
identity for the remaining elements of the basis;

o Usylba,bp, k,s,0,m) = |ba, b, k,1 — s,0,m) and behaves like the iden-
tity for the remaining elements of the basis.

The unitary transformations Uy, Uss and Ugs deal with Alice encoding m
to Bob and U4 updates the state of the pair (s,e) from (0,0) to (1,0).
Similarly, the operator U, is described by U,s.U,; where:

e U,lba,1,k,0,0,m) = |ba, 1,k,0,0) ® H|lm) and behaves like the iden-
tity for the remaining elements of the basis;

o Upalba,bp,k,0,e,m) = |ba,bp, k,0,1 — e, m) and behaves like the iden-
tity for the remaining elements of the basis.

The unitary transformation U,; deals with the change of basis that Bob
performs when bp = 1 and U,y (together with Uyq) updates the state of the
pair (s, e) from (1,0) to (0,1) (note that Uss changes the state of (s, e) from
(1,0) to (0,0) and that U,o then changes it to (0,1)).

The BB84 protocol is described by two applications of U, over an initial
state. At the end of the protocol a measurement is performed by Bob over
the qubit m. Thus, the quantum transition system modeling the simple
BB84 protocol is given by 7 = ({a}, I,U,) with ¢B = {ba, bp, k, s,e,m}.
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The soundness property states that if b4 = bp then at the end of the
protocol, the key k should be the same as the value that Bob observes in m.
This property can be described by the formula 6 below:

(B(ba < bp)) 2 (A[B(Oe)U((Be) M (([Ok) = (f m =1))]).

It is now possible to use the algorithm in Table 6 to check that 7 I+ 6.

5 Conclusions

We present a temporal quantum logic combining the quantum state logic
given in [7] with the computational tree logic (CTL) [8]. The model-checking
algorithm of CTL was extended to deal with quantum states. The use of
the quantum temporal logic was illustrated with BB84 protocol [5].

This work can be extended in several directions. First, on the state
logic part, density operators could replace unit vectors thus giving a global
phase independent semantics. On the temporal part, quantum transition
systems should allow arbitrary measurements. For this, the state logic based
on density operators is more suitable. We also plan to investigate other
temporal extensions to quantum logic, like linear temporal logic and full
branching time logic.

On the algorithmic side, the complexity class of the SAT and the model-
checking problem for both the state and the temporal logic need to be in-
vestigated.
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