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‡ corresponding author, acs@math.ist.utl.pt

Abstract

Following recent developments in the topic of generalized quantifiers, and also
having in mind applications in the areas of security and artificial intelligence, a
conservative enrichment of (two-sorted) first-order logic with almost-everywhere
quantification is proposed. The completeness of the axiomatization against the
measure-theoretic semantics is carried out using a variant of the Lindenbaum–
Henkin technique. The independence of the axioms is analyzed, and the almost-
everywhere quantifier is compared with related notions of generalized quantification.
A suitable fragment of the logic is translated to first-order logic and validity is shown
to be preserved.

Keywords: generalized quantification, almost-everywhere logic, probabilistic logic,
measure-theoretic semantics, complete axiomatization.

1 Introduction

Extensions of logics with new quantifiers have been deserving a lot of attention since the
landmarking papers of Mostowski [27] and mainly of Keisler [20]. In these works the
logic L(Q) is introduced as an extension of first-order logic with a quantifier Qx with
the meaning of “there exist uncountable many”. Among other results, Keisler proves the
completeness theorem with respect to a very simple set of axioms. In [19], Kaufmann
develops methods of proving completeness theorems for logics extending L(Q). In the
same vein, Shelah in [31] investigates the cofinality logic which is an extension of first-
order logic with two new quantifiers for reasoning about cofinality of orderings. This logic
is proved to be compact and stronger than first-order logic even for countable models.
Motivated by a remark in [31], stationary logic was developed [7, 25]. This logic includes
a weak form of a second-order generalized quantifier (aa s) with the meaning “for almost
all countable subsets s”. A proof-theory is developed for this logic and the completeness,
compactness and omitting types theorems are proved. Even closer to the purpose of our
paper, we can refer to the work of Keisler in [21, 22, 23]. In particular in [21], a logic is
introduced with countable conjunctions and probability quantifiers appropriate for first-
order structures with a probability measure where every definable set is measurable. In
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this logic, the formula (Px ≥ r)ϕ means that the set {x : ϕ} has probability at least
r. However the logic has neither universal nor existential quantifications. The interested
reader should also see other related papers in [6].

The interest on generalized quantifiers goes beyond the pure mathematical setting. For
example in linguistics and natural language [29, 5], artificial intelligence [30, 17, 24, 14],
and philosophy [33] similar logical notions were developed. Another example is ultra-
filter logic [12, 34] capturing the intuition of ‘most’ by means of generalised quantifiers
over ultrafilters. In [32], a condensed survey of generalized quantifiers in applied logic,
linguistics and computer science is presented.

Recently applications in security suggest adopting a probabilistic interpretation of
“for almost all” as considered in [17]. This kind of quantification is also studied in [3, 10]
but in the more general setting of a measure-theoretic semantics. An important trend in
the area of kleistic logic1 is directed at developing formal calculi for reasoning about the
probabilistic universe of security protocols, for instance in the context of encryption [2,
1, 26, 4, 13], but with no linguistic constructs denoting probabilities: these only appear
at the semantic level.

Having in mind such applications in security, our aim was to develop a purely qual-
itative extension of first-order logic (FOL) with a quantifier AE corresponding to the
measure-theoretic notion of “almost everywhere”. By purely qualitative we mean that
there should be no language constructions denoting measure values. The key idea was
to endow each first-order structure with a measure over some σ-algebra of subsets of the
domain. This semantic approach had already been pursued to some extent in [3, 10], and
also in [17, 14]. However, the former allows only one almost-everywhere quantification
applied to a FOL implication and does not provide a calculus, while the latter includes
terms denoting probabilities or measures in the language.

The resulting logic FOL+AE is described in Section 2 and some of its properties
are analyzed. In Section 3 we overcome the issues of axiomatizing FOL+AE by adding
quantification over unary predicates and adopting two-sorted first-order interpretation
structures and getting logic 2-FOL+AEs. In Section 4 we present an axiomatization for
this enriched logic which is shown in Section 5 to be strongly complete over the class
of supported interpretation structures as well as over the class of discrete interpretation
structures with a support. In Section 6 we go back to the first-order setting.

In Section 2, besides presenting the language and the semantics of FOL+AE, we clas-
sify the proposed AE quantifier following the taxonomy in [11]. In Section 3 we introduce
the language, the notion of supported measure (that will be crucial in the proof of com-
pleteness) and the semantics of 2-FOL+AEs. The axiomatization presented in Section 4
includes axioms for dealing with the two-sorted FOL fragment, axioms for dealing with
AE, axioms for the interplay between the two classical quantifiers and AE, and the ax-
iom characterizing supported measures (SE), plus the usual rules Modus Ponens (MP),
∀-generalization (∀Gen) and ∀1-generalization (∀1Gen). The axioms for AE make clear
the similarities (normality) and the differences (instantiation) between AE and ∀. We
conclude Section 4 with the meta-theorem of deduction and by proving the independence
of some axioms. In Section 5 we prove the strong completeness of the axiomatization us-
ing a suitable revamp of the Lindenbaum-Henkin technique [18]. The usual ∃-witnesses

1Kleistic logic is the logic of security, from the Greek kleisis.

2



are enough to provide SE-witnesses (for the existential counterpart of AE). Furthermore,
although AE-instantiation is weaker than ∀-instantiation, things work out thanks to the
SE axiom. We conclude Section 5 with some obvious but important corollaries of the
completeness theorem. In particular, if a 2-FOL+AEs theory has a (supported) model
then it has a discrete model with a support. In Section 6 we provide a translation of first-
order formulas with the AE quantifier to the language of first-order logic with a specific
unary predicate and prove equivalence between validity in this first-order logic and theo-
remhood in 2-FOL+AEs. Further developments of 2-FOL+AEs, namely towards security
applications like zero-knowledge proof systems, are discussed in Section 7.

2 First-order language and semantics

In this section we start by presenting a first-order logic (FOL) enriched with a modulated
quantifier (in the sense of [11]) denoted AE, where the intended meaning of AExϕ is “for
almost all x, ϕ holds”. To this end, we enrich the notion of first-order structure by adding
a measure space on the domain; intuitively, a formula AExϕ will be satisfied if the set of
values in the domain that can be assigned to x whilst falsifying ϕ has zero measure. By
duality we obtain a quantifier SE, where SExϕ is read “there exist significantly many x
such that ϕ holds” and is satisfied if the set of values that can be assigned to x whilst
making ϕ true has non-zero measure. We assume that the reader is familiar with the
basics of measure theory (at the level of the initial chapters of a textbook on the subject,
for instance [16]).

We begin by defining terms and formulas of the logic FOL+AE.

Definition 2.1 Assume a given first-order signature Σ = 〈F, P 〉 and a countable set
X = {xi | i ∈ N} of variables. Terms are generated in the usual way from X and
F . Formulas are built inductively applying elements of P to terms or by using (some)
propositional connectives, first-order quantifiers or the modulated quantifier AE.

ϕ = p(t) | ff | ϕ ⇒ ϕ | ∀xϕ | AExϕ

The remaining propositional connectives and the existential quantifier are defined as
abbreviations in the usual way. Furthermore, the quantifier SE is defined by abbreviation
by SExϕ ≡ ¬AEx¬ϕ.

It is convenient to introduce some notation that will be needed throughout the paper.

Notation 2.2 The notation var(t) and var(ϕ) refers to the variables that occur in a
term t or in a formula ϕ. In the latter case, var(ϕ) includes not only variables that occur
in terms in ϕ (free or bound) but also variables being quantified upon (e.g. the y in ∀yψ).

For example, var(f(x, a)) = {x} and var(AExp(y, b)) = {x, y}.

Notation 2.3 The notation t . x : ϕ stands for “term t is free for variable x in formula
ϕ”, with the usual meaning in FOL – namely, that if x is replaced by t in ϕ then no
variables in t become bound.

In particular, y . x : ϕ holds for any variable y that does not occur in ϕ (although
this condition is by no means necessary).
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Definition 2.4 An interpretation structure is a tuple M = 〈D, [[·]],B, µ〉 where:

• D is a non-empty set;

• 〈D, [[·]]〉 is a first-order interpretation structure, that is:

– for each f ∈ Fn, [[f ]] : Dn → D;

– for each p ∈ Pn, [[p]] : Dn → {0, 1}.
• 〈D,B, µ〉 is a measure space, that is:

– B is a σ-algebra over D;

– µ is a measure on B.

• µ(D) 6= 0.

Definition 2.5 Satisfaction in a structure M given a variable assignment ρ is defined
in the usual way as for FOL, with the following extra clause2:

Mρ ° AExϕ if there is B ∈ B such that
(|ϕ|xMρ

)c ⊆ B and µ(B) = 0

where |ϕ|xMρ (the extent of ϕ relative to x in M with assignment ρ) is defined by3

|ϕ|xMρ = {d | M ρx
d ° ϕ}.

Validity and entailment are defined as expected.

Proposition 2.6 The logic FOL+AE is a conservative extension of FOL.

Proof. Formulas that do not use the modulated quantifier are satisfied in a structure
with a given assignment iff they are satisfied in the corresponding FOL structure (i.e. the
structure obtained by forgetting the measure on the domain). Since any FOL structure
can be made into a structure of FOL+AE by adding e.g. the counting measure on its
domain, it follows that the valid FOL-formulas in the extended logic are precisely the
valid formulas of FOL. ¤

Proposition 2.7 If 〈D,B, µ〉 is a complete measure space and Mρ ° AExϕ, then(|ϕ|xMρ

)c
is measurable with measure 0.

Proof. In a complete measure space, any subset of a zero-measure set is itself a zero-
measure set. ¤

2As usual, (A)c denotes the complement of A.
3Throughout this paper, ρx

d denotes the assignment that takes x to d and behaves as ρ elsewhere.
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Remark 2.8 In view of Proposition 2.7, we could instead define Mρ ° AExϕ to hold
if µ(

(|ϕ|xMρ

)c
) = 0. However, besides requiring the measure space to be complete (a

constraint that may not be desirable), this definition is not suitable to generalization in
the sense we will now discuss. If we replace µ(B) = 0 with µ(B) < ε for some previously
fixed ε we obtain a different notion of “almost everywhere”, which can be relevant in some
contexts (e.g. when 〈D,B, µ〉 is a probability space, the meaning of AExϕ then becoming
“except with negligible probability”). This alternative notion will be discussed in the
concluding section.

Dealing with this more general notion is the reason for introducing the set B in the
definition above: while it is true that any subset of a zero-measure set is measurable in
a complete measure space, it is not true in general that |ϕ|xMρ is measurable even if we
assume that [[f ]] and [[p]] are measurable for all f ∈ F and p ∈ P , as the following example
shows.

Example 2.9 Let Σ = 〈F, P 〉 be a first-order signature with Fn = ∅ for all n ∈ N,
P2 = {p} and Pn = ∅ for n 6= 2. Let M be a first-order structure for Σ with domain R
endowed with the usual measure such that

[[p]](x, y) =

{
1 if x ∈ U or x 6= y
0 otherwise

where U ⊆ R is any non-measurable set. Notice that [[p]] is a measurable function:
[[p]]−1(0) is a zero-measure set (it is contained in the line x = y), hence [[p]]−1(1) is also
measurable, since the union of these is R2. However, regardless of ρ, |∀y(p(x, y))|xMρ = U
is not measurable by hypothesis.

The following proposition gives some examples of formulas that hold in all structures.

Proposition 2.10 The following formulas are valid.

1. (∀xϕ) ⇒ (AExϕ)

2. (AExϕ) ⇒ (∃xϕ)

3. (AExϕ) ⇒ (AEy[ϕ]xy) whenever y 6∈ var(ϕ)

4. AEy((AExϕ) ⇒ [ϕ]xy) whenever y . x : ϕ and y does not occur free in ϕ

5. (∀x(ϕ ⇒ ψ)) ⇒ ((AExϕ) ⇒ (AExψ))

6. (∀x(ϕ ⇔ ψ)) ⇒ ((AExϕ) ⇔ (AExψ))

7. (AEx(ϕ ⇒ ψ)) ⇒ ((AExϕ) ⇒ (AExψ))

8. ((AExϕ) ∧ (AExψ)) ⇔ AEx(ϕ ∧ ψ)

9. AExtt

10. (AExϕ) ⇒ ¬(AEx(¬ϕ))

11. (AExϕ) ⇒ (SExϕ)
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12. ((AExϕ) ∧ (AExψ)) ⇒ ∃x(ϕ ∧ ψ)

Proof. These properties are direct consequences of the properties of measure functions,
as we show. We omit the straightforward proofs of 1, 2, 3, 5, 6, 9 and 11. Let M be an
interpretation structure and ρ be some assignment.

4. Suppose that Mρ 6° AEy((AExϕ) ⇒ [ϕ]xy), that y does not occur free in ϕ, and

that y . x : ϕ. Then the set
(|((AExϕ) ⇒ [ϕ]xy)|yMρ

)c
is not contained in any set of

measure zero, hence it cannot be empty. For any d in that set, Mρy
d ° AExϕ and

Mρy
d 6° [ϕ]xy ; but then the hypotheses on y imply that Mρ ° AExϕ and Mρx

d 6° ϕ.

It follows that
(|((AExϕ) ⇒ [ϕ]xy)|yMρ

)c
=

(|[ϕ]xy |yMρ

)c
=

(|ϕ|xMρ

)c
, taking advantage

of the fact that y does not occur free in ϕ. But this set is contained in a set with
measure zero (since Mρ ° AExϕ), contradiction.

7. Suppose that Mρ ° AEx(ϕ ⇒ ψ) and Mρ ° AExϕ. Then

(|ψ|xMρ

)c
= {d | Mρ 6° [ψ]xd}
= {d | Mρ 6° [ψ]xd and Mρ ° [ϕ]xd} ∪ {d | Mρ 6° [ψ]xd and Mρ 6° [ϕ]xd}
⊆ {d | Mρ 6° [ϕ ⇒ ψ]xd} ∪ {d | Mρ 6° [ϕ]xd}
=

(|ϕ ⇒ ψ|xMρ

)c ∪ (|ϕ|xMρ

)c

and by hypothesis each of these two sets is contained in a set of measure zero. Since
the union of zero-measure sets still has measure zero, it follows that Mρ ° AExψ.

8. Notice that
(|ϕ ∧ ψ|xMρ

)c
=

(|ϕ|xMρ ∩ |ψ|xMρ

)c
=

(|ϕ|xMρ

)c∪(|ψ|xMρ

)c
. If

(|ϕ ∧ ψ|xMρ

)c ⊆
B then B contains both

(|ϕ|xMρ

)c
and

(|ψ|xMρ

)c
, which proves the converse implica-

tion supposing µ(B) = 0. For the direct implication just consider the intersection
of two sets Bϕ ⊇

(|ϕ|xMρ

)c
and Bψ ⊇

(|ψ|xMρ

)c
.

10. Suppose that Mρ ° AExϕ. Then
(|ϕ|xMρ

)c ⊆ B for some set B such that µ(B) = 0.

Then (B)c is measurable and µ((B)c) = µ(D)−µ(B) = µ(D) 6= 0. But
(|¬ϕ|xMρ

)c
=((|ϕ|xMρ

)c)c
= |ϕ|xMρ, and any set containing this must contain (B)c, hence its

measure must also be µ(D). Therefore Mρ 6° AEx¬ϕ, hence Mρ ° ¬(AE(¬ϕ)).

12. Suppose that Mρ ° ((AExϕ) ∧ (AExψ)); then there are sets Bϕ ⊇ (|ϕ|xMρ

)c
and

Bψ ⊇
(|ψ|xMρ

)c
with µ(Bϕ) = µ(Bψ) = 0. It follows that µ(Bϕ ∪Bψ) = 0, hence its

complementary has positive measure and is contained in |ϕ ∧ ψ|xMρ, thus the latter
is not empty, whence ∃x(ϕ ∧ ψ) holds.

Notice that removing the requirement µ(D) 6= 0 affects the proofs of validity of 10 and 12.
Conversely, if either of these formulas holds in a structure for any ϕ, then in that struc-
ture necessarily µ(D) 6= 0 (just take ϕ = ff). ¤

Remark 2.11 The requirement that y not occur free in ϕ in formula AEy((AExϕ) ⇒ [ϕ]xy)
is essential, as the following example shows. Let ϕ to be x 6= y and M = 〈R, [[·]],B, µ〉
with 〈R,B, µ〉 the usual measure on the real line and [[ 6=]] inequality.
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Given an arbitrary ρ, Mρ ° AExϕ, since
(|ϕ|xMρ

)c
= {ρ(y)}, which has zero measure.

On the other hand, Mρ 6° [ϕ]xy , since ρ(y) = ρ(y). Therefore Mρ 6° (AExϕ) ⇒ [ϕ]xy . Since
ρ is arbitrary, this implies that |(AExϕ) ⇒ [ϕ]xy |yM = ∅, so M 6° AEy((AExϕ) ⇒ [ϕ]xy), even
though y is free for x in ϕ.

Proposition 2.12 The following entailments hold.

1. ϕ, ϕ ⇒ ψ |= ψ

2. ϕ |= ∀xϕ

3. ϕ |= AExϕ

Proof. The first two are immediate consequences of the fact that interpretation struc-
tures of FOL+AE are first-order structures. The third follows from the fact that, if
M ° ϕ, then |ϕ|xMρ = D for any ρ, hence

(|ϕ|xMρ

)c
= ∅, and this set has measure zero.

Thus Mρ ° AExϕ, and arbitrariness of ρ proves that M ° AExϕ. ¤

The authors of [11] classify quantifiers in several categories. According to Proposi-
tion 2.10, the quantifier AE is:

• a modulated quantifier, since it satisfies 1, 2, 6 and 3;

• a “most” quantifier, since it satisfies 5, 10 and 2;

• a “ubiquity” quantifier, consequence of 8 and 5.

Interestingly, AE is not an “almost all” quantifier in their sense, since such a quantifier
∇ must satisfy (∇xϕ) ∨ (∇x¬ϕ). This corresponds in our setting to the semantical
requirements µ(|ϕ|xMρ) = 0 or µ(

(|ϕ|xMρ

)c
) = 0. One can easily see that this is not

necessarily valid by taking ϕ to be p(x) in a structure where D = N, [[p]](n) = 1 iff n
is even and µ is the counting measure on the natural numbers. A way of getting AE
to behave in such a way is to follow the alternative definition suggested in Remark 2.8
taking ε > 1/2 and 〈D,B, µ〉 a probability space (so µ(D) = 1). On the other hand,
property 7 of the same Proposition states that AE as defined is a normal quantifier, so
many of the previous properties are consequences of this fact (as will be shown in more
detail in Section 4).

We conclude this section with a significant result.

Proposition 2.13 The logic FOL+AE does not satisfy the downward Lowenheim–Skö-
lem theorem.

Proof. Without loss of generality, assume that = denotes equality and let ϕ be the
formula ∀x(AEy¬(x = y)), intuitively representing the semantic condition “singleton sets
have measure zero”. Clearly ϕ is satisfiable, since the usual measure on the real line has
this property. However, it has no countable models: if M = 〈D, [[·]],B, µ〉 is a model of ϕ
and D is countable, then for any assignment ρ we have that

D =
⋃

d∈D

{d} ⊆
⋃

d∈D

|x = y|yMρx
d
,

7



hence D is included in a countable union of sets of measure zero (since by hypothesis
Mρx

d ° x = y for each d) and must be a zero-measure set itself.
Now observe that the only property of equality used above was reflexivity. The rea-

soning above works just as well if we take ϕ to be (∀x(AEy¬p(x, y))) ∧ (∀x(p(x, x))) and
assume nothing at all about the interpretation of p. ¤

From this point on we envisage to axiomatize the measure-theoretic AE quantifier
and prove the completeness of the axiomatization. As will be clear later on, we have
to extend the first-order language taking into account the cardinality issues related to
the measure-theoretic notions. The associated interpretation structures are not over all
measures spaces but over an interesting subclass (the class of all supported measure
spaces). We call that logic 2-FOL+AEs where the exponent s stands for supported.

3 Extending the language

The language and the semantics of 2-FOL+AEs are those of FOL+AE plus a (generalized)
second-order quantifier.

Definition 3.1 The formulas of 2-FOL+AEs over a given first-order signature are gen-
erated by the following grammar.

ϕ = p(t) | r(t) | ff | ϕ ⇒ ϕ | ∀xϕ | AExϕ | ∀1rϕ

Here, r stands for the unary predicate variables. As before, the remaining propositional
connectives and the existential quantifiers ∃ and SE are defined by abbreviation; likewise,
we abbreviate ¬(∀1r(¬ϕ)) to ∃1rϕ.

Notice that we now have two kinds of variables. Henceforth, by closed we will mean
closed for both. When we refer to a formula with one free first-order variable we will
implicitly assume that no second-order variables are free in the formula, and likewise for
formulas with one free second-order variable.

As mentioned before, we need to consider structures with measure functions satisfying
some extra properties.

Definition 3.2 A measure space 〈D,B, µ〉 is supported if arbitrary unions of zero-
measure sets are contained in a zero-measure set.

When the measure space is supported, we have: (i) there is a largest zero-measure set Z;
(ii) for any set A ∈ B, µ(A) = µ(A \ Z).

Definition 3.3 An interpretation structure for 2-FOL+AEs is a tuple 〈D, D1, [[·]],B, µ〉
such that:

1. 〈D, [[·]],B, µ〉 is an interpretation structure for FOL+AE;

2. 〈D,B, µ〉 is a supported measure space;

3. D1 ⊆ ℘(D) contains the extents of all formulas with a single free first-order variable.
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Assignments now take first-order variables to elements of D and second-order variables
to elements of D1. Satisfaction of formulas is defined inductively as before, with the
following extra clauses for the second-order variables and quantifier.

Mρ ° r(t) iff [[t]]Mρ ∈ ρ(r)

Mρ ° ∀1rϕ iff Mρr
B ° ϕ for any B ∈ D1

Note also that ∀1 is endowed with a Henkin-style generalized second-order semantics.
Therefore, 2-FOL+AEs is equivalent to two-sorted first-order logic plus AE, which justifies
its name.

Remark 3.4 Since structures of 2-FOL+AEs are enriched structures of monadic second-
order logic, we have: ϕ |= ∀1rϕ.

Proposition 3.5 The logic 2-FOL+AEs is a conservative extension of FOL.

Proof. Analogous to Proposition 2.6. ¤

Observe that 2-FOL+AEs is not a conservative extension of FOL+AE since the former
assumes that the measures are supported.

4 Axiomatization

In this section we define a Hilbert calculus for 2-FOL+AEs. This calculus is sound, as
Theorem 4.2 shows; in Section 5 we will show that it is also complete w.r.t. the supported-
measure semantics given above.

Definition 4.1 The axiom system for 2-FOL+AEs contains the following axioms.

Taut All instances of propositional tautologies.

K∀ (∀x(ϕ ⇒ ψ)) ⇒ ((∀xϕ) ⇒ (∀xψ))

I∀ (∀xϕ) ⇒ [ϕ]xt whenever t . x : ϕ

IAE AEy((AExϕ) ⇒ [ϕ]xy) whenever y . x : ϕ and y is not free in ϕ

K∀1 (∀1r(ϕ ⇒ ψ)) ⇒ ((∀1rϕ) ⇒ (∀1rψ))

I∀1 (∀1rϕ) ⇒ [ϕ]rψ whenever ψ is a formula with a single first-order free variable and
ψ . r : ϕ

Comp ∃1r(∀x(r(x) ⇔ ϕ)) whenever ϕ is a formula with a single first-order free variable
x and r is not free in ϕ

SE (SExϕ) ⇒ ∃x(ϕ ∧ ∀1r((AEy(r(y))) ⇒ r(x)))

The inference rules are generalization for the universal quantifiers (∀Gen) and (∀1Gen)
plus Modus Ponens (MP).
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Some comments are in order at this stage. Axioms Taut, K∀ (normality) and I∀
(instantiation) are as in FOL. Indeed, the usual FOL axiom

K∀′ (∀x(ϕ ⇒ ψ)) ⇒ (ϕ ⇒ (∀xψ)) if x does not occur free in ϕ

and K∀ above are inter-derivable in the presence of I∀.
• In FOL we can derive K∀. . .

1. (∀x(ϕ ⇒ ψ)) ⇒ (ϕ ⇒ (∀xψ)) K∀′
2. ∀x(ϕ ⇒ ψ) Hyp
3. ϕ ⇒ (∀xψ) MP 1, 2
4. ∀xϕ Hyp
5. (∀xϕ) ⇒ ϕ I∀
6. ϕ MP 5, 4
7. ∀xψ MP 3, 6

• . . . and in FOL without K∀′ we can derive it from K∀.
1. (∀x(ϕ ⇒ ψ)) ⇒ (∀xϕ ⇒ ∀xψ) K∀
2. ∀x(ϕ ⇒ ψ) Hyp
3. ∀xϕ ⇒ ∀xψ MP 1, 2
4. ϕ Hyp
5. ∀xϕ ∀Gen 4
6. ∀xψ MP 3, 5

In both cases we use the Deduction Theorem for FOL.
We adopted K∀ instead of K∀′ because we want to make as clear as possible the

similarities and the differences between ∀ and AE: if we replace ∀ by AE, the two resulting
formulas

[KAE] (AEx(ϕ ⇒ ψ)) ⇒ ((AExϕ) ⇒ (AExψ))
[KAE′] (AEx(ϕ ⇒ ψ)) ⇒ (ϕ ⇒ (AExψ)) where x does not occur free in ϕ

are not inter-derivable, because AE does not enjoy full instantiation; only the second of
the above derivations remains valid (so normality is stronger). Also, axiom K∀ is simpler
since it makes no requirements on ϕ.

Formulas KAE and IAE are counterparts to K∀ and I∀. The latter was taken as an
axiom, while the former is derivable as will be shown at the end of this section. Note
that IAE is a much weaker form of instantiation, reflecting the weaker quantification
made by AE. This fact is the source of the impossibility of deriving KAE from KAE′.
In Proposition 4.9 we will show that generalization for the modulated quantifier can be
derived and does not need to be added as an inference rule.

Axioms K∀1 and I∀1 should pose no questions after the discussion above, while ax-
iom Comp is simply the unary second-order comprehension scheme.

Axiom SE states that, whenever ϕ holds significantly, there is a single point where it
holds that is contained in no set of measure zero. This is equivalent to the semantic re-
quirement that the measure be supported, as we show below. It also provides a restricted
instantiation scheme for AE comparable to I∀. Also note that the interplay formulas

[∀AE] (∀xϕ) ⇒ (AExϕ)
[AE∃] (AExϕ) ⇒ (∃xϕ)
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are easily derivable from SE.

Soundness and axiom independence results

Theorem 4.2 (Soundness of 2-FOL+AEs) Let Γ ∪ {ϕ} be a set of formulas. If Γ ` ϕ
then Γ |= ϕ.

Proof. By soundness of FOL, since all structures are first-order structures every instance
of Taut, K∀ and I∀ is valid; by Proposition 2.10, all instances of axiom IAE are valid as
well. Furthermore, since structures of 2-FOL+AEs are enriched structures of monadic
second-order logic, axioms K∀1, I∀1 and Comp hold.

The crucial step is to check the soundness of axiom SE. Assume that for some formula
ϕ there exist a structure M and an assignment ρ such that Mρ ° SExϕ and Mρ 6°
∃x(ϕ∧∀1r((AEy(r(y))) ⇒ r(x))). From the latter it follows that, for any d ∈ |ϕ|xMρ, there
exists a set Xd ∈ D1 such that µ(Xd

c) = 0 and d 6∈ Xd. But then

|ϕ|xMρ ⊆
⋃

d∈|ϕ|xMρ

Xd
c,

and hence µ(|ϕ|xMρ) = 0 (since µ(Xd
c) = 0 for all d, the union of all these sets is still

contained in a zero-measure set by the fact that µ is supported), from which follows that
Mρ ° AEx¬ϕ. This contradicts Mρ ° SExϕ, hence the existence of such an M and ρ is
absurd. This shows that axiom SE is sound.

Finally, Proposition 2.12 and Remark 3.4 guarantee that the inference rules are sound.
¤

Observe that we obtain a seemingly incomplete but still useful sound calculus for
FOL+AE by dropping the axioms and rules about ∀1 and replacing axiom SE by KAE,
∀AE and AE∃.

Proposition 4.3 (Soundness within FOL+AE) The calculus composed of axioms Taut,
K∀, I∀, KAE, IAE, ∀AE and AE∃ plus inference rules MP and ∀Gen is sound with respect
to the class of FOL+AE interpretation structures.

Proof. Analogous to the previous proof, observing that the soundness of the FOL+AE
components of the calculus does not depend on the measures being supported. ¤

Proposition 4.4 (Independence of AE∃ within FOL+AE) Axiom AE∃ is not derivable
from the remaining FOL+AE axioms.

Proof. As discussed in the proof of Proposition 2.10, this axiom is equivalent to the
property µ(D) 6= 0 in the definition of structure for FOL+AE (Definition 2.5). If this re-
quirement is removed all other axioms and inference rules remain sound w.r.t. the (larger)
class of structures, which in turn does not satisfy AE∃. Hence this axiom is independent
from the others. ¤
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Proposition 4.5 (Independence of KAE within FOL+AE) Axiom KAE is not derivable
from the remaining FOL+AE axioms.

Proof. Replacing AE everywhere by ∃ in the calculus yields valid FOL formulas except
in the case of KAE, since (∃x(ϕ ⇒ ψ)) ⇒ ((∃xϕ) ⇒ (∃xψ)) does not hold, as is easily
seen by taking ψ to be ff. This means that replacing AE by ∃ in any formula that can
be derived in FOL+AE without using axiom KAE yields a valid FOL formula. Since this
does not hold for KAE itself, this axiom cannot be derived from the others. ¤

Observe that Propositions 4.4 and 4.5 still hold if we enrich FOL+AE with the unary
second-order semantic features and adopt the usual axioms K∀1, I∀1 and Comp. There-
fore, we can establish the following result.

Proposition 4.6 (Independence of SE within 2-FOL+AEs) Axiom SE is not derivable
from the remaining axioms.

Proof. Within 2-FOL+AEs we can infer AE∃ and KAE from SE, as mentioned above. ¤

Meta-theorems and rule admissibility

Let ϕ1, . . . , ϕn be a derivation from a set of hypothesis Γ. Recall that ϕi is said to depend
from the hypothesis γ ∈ Γ if: either ϕi is γ; or ϕi is obtained by applying generalization
to ϕj, which depends on γ; or ϕi is obtained by applying MP to ϕj and ϕk, and at least
one of these depends on γ.

An application of generalization to ϕ in a derivation is said to be an essential gen-
eralization over a dependent of γ if ϕ depends on γ and the variable being generalized
occurs free in γ.

Proposition 4.7 (Deduction Theorem for 2-FOL+AEs) Let Γ be a set of formulas and
ϕ, ψ be formulas. Suppose that Γ ∪ {ϕ} ` ψ and that in the derivation of ψ no essential
generalizations were made over dependents of ϕ. Then Γ ` ϕ ⇒ ψ.

Proof. The proof of the Deduction Theorem for FOL applies here, since no new infer-
ence rules were added. ¤

Corollary 4.8 Let Γ be a set of formulas and ϕ, ψ be formulas with ϕ closed. If
Γ ∪ {ϕ} ` ψ, then Γ ` ϕ ⇒ ψ.

Proof. If ϕ is closed, no essential generalizations over dependents of ϕ are possible,
hence the Deduction Theorem applies. ¤

We now turn our attention to the rule concerning the introduction of the AE quantifier.

Proposition 4.9 (Admissibility of AEGen within 2-FOL+AEs) The following rule of
generalization for the almost-everywhere quantifier is admissible.

(AEGen) from ϕ infer AExϕ

12



Proof. Suppose that ϕ1, . . . , ϕn is a derivation where ϕ occurs at step n. Then we can
proceed as follows.

n. ϕ
n + 1. ∀xϕ ∀Gen n
n + 2. (∀xϕ) ⇒ (AExϕ) ∀AE
n + 3. AExϕ MP n + 2, n + 1

¤

From this point onwards, we will use AEGen whenever helpful. Notice that, in applying
the Deduction Theorem, care must be taken to verify that no essential generalizations
over dependents of the hypothesis are implicitly made through the use of AEGen.

Useful theorems and alternative axiomatizations

As mentioned before, KAE is derivable in 2-FOL+AEs. Consider the following derivation:

1. ∀1r((AEy(r(y))) ⇒ r(x)) Hyp
2. (∀1r((AEy(r(y))) ⇒ r(x))) ⇒ ((AEy(ϕ ⇒ ψ)) ⇒ (ϕy

x ⇒ ψy
x)) I∀1

3. (AEy(ϕ ⇒ ψ)) ⇒ (ϕy
x ⇒ ψy

x) MP 1, 2
4. AEy(ϕ ⇒ ψ) Hyp
5. ϕy

x ⇒ ψy
x MP 3, 4

6. (∀1r(AEy(r(y))) ⇒ r(x)) ⇒ ((AEyϕ) ⇒ ϕy
x) I∀1

7. (AEyϕ) ⇒ ϕy
x MP 1, 6

8. AEyϕ Hyp
9. ϕy

x MP 7, 8
10. ψy

x MP 5, 9

By the Deduction Theorem we conclude that {AEy(ϕ ⇒ ψ), AEyϕ} ` (∀1r(AEy(r(y))) ⇒
r(x)) ⇒ ψy

x. Notice that axiom SE can be rewritten equivalently as

[SE′] (∀x((∀1r((AEy(r(y))) ⇒ r(x))) ⇒ ϕ)) ⇒ (AExϕ)

using de Morgan laws. We proceed towards KAE as follows:

1. (∀1r(AEy(r(y))) ⇒ r(x)) ⇒ ψy
x Hyp

2. ∀x((∀1r(AEy(r(y))) ⇒ r(x)) ⇒ ψy
x) ∀Gen 1

3. (∀x((∀1r((AEy(r(y))) ⇒ r(x))) ⇒ ψy
x)) ⇒ (AExψ) SE′

4. AExψy
x MP 2, 3

Finally, by applying MP twice and using axiom IAE we obtain KAE.
The interplay between ∀ and AE can be axiomatized in different ways within FOL+AE.

An interesting possibility is replacing AE∃ by the following formula.

(AESE) (AExϕ) ⇒ (SExϕ)

This formula is a counterpart to the FOL theorem (∀xϕ) ⇒ (∃xϕ). It is easily deriv-
able within FOL+AE, recalling that negation and significant existence are defined by
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abbreviation. The first lemma we use in the following derivation will be proved in the
next proposition (its proof does not require AE∃), while the second one is a simple FOL
theorem.

1. AExϕ Hyp
2. AEx(¬ϕ) Hyp
3. ((AExϕ) ∧ (AEx(¬ϕ))) ⇒ AEx(ϕ ∧ (¬ϕ)) Lemma
4. (AExϕ) ⇒ ((AEx(¬ϕ)) ⇒ ((AExϕ) ∧ (AEx(¬ϕ)))) Taut
5. (AEx(¬ϕ)) ⇒ ((AExϕ) ∧ (AEx(¬ϕ))) MP 4, 1
6. (AExϕ) ∧ (AEx(¬ϕ)) MP 5, 2
7. AEx(ϕ ∧ (¬ϕ)) MP 3, 6
8. (AEx(ϕ ∧ (¬ϕ))) ⇒ (∃x(ϕ ∧ (¬ϕ))) AE∃
9. ∃x(ϕ ∧ (¬ϕ)) MP 8, 7

10. (∃x(ϕ ∧ (¬ϕ))) ⇒ ff Lemma
11. ff MP 10, 9

Applying the Deduction Theorem twice yields the conclusion.
Conversely, from AESE we can derive AE∃.

1. AExϕ Hyp
2. (AExϕ) ⇒ ¬(AEx(¬ϕ)) AESE
3. ¬(AEx(¬ϕ)) MP 2, 1
4. (∀x(¬ϕ)) ⇒ (AEx(¬ϕ)) ∀AE
5. ((∀x(¬ϕ)) ⇒ (AEx(¬ϕ))) ⇒ ((¬AEx(¬ϕ)) ⇒ (¬∀x(¬ϕ))) Taut
6. (¬AEx(¬ϕ)) ⇒ ¬∀x(¬ϕ) MP 5, 4
7. ¬∀x(¬ϕ) MP 6, 3

The last formula abbreviates to ∃xϕ; the Deduction Theorem establishes AE∃.

Proposition 4.10 All the statements in Proposition 2.10 are derivable in FOL+AE.
Furthermore, the following dependencies hold.

• 8 requires KAE and ∀AE;

• 10, 11 and 12 require AE∃ and 6 (and hence also KAE and ∀AE).

5 Completeness

The completeness proof for 2-FOL+AEs follows the structure of the usual completeness
proof for FOL: we reduce the problem to showing that any consistent set of closed formulas
has a model and focus on constructing a term model for a given set of closed formulas
whose domain is the set of closed terms over a defined extension of the language. First
we show that any consistent set of formulas has a maximal consistent extension, using
the usual Lindenbaum construction. Afterwards, we add existential (Henkin) witnesses
for formulas of the form ¬∀xϕ (equivalent to ∃x¬ϕ) and ¬∀1rϕ (equivalent to ∃1r¬ϕ)
while preserving consistency. From this extended signature we build a term model, to
which we assign a measure function by looking at the syntactic extent of formulas.

14



Definition 5.1 A set Γ is said to be consistent if there is a formula ϕ such that Γ 6` ϕ.

Lemma 5.2 Suppose ϕ is closed. If Γ 6` ¬ϕ then Γ ∪ {ϕ} is consistent.

Proof. Assume that Γ∪{ϕ} is inconsistent; then Γ∪{ϕ} ` ψ for any formula ψ, hence
in particular Γ ∪ {ϕ} ` ¬ϕ. Since ϕ is closed, the corollary to the Deduction Theorem
applies and we conclude that Γ ` ϕ ⇒ ¬ϕ. But Γ ` (ϕ ⇒ ¬ϕ) ⇒ ¬ϕ, since the latter
formula is an instance of a propositional tautology. By MP it follows that Γ ` ¬ϕ, from
which our lemma follows by counter-reciprocal. ¤

This result allows us to prove completeness in the following way. To show that if
Γ |= ϕ then Γ ` ϕ, we assume that ϕ is closed and that Γ 6` ϕ; by the previous lemma,
Γ ∪ {¬ϕ} is consistent. Then we will build a model for Γ ∪ {¬ϕ}, contradicting the
assumption that Γ |= ϕ. If ϕ is not closed we simply take its universal closure ∀ϕ.

Definition 5.3 A set Γ is said to be maximal consistent if it is consistent and, for every
closed formula ϕ, either ϕ ∈ Γ or Γ ∪ {ϕ} is inconsistent.

Definition 5.4 A set Γ is exhaustive if it is consistent and, for every closed formula ϕ,
either ϕ ∈ Γ or ¬ϕ ∈ Γ.

Lemma 5.5 A set Γ is maximal consistent iff it is exhaustive.

Proof. If Γ is not consistent the result is trivial, so suppose Γ is consistent.
Assume Γ is exhaustive. Then Γ is maximal consistent: given ψ closed, either ψ ∈ Γ

or ¬ψ ∈ Γ, and in the latter case Γ ∪ {ψ} is inconsistent.
Assume Γ is not exhaustive, and suppose without loss of generality that it is deduc-

tively closed (if it were not closed, then any ψ ∈ (Γ` \ Γ) would contradict maximality
of Γ). Then there is some closed formula ϕ such that ϕ 6∈ Γ and ¬ϕ 6∈ Γ; equivalently,
since Γ is closed, ϕ 6∈ Γ and Γ 6` ¬ϕ. By Lemma 5.2, Γ∪ {ϕ} is a consistent extension of
Γ, hence Γ is not maximal consistent. ¤

Proposition 5.6 Suppose Γ is consistent. Then there is an exhaustive extension of Γ,
which we will denote by Γ.

Proof. Let ϕ0, . . . , ϕn, . . . be an enumeration of the closed formulas over Σ and consider
the following sequence of sets of formulas.

Γ0 = Γ

Γn+1 =

{
(Γn ∪ {ϕn})` if Γn 6` ¬ϕn

Γn otherwise

By Lemma 5.2, induction proves that each Γn is consistent. Take their union Γ = ∪n∈NΓn.
Then:

• Γ is consistent: otherwise there is some closed ϕ for which ϕ ∈ Γ and ¬ϕ ∈ Γ,
whence by definition of Γ there are i and j for which ϕ ∈ Γi and ¬ϕ ∈ Γj, and then
Γmax(i,j) would be inconsistent;
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• Γ is exhaustive: we already showed that Γ is consistent; furthermore, any closed ψ
is ϕn for some n, so either Γn 6` ¬ψ, from which ψ ∈ Γn+1 and therefore ψ ∈ Γ,
or Γn ` ¬ψ, from which follows (since Γn is closed) that ¬ψ ∈ Γn and therefore
¬ψ ∈ Γ.

¤

From this point onwards we fix a signature Σ0. Let {cn | n ∈ N} be a set of constants
such that no cn occurs in Σ0, {pn | n ∈ N} be a set of unary predicate symbols with
the same property, and denote by Σ+ the signature obtained by adding the cns and the
pns to Σ0. Let {ψ+

n | n ∈ N} be an enumeration of the formulas over Σ+ with one free
first-order variable and {θ+

n | n ∈ N} be an enumeration of the formulas over Σ+ with
one free second-order variable. Let yn stand for the free variable in formula ψ+

n and sn

for the free variable in formula θ+
n . Let Γ0 be consistent over Σ0.

Lemma 5.7 Let γn and δn denote the following formulas, for each n ∈ N.

γn = (¬(∀ynψ
+
n )) ⇒ ¬[ψ+

n ]yn
cn

δn = (¬(∀1snθ
+
n )) ⇒ ¬[θ+

n ]sn
pn

Consider the following sequence of sets of formulas.

Γ′0 = Γ0

Γ′2n+1 = (Γ′2n ∪ {γn})`

Γ′2n+2 =
(
Γ′2n+1 ∪ {δn}

)`

Then Γ′ = ∪n∈NΓ′n is consistent.

Proof. Suppose that Γ′ is not consistent. Then there is some n for which Γ′n is not
consistent; consider now the minimal such n. There are two cases to consider.

(i) If n = 0, then Γ0 is inconsistent, which is absurd: the usual proof for FOL that
consistent sets over a signature are consistent over a larger signature can be applied
in this setting.

(ii) Take now n > 0. The proof is very similar according to whether n is even or odd,
so suppose without loss of generality that n = 2k +1. Then Γ′2k∪{γk} ` ¬γk. Since
(γk ⇒ ¬γk) ⇒ ¬γk is an instance of a propositional tautology and γk is closed,
the corollary to the Deduction Theorem and propositional reasoning imply that
Γ′2k ` ¬γk. Hence we conclude that Γ′2k ` ¬∀ykψ

+
k and Γ′2k ` [ψ+

k ]yk
ck

. By induction on
the length of the derivation of [ψ+

k ]yk
ck

it is easy to check that Γ′2k ` [ψ+
k ]yk

z , where z is
some fresh variable not appearing in the original derivation. Applying generalization
and α-equivalence for ∀ (which is a (meta-)theorem in FOL) we conclude that
Γ′2k ` ∀ykψ

+
k , so Γ′2k is also inconsistent. This contradicts the assumption that n

was the minimal n for which Γ′n was inconsistent.

If n = 2k + 2 the reasoning is analogous replacing γ+
k by θ+

k , yk by sk and ck by pk

everywhere.
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¤

By the last result and Proposition 5.6, there is an exhaustive extension of Γ′, which
is also an exhaustive extension of Γ0 w.r.t. the signature Σ+. We denote this extension
Γ′ by Γ+. We use Γ+ to build a canonical model for Γ0 in a way that deviates little from
the standard first-order techniques.

Definition 5.8 Let Γ+ be an exhaustive set of formulas. The set HΓ+ is the set {t |
[ψ+

n ]yn
t ∈ Γ+ whenever (AEynψ

+
n ) ∈ Γ+}.

In other words, HΓ+ is the set of terms that are relevant from the point of view of AE
(“heavy” terms). This set will be relevant to define a measure on the canonical model.

Definition 5.9 The structure M+ = 〈D, D1, [[·]]+,B, µ〉 is defined as follows.

• D is the set of closed Σ+-terms.

• D1 contains all sets of the form {t | p(t) ∈ Γ+} for some predicate symbol p in Σ+.

• The interpretation of any constant or function symbol is itself.

• For any values d1, . . . , dn ∈ D, [[p(d1, . . . , dn)]]+ holds if p(d1, . . . , dn) ∈ Γ+.

• B = ℘(D).

• For A ⊆ D, µ(A) is defined as the number of heavy terms in A, that is, µ(A) =
|A ∩HΓ+|.

The structure M0 = 〈D,D1, [[·]]0,B, µ〉 is obtained by taking [[c]]0 = [[c]]+, [[f ]]0 = [[f ]]+ and
[[p]]0 = [[p]]+ for constants c, function symbols f and predicate symbols p in Σ0. Notice
that M0 is an interpretation structure for Σ0.

It is straightforward to check that M+ and M0 are well-defined structures. In particular,
µ is a supported measure.

Proposition 5.10 Let ϕ+ be a closed formula over Σ+. Then M+ ° ϕ+ iff ϕ+ ∈ Γ+.

Proof. First, observe that a simple proof by structural induction shows that [[t]]+ = t
for any closed term t. We now prove the thesis by induction on the structure of closed
formula ϕ+.

If ϕ+ is p(t1, . . . , tn) or r(d), then the thesis holds by definition of M+.
If ϕ+ is ¬ψ+, then M+ ° ϕ+ iff M+ 6° ψ+ (by definition of satisfaction) iff ψ+ 6∈ Γ+

(by induction hypothesis) iff ¬ψ+ ∈ Γ+ (since Γ+ is exhaustive).
If ϕ+ is ψ+ ⇒ γ+, then M+ ° ϕ+ iff (1) M+ 6° ψ+ or (2) M+ ° γ+. If (1) holds then

ψ+ 6∈ Γ+ (by induction hypothesis) hence ¬ψ+ ∈ Γ+ (since Γ+ is exhaustive) and thus
ψ+ ⇒ γ+ ∈ Γ+ (since Γ+ is closed). If (2) holds then γ+ ∈ Γ+ (by induction hypothesis)
and again ψ+ ⇒ γ+ ∈ Γ+ (since Γ+ is closed). If neither (1) nor (2) holds then ψ+ ∈ Γ+

and γ+ 6∈ Γ+ (by induction hypothesis) hence ¬γ+ ∈ Γ+ (since Γ+ is exhaustive) and thus
¬(ψ+ ⇒ γ+) ∈ Γ+ (since Γ+ is closed) whence ψ+ ⇒ γ+ 6∈ Γ+ (since Γ+ is consistent).

If ϕ+ is ∀xψ+ then there are two cases. If ψ+ is itself closed the result follows trivially
from the induction hypothesis. Otherwise, ψ+ has one free variable and hence ϕ+ is
(α-equivalent to) ∀ynψ

+
n for some n. There are two cases to consider.
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• Suppose that M+ 6° ∀ynψ
+
n . Then M+ 6° [ψ+

n ]yn

d for some d ∈ D. By definition
of D, d must be a closed term over Σ+, so by induction hypothesis [ψ+

n ]yn

d 6∈ Γ+.
By exhaustiveness of Γ+ it follows that ¬[ψ+

n ]yn

d ∈ Γ+ and therefore Γ+ ` ¬[ψ+
n ]yn

d ;
but Γ+ ` (∀ynψ

+
n ) ⇒ [ψ+

n ]yn

d , hence by propositional reasoning it follows that Γ+ `
¬(∀ynψ+

n ). Since Γ+ is consistent we conclude that (∀ynψ+
n ) 6∈ Γ+.

• Suppose now that ∀ynψ
+
n 6∈ Γ+. By exhaustiveness of Γ+, it follows that ¬(∀ynψ

+
n ) ∈

Γ+. By construction, (¬(∀ynψ+
n ) ⇒ ¬[ψ+

n ]yn
cn

) ∈ Γ+, hence by MP we conclude that
¬[ψ+

n ]yn
cn
∈ Γ+. But Γ+ is consistent, hence [ψ+

n ]yn
cn
6∈ Γ+ and therefore M+ 6° [ψ+

n ]yn
cn

by induction hypothesis, hence M+ 6° ∀ynψ+
n .

The case when ϕ+ is ∀1xψ+ is analogous to the previous.
Finally suppose that ϕ+ is AExψ+. Again the case where ψ+ is closed follows trivially

from the induction hypothesis. Otherwise, ψ+ has one free variable and hence ϕ+ is again
(α-equivalent to) AEynψ+

n for some n, using axiom IAE. There are two cases to consider.

• Suppose that M+ 6° AEynψ+
n . Then

(|ψ+
n |yn

M+

)c ⊆ B implies µ(B) > 0. Since in this

structure all sets are measurable, this implies that in particular µ(
(|ψ+

n |yn

M+

)c
) > 0,

hence there is some heavy term t for which M+ 6° [ψ+
n ]yn

t . By induction hypothesis
[ψ+

n ]yn
t 6∈ Γ+. By exhaustiveness of Γ+ it follows that ¬[ψ+

n ]yn
t ∈ Γ+. But by

definition of heavy term this implies that (AEynψ
+
n ) 6∈ Γ+.

• Suppose now that AEynψ+
n 6∈ Γ+. By exhaustiveness of Γ+, it follows that ¬(AEynψ

+
n )

is in Γ+ and, therefore, so is (SEyn¬ψ+
n ). By axiom SE and exhaustiveness, also

∃yn((¬ψ+
n ) ∧ ∀1r((AEy(r(y))) ⇒ r(yn))) ∈ Γ+. Since the formula inside the exis-

tential quantifier has one free first-order variable, it must be ψk for some k, and
hence we conclude that [(¬ψ+

n ) ∧ ∀1r((AEy(r(y))) ⇒ r(yn))]yn
ck
∈ Γ+, whence from

exhaustiveness [¬ψ+
n ]yn

ck
∈ Γ+ and [∀1r((AEy(r(y))) ⇒ r(yn))]yn

ck
∈ Γ+. By induc-

tion hypothesis M+ ° [¬ψ+
n ]yn

ck
; again by exhaustiveness, if AEyjψ

+
j ∈ Γ+ then also

[ψ+
j ]

yj
ck ∈ Γ+, hence ck is heavy. Then µ({ck}) = 1 and {ck} ⊆

(|ψ+
n |yn

M+

)c
, hence by

monotonicity of measures we conclude that M+ 6|= AEynψ+
n .

This concludes the proof. ¤

Corollary 5.11 Let ϕ0 be a closed formula over Σ0. Then M0 ° ϕ0 iff ϕ0 ∈ Γ0.

Proof. A proof by induction on the construction of Γ+ shows that, for ϕ0 over Σ0, it
is the case that ϕ0 ∈ Γ0 iff ϕ0 ∈ Γ+, since Γ0 is maximal consistent over Σ0. By the
previous proposition, the latter is equivalent to M+ ° ϕ0. A simple proof by induction
again shows that this happens iff M0 ° ϕ0. ¤

Proposition 5.12 Γ0 has a model.

Proof. By Corollary 5.11 the canonical model M0 (Definition 5.9) is a model of Γ0. ¤

The construction shown above leads to a model with a counting measure. Thus,
since the set of heavy constants may be denumerable, the measure of the domain can be
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infinite. However, it is straightforward to adapt the construction in order to get a finite
measure: enumerating HΓ+ and assigning µ(tk) = 1/2k+1 will yield a probability measure
if this set is infinite.

Theorem 5.13 (Completeness) The deductive system for 2-FOL+AEs is complete w.r.t.
the class of supported interpretation structures.

Proof. The proof is by counter-reciprocal. Let Γ be a set of formulas and ϕ be a
formula, and suppose that Γ 6` ϕ. Then Γ 6` ∀ϕ, where ∀ϕ denotes the universal closure
of ϕ. By Lemma 5.2, Γ ∪ {¬∀ϕ} is consistent. By Proposition 5.12 there is a model of
Γ∪{¬∀ϕ}; in particular, it is a model of Γ that does not satisfy ∀ϕ and therefore neither
does it satisfy ϕ. Hence Γ 6|= ϕ. ¤

Corollary 5.14 (Compactness) The logic 2-FOL+AEs is compact, i.e. if Γ |= ϕ then
there is a finite subset Ψ ⊆ Γ such that Ψ |= ϕ.

Proof. Assume that Γ |= ϕ. By completeness it follows that Γ ` ϕ. Since derivations
are finite, in any given derivation of ϕ from Γ only a finite number of formulas in Γ can
be used. Pick a derivation, and take Ψ to be the set of these formulas. Then Ψ ` ϕ, and
by soundness Ψ |= ϕ. ¤

Corollary 5.15 (Semi-decidability) The logics FOL+AE and 2-FOL+AEs are both se-
mi-decidable, that is, the set of valid formulas is recursively enumerable but not recursive.

Proof. In both logics, the set of all derivations is recursively enumerable, since the set
of sequences of formulas is recursively enumerable and the problem of verifying whether
a given sequence is a derivation is recursive. This yields a recursive enumeration of the
set of valid formulas: they are the last formulas in derivations.

On the other hand, if this set were recursive then FOL would be decidable, since both
logics have been shown to be conservative extensions of FOL (Propositions 2.6 and 3.5). ¤

We can now explain why we need the modicum of second-order features. Note that it
may be the case that Γ+ contains the formula SExϕ and a countable collection of formulas
¬SEy1ϕ1,¬SEy2ϕ2, . . . such that

[ϕ]xt ∈ Γ+ implies [ϕj]
yj

t ∈ Γ+ for some j, for all closed terms t.

In this case M+ would be such that

• µ(|ϕ|xM+) > 0

• µ(|ϕi|yi

M+) = 0, for i = 1, . . .

• |ϕ|xM+ ⊆
⋃

i=1,... |ϕi|yi

M+
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and so µ can not be a measure function. So it should always be possible to construct an
exhaustive set Ψ from a consistent set such that: if SExϕ is in Γ+ then for any countable
collection of formulas AEy1¬ϕ1, . . . in Γ+ there is a closed term t such that [ϕ]xt ∈ Γ+ and
[¬ϕj]

yj

t ∈ Γ+ for all j.
A sufficient condition general enough for the purposes of this work and in the realms

of 2-sorted first-order logic would be: if SExϕ is in Γ+ then there is a closed term t with
[ϕ]xt ∈ Γ+ and for all formulas AEy1ϕ1, . . . in Γ+ it holds that [ϕj]

yj

t ∈ Γ+ for all j. That
is the reason why the axiom

(SExϕ) ⇒ ∃x(ϕ ∧ ∀1r((AEy(r(y))) ⇒ r(x)))

was added to our axiomatics. Axiom SE states that, whenever ϕ holds significantly, there
is at least a point where it holds that is not in any set of zero measure. This is equivalent
to the semantic requirement that the measure be supported.

Discrete interpretation structures

Discrete measure spaces constitute an important subclass of the class of measure spaces
(see [8]). We turn our attention to the relationship between the axiomatization and the
subclass of interpretation structures over a discrete measure space.

Definition 5.16 A measure space 〈D,B, µ〉 is discrete if there are countable sets {di |
i ∈ N} ⊆ D and {ωi | i ∈ N} ⊆ R+ such that µ(B) =

∑
di∈A ωi for any B ∈ B.

Observe that the definition of discrete measure space does not imply that {di | i ∈
N} ∈ B. We introduce discrete measure spaces with a support.

Definition 5.17 A discrete measure space 〈D,B, µ〉 with countable sets {di | i ∈ N} ⊆
D and {ωi | i ∈ N} ⊆ R+ is with a support if {di | i ∈ N} ∈ B.

Discrete with a support measure spaces can be related to supported measure spaces.

Proposition 5.18 A discrete measure space with a support is a supported measure
space.

Proof. Let 〈D,B, µ〉 be a discrete measure space with a support with {di | i ∈ N}
as support. Let {Bi}i∈I be a family of sets in B such that µ(Bi) = 0 for every i ∈ I.
Observe that D \ {di | i ∈ N} ∈ B. We show by contradiction that Bi ⊆ D \ {di | i ∈ N}.
Suppose Bi 6⊆ D \ {di | i ∈ N}. Then there is k ∈ N such that dk ∈ Bi. But this
contradicts the hypothesis that µ(Bi) = 0. Hence

⋃
i∈I Bi ⊆ D \ {di | i ∈ N}. Moreover,

µ(D \ {di | i ∈ N}) = 0 as we want to show. ¤

Definition 5.19 A discrete interpretation structure with a support is an interpretation
structure for 2-FOL+AEs with a countable domain and the underlying measure space is
discrete with a support.

Below we prove a new completeness result.
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Proposition 5.20 The axiomatization for 2-FOL+AEs is sound and complete w.r.t. the
class of discrete interpretation structures with a support for 2-FOL+AEs.

Proof. Suppose that `2-FOL+AEs ϕ. Then, by Theorem 4.2 for soundness of 2-FOL+AEs,
ϕ is satisfied by every supported interpretation structure. Taking into account Proposi-
tion 5.18, we conclude that ϕ is satisfied by every discrete interpretation structure with
a support.

Assume that 6`2-FOL+AEs ϕ. Then ϕ is not a valid formula over the class of supported
interpretation structures, using Theorem 5.13 for completeness of 2-FOL+AEs. In partic-
ular, the canonical model M+ for ϕ (see Definition 5.9) does not satisfy ϕ. So ϕ is not
valid over the class of discrete interpretation structures with a support since the canonical
model belongs to this class. ¤

6 First-order setting revisited

We may ask if there is an encoding of our reasoning framework in 2-FOL+AEs in the first-
order setting. This encoding involves only the fragment of first-order formulas extended
with the AE quantifier. We are able to show that theoremhood in 2-FOL+AEs restricted
to this fragment is equivalent to validity over the class of first-order structures with a
countable domain for the first-order language enriched with a special unary predicate Z
denoted here by FOLc + Z (the c stands for the countable domain). In order to prove
this we introduce an intermediary logic FOLc +AEd and show that validity in this logic is
equivalent to validity in FOLc + Z and theoremhood in 2-FOL+AEs. When restricted to
closed formulas, theoremhood in 2-FOL+AEs is equivalent to validity in FOL + Z a logic
similar to FOLc + Z but with no restriction on the cardinality of the domains. Similarly
FOL+AEd is introduced for proving the result about closed formulas. We start by defining
the logic FOLc + Z in a rigorous way.

Definition 6.1 A signature for FOLc + Z is a first-order signature such that Z ∈ P1.
A interpretation structure for FOLc + Z is a first-order interpretation structure 〈D, [[·]]〉
such that D is a countable set and [[Z]]c 6= ∅.

The intended meaning is that whenever predicate Z holds in x then {x} has measure
zero. We call FOL + Z the logic defined as FOLc + Z but with no cardinality restriction
on the models.

We are ready to define the translation map from the language of first-order logic with
the AE quantifier to the language of FOLc + Z.

Definition 6.2 A translation τ is a map from the language of first-order logic with the
AE quantifier to the language of FOLc + Z inductively defined as follows:

• τ(p(t)) = p(t);

• τ(ff) = ff;

• τ(ϕ1 ⇒ ϕ2) = τ(ϕ1) ⇒ τ(ϕ2);
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• τ(∀xϕ) = ∀xτ(ϕ);

• τ(AExϕ) = ∀x(¬Z(x)) ⇒ τ(ϕ).

As explained above we now introduce the intermediary logic FOLc + AEd.

Definition 6.3 A signature for FOLc + AEd is a signature for FOL+AE. The class
of interpretation structures for FOLc + AEd is composed by the discrete interpretation
structures with a support for 2-FOL+AEs discarding the second-order features.

The restriction to discrete measure spaces with a support comes from the fact that it is
important that D\{di | i ∈ N} be a measurable set (see the proof of Proposition 6.7). The
restriction of considering countable domains comes from the fact that we want to relate
these structures with the structures defined above for FOLc + Z which have countable
domains. We denote by FOL+AEd the logic defined as FOLc+AEd but with no cardinality
restriction on the models.

Our main objective now is to relate satisfaction for FOLc + Z and FOLc + AEd. So we
need to be able to relate their interpretation structures. For this we should be able to
extract a measure from an interpretation structure for FOLc + Z. The definition of such
a measure relies on the interpretation of the predicate Z. The restriction [[Z]]c 6= ∅ in the
Definition 6.1 guarantees that there is always a singleton set with a non-zero measure,
which is important for relating the structures of the two logics.

Lemma 6.4 Let 〈D, [[·]]〉 be an interpretation structure for FOLc + Z. Then the induced
structure η(〈D, [[·]]〉) = 〈D, [[·]],B, µ〉 where

• B = ℘D

• µ : B → [0,∞] such that µ(B) = #(B ∩ [[Z]]c)

is an interpretation structure for FOLc + AEd.

Proof. It is straightforward to verify that µ is a measure. Note that µ(D) 6= 0 since
D ∩ [[Z]]c = [[Z]]c and [[Z]]c 6= ∅. It remains to see that 〈D,B, µ〉 is a discrete measure
space with a support. Take {di | i ∈ N} as [[Z]]c. Observe that [[Z]]c is a countable set
and that the support is [[Z]]c ∈ B. ¤

Lemma 6.5 Let 〈D, [[·]],B, µ〉 be an interpretation structure for FOL + AEd with support
{di | i ∈ N}. Then the induced structure

ζ(〈D, [[·]],B, µ〉) = 〈D, [[·]]′〉
where [[·]]′ is the extension of [[·]] such that [[Z]]′ = D \ {di | i ∈ N} is an interpretation for
FOL + Z.

Proof. The proof is straightforward. We just observe that [[Z]]′c is non-empty since it
is {di | i ∈ N}. ¤

We now relate satisfaction of a translated formula by a structure for FOLc + Z with
satisfaction of the formula by the induced structure.
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Lemma 6.6 Let I be an interpretation structure for FOLc +Z, ϕ a formula for first-order
logic with the AE quantifier and ρ an assignment over I. Then

η(I), ρ °FOLc+AEd ϕ iff I, ρ °FOLc+Z τ(ϕ).

Proof. By induction on the structure of ϕ. The base cases are straightforward.

Let ϕ be AExψ. Assume that η(I), ρ °FOLc+AEd AExψ. Then, by definition, there is
B ∈ ℘D such that (|ψ|xη(I)ρ)

c ⊆ B and µ(B) = 0. Let ρ′ be a x-equivalent assignment

to ρ. Assume that I, ρ′ °FOLc+Z ¬Z(x). Then ρ′(x) 6∈ B. So ρ′(x) ∈ |ψ|xη(I)ρ′ . That is,

η(I), ρ′ °FOLc+AEd ψ. Hence, by the induction hypothesis, I, ρ′ °FOLc+Z τ(ψ). Therefore,
I, ρ °FOLc+Z τ(ϕ).
Assume that I, ρ°FOLc+Z τ(ϕ). Let ρ′ be a ρ x-equivalent assignment. Then (|τ(ψ)|xI,ρ′)

c ⊆
[[Z]]I . Moreover I, ρ′xd °FOLc+Z τ(ψ) iff η(I), ρ′xd °FOLc+AEd ψ by induction hypothesis
for any d ∈ D. So {d : I, ρ′xd °FOLc+Z τ(ψ)} = {d : η(I), ρ′xd °FOLc+AEd ψ}. Since
{d : η(I), ρ′xd °FOLc+AEd ψ} = {d : η(I), ρx

d °FOLc+AEd ψ} then |τ(ψ)|xI,ρ′ = |ψ|xη(I),ρ. Hence

(|ψ|xη(I),ρ)
c ⊆ [[Z]]η(I). Note that µ([[Z]]η(I)) = 0. So η(I), ρ °FOLc+AEd ϕ.

Let ϕ be ψ1 ⇒ ψ2. Straightforward. ¤

A similar relationship is established for the satisfaction of a formula by a structure
for FOL + AEd.

Lemma 6.7 Let M be an interpretation structure for FOL + AEd, ϕ a formula for first-
order logic with the AE quantifier and ρ an assignment over M. Then

M, ρ °FOL+AEd ϕ iff ζ(M), ρ °FOL+Z τ(ϕ).

Proof. By induction on the structure of ϕ. The base cases are straightforward.

Let ϕ be AExψ. Assume that M, ρ °FOL+AEd AExψ. Let ρ′ be a ρ x-equivalent assignment.
Assume that ζ(M), ρ′ °FOL+Z ¬Z(x). Hence ρ′(x) ∈ ([[Z]]ζ(M))

c. Let B ∈ B be such that
µ(B) = 0 and (|ψ|xM,ρ)

c ⊆ B. Then B ⊆ [[Z]]ζ(M) and so (|ψ|xM,ρ)
c ⊆ [[Z]]ζ(M). Note that

{d : M, ρx
d °FOL+AEd ψ} = {d : ζ(M), ρx

d °FOL+Z τ(ψ)} by induction hypothesis. There-
fore ([[Z]]ζ(M))

c ⊆ |τ(ψ)|xζ(M),ρ and so ρ′(x) ∈ |τ(ψ)|xζ(M),ρ. Hence ζ(M), ρx
ρ′(x) °FOL+Z τ(ψ).

That is ζ(M), ρ′ °FOL+Z τ(ψ).

Assume that ζ(M), ρ °FOL+Z τ(ϕ). Then ([[Z]]ζ(M))
c ⊆ |τ(ψ)|xζ(M),ρ. So (|τ(ψ)|xζ(M),ρ)

c ⊆
[[Z]]ζ(M). Note that {d : ζ(M), ρx

d °FOL+Z τ(ψ)} = {d : M, ρx
d °FOL+AEd ψ} by induc-

tion hypothesis. Therefore (|ψ|xM,ρ)
c ⊆ [[Z]]ζ(M). Note that [[Z]]ζ(M) ∈ B since it is the

complement of the support and the support is in B. Hence µ([[Z]]ζ(M)) = 0. Therefore
M, ρ °FOL+AEd AExψ as we wanted to show.

Let ϕ be ψ1 ⇒ ψ2. Straightforward. ¤

We now show that validity in FOLc + AEd of a formula is equivalent to the validity in
FOLc + Z of its translation.

Proposition 6.8 Let ϕ be a formula for first-order logic with the AE quantifier. Then

²FOLc+AEd ϕ iff ²FOLc+Z τ(ϕ).
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Proof. Assume that ²FOLc+AEd ϕ. Let I be a FOLc + Z interpretation structure.
Consider the induced structure η(I). Then η(I) °FOLc+AEd ϕ and so, by Lemma 6.6,
I °FOLc+Z τ(ϕ).

Assume that ²FOLc+Z τ(ϕ). Let M be a discrete interpretation structure with a support
for FOLc + AEd. Consider ζ(M). Observe that ζ(M) has a countable domain. Then
ζ(M) °FOLc+Z τ(ϕ) and so ζ(M) °FOL+Z τ(ϕ). Hence, by Lemma 6.7, M °FOL+AEd τ(ϕ)
and so M °FOLc+AEd τ(ϕ). ¤

We now prove a similar for closed formulas between FOL + Z and FOL + AEd.

Proposition 6.9 Let ϕ be a closed formula for first-order logic with the AE quantifier.
Then

²FOL+AEd ϕ iff ²FOL+Z τ(ϕ).

Proof. Assume that ²FOL+AEd ϕ. Let I be a FOL + Z interpretation structure. By the
Löwenheim-Skolem theorem there is an elementary substructure I ′ of I with a count-
able domain. Note that I ′ is an interpretation structure for FOLc + Z and ²FOLc+AEd ϕ.
Consider the induced structure η(I ′). Then η(I ′) °FOLc+AEd ϕ and so, by Lemma 6.6,
I ′ °FOLc+Z τ(ϕ). So I °FOL+Z τ(ϕ) using the fact that τ(ϕ) is a closed formula and I ′ is
an elementary substructure of I.

The other implication is straightforward. ¤

It is straightforward to show that validity in FOLc + AEd is equivalent to validity over
the class of interpretation structures for 2-FOL+AEs but with discrete measure spaces
with a support.

Proposition 6.10 Let ϕ be a first-order logic with the AE quantifier formula. Then
Then validity of ϕ in FOLc + AEd is equivalent to validity over interpretation structures
for 2-FOL+AEs but with discrete measure spaces with a support for formulas of first-order
logic with the AE quantifier.

We can now establish the main result relating theoremhood in 2-FOL+AEs and validity
in FOLc + Z.

Theorem 6.11 Let ϕ be a first-order logic with the AE quantifier formula. Then

²FOLc+Z τ(ϕ) iff `2-FOL+AEs ϕ.

Proof. We have ²FOLc+Z τ(ϕ) iff ²FOLc+AEd ϕ (according to Proposition 6.8) iff ϕ is
valid with respect to interpretation structures for 2-FOL+AEs but with discrete measure
spaces with a support (see Proposition 6.10) iff ²2-FOL+AEs ϕ (using Proposition 5.20). ¤

We can state the main result relating theoremhood in 2-FOL+AEs and validity in
FOL + Z for closed formulas proved in a similar way.

Theorem 6.12 Let ϕ be a closed first-order logic with the AE quantifier formula. Then

²FOL+Z τ(ϕ) iff `2-FOL+AEs ϕ.
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It is worthwhile to mention that the relationship established above reminds the rela-
tionship between some modal logics and first-order logics (the so called correspondence
theory [9]).

7 Concluding remarks

Motivated by current concerns in the logics of security, we enriched FOL with a measure-
theoretic “for almost all” quantifier AE. This quantifier turned out to be, according to the
taxonomy in [11], a modulated quantifier, a “most” quantifier, and a “ubiquity” quantifier,
but, interestingly, not an “almost all” quantifier. Nevertheless, we feel justified to say
that AE is an “almost everywhere” quantifier given its measure-theoretic semantics. We
established a sound calculus for FOL+AE. By slightly restricting the class of structures
and adding restricted second-order quantification to the language, we defined a new logic
2-FOL+AEs endowed with a complete axiomatization. The proof of completeness uses a
revamped version of the Lindenbaum-Henkin technique. The completeness theorem works
out also for the special case of discrete measure spaces with a support. The restriction to
these spaces is not an issue because they arise from executing cryptographic protocols.

Towards further development of the idea of enriching FOL to obtain a full-fledged
kleistic logic for applications in security, we now consider some variants of 2-FOL+AEs

and discuss how their study might be pursued.
A very simple generalization is obtained by replacing in the definition of satisfaction

the clause for Mρ ° AExϕ by the following.

Mρ ° AExϕ if there is B ∈ B such that
(|ϕ|xMρ

)c ⊆ B and µ(B) < ε

(In measure theory, this is sometimes referred to as “the interior measure of
(|ϕ|xMρ

)c
is

at least ε”.)
The motivation for this can be seen as relaxing the condition for a set (of values that

do not satisfy a given formula) to be considered insignificant. Instead of requiring that
it have zero measure, we only insist that its measure be smaller than a given quantity ε
(but the logic remains qualitative).

Unfortunately, this small change makes the resulting logic non-normal, since the class
of sets whose measure is bounded by ε is no longer necessarily closed under union. Fur-
thermore, if the total measure of the domain is finite (for example, if 〈D,B, µ〉 is a
probability space) other properties like (AExϕ) ∨ (AEx¬ϕ) may hold instead.

In the case where no restrictions are placed on µ(D) other than it be positive, there
is hope that a complete axiomatization can be found for which a similar proof technique
will establish completeness. Unfortunately, if µ(D) is finite the technique itself is not a
priori applicable: there will be no way to have more than bµ(D)/εc significant existential
witnesses in the canonical model, since they form disjoint measurable sets; and it is easy
to produce a sequence of formulas that requires an infinite number of existential witnesses
from just one unary predicate symbol p as shown by the following sequence ϕ1, . . . , ϕn, . . .,
where ti1 , . . . , tin , . . . are heavy terms in the canonical model and ik is such that ϕk is
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¬(AExψ+
ik

).

ϕ1 ≡ SExp(x)

ϕ2 ≡ SEx(p(x) ∧ ¬p(ti1))
...

ϕn+1 ≡ SEx(p(x) ∧ ¬p(ti1) ∧ . . . ∧ ¬p(tin))
...

With the standard semantics, the set {ϕn | n ∈ N} is consistent, and its canonical model
will require an infinite number of witnesses.

In this context, another generalization that arises naturally is allowing different modu-
lated quantifiers to be interpreted by constraints involving different values of ε. The most
interesting scenario is when µ(D) is finite; without loss of generality, we may suppose
that µ(D) = 1, so that 〈D,B, µ〉 is in fact a probability space. A possible setting that
still keeps the language countable is to allow a countable set of modulated quantifiers
AEε, with ε ∈ Q, satisfying properties like the following.

(AEεxϕ) ⇒ (AEδxϕ) if ε ≤ δ
((AEεxϕ) ∧ (AEδxϕ)) ⇒ (AEε+δxϕ)

¬(SE1+εxϕ)

For security applications, this line of research will lead naturally to a “securely every-
where” quantifier with the following intended meaning: Sxϕ holds iff the probability of
an attacker falsifying ϕ by an appropriate choice of the value of x is negligible. The rela-
tionship between S and AEε would require an inference rule, given the implicit universal
quantification over ε in one direction.

Notice that this variant yields a logic that includes quantitative features, yet still has
a qualitative flavor and retains the usual FOL terms. The study of such a kleistic logic
will be the object of future research.

In a different direction, it seems worthwhile to study the relationship between the
proposed model-theoretic quantifiers and those based on topology-theoretic semantics,
such as a “densely everywhere” quantifier or the “ubiquity” quantifier in [11].

The application of the logic in zero-knowledge protocols (introduced in [15]) is also
worthwhile to explore. Zero-knowledge protocols are used as building blocks of more
complex cryptographic protocols. They are interactive protocols having two parties: the
verifier and the prover. The prover wants to convince the verifier that he knows a secret
without conveying any further information. In order to prove that a protocol is zero-
knowledge three properties have to be shown:

• soundness: the probability that the verifier is convinced, if the prover really knows
the secret, should be greater than 2

3
;

• completeness: for any prover, the probability that the verifier is convinced, when
the prover does not know the secret, should be less than 1

3
;

• zero-knowledge: for any verifier there exists a probabilistic polynomial-time algo-
rithm such that the probability that the verifier is convinced is arbitrarily closed to
the probability of acceptance by the algorithm that the prover knows the secret.
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When the protocol is sound the probability that the verifier is convinced can be made
arbitrarily closed to 1 by repeating the protocol (what is called the amplification of the
probability [28]). The same can be said about completeness and zero-knowledge with the
obvious adaptations.

We now give some hints on how the logic presented in this paper can be used for
zero-knowledge protocols. Assume that ϕ is the formula corresponding to the fact that
the prover knows the secret and ψ is the formula expressing that the verifier is convinced.
The soundness property above can be expressed by

ϕ ⇒ (AExψ).

The completeness property is related to the formula

(¬ϕ) ⇒ AEx(¬ψ).

Letting γ be the formula expressing that the probabilistic polynomial-time algorithm is
convinced then the formula

AEx(γ ⇔ ψ)

corresponds to the zero-knowledge property.
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