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Abstract

A graph-theoretic account of fibring of logics is developed, capitalizing
on the interleaving characteristics of fibring at the linguistic, semantic and
proof levels. Fibring of two signatures is seen as an m-graph where the
nodes and the m-edges include the sorts and the constructors of the signa-
tures at hand. Fibring of two models is an m-graph where the nodes and
the m-edges are the values and the operations in the models, respectively.
Fibring of two deductive systems is an m-graph whose nodes are language
expressions and the m-edges represent the inference rules of the two origi-
nal systems. The sobriety of the approach is confirmed by proving that all
the fibring notions are universal constructions. This graph-theoretic view
is general enough to accommodate very different fibrings of propositional
based logics encompassing logics with non-deterministic semantics, logics
with an algebraic semantics, logics with partial semantics, and substruc-
tural logics, among others. Soundness and weak completeness are proved
to be preserved under very general conditions. Strong completeness is also
shown to be preserved under tighter conditions. In this setting, the col-
lapsing problem appearing in several combinations of logic systems can be
avoided.

1 Introduction

The activity of combining logics offers an important mechanism for modularity,
which is an essential ingredient in many applications where logic plays a role.
The significance of the combination can be accessed by the preservation of
properties that the original logics may have. For instance, it is important to
know whether the logic resulting from the combination of complete logics is still
complete. Proving preservation results constitute a theoretical challenge and,
in many cases, they are obtained only by imposing conditions on the original
logics. It is interesting to observe that combination mechanisms start to play an
essential role in contemporary applications, like argumentation theory, spatial
and temporal reasoning and information security [14, 6, 15]. In some of these
topics, the logical context has to be set-up appropriately. It is also worthwhile to
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refer that several combination mechanisms have been developed in the context
of modal logic. Examples are fusion [9] and product [11, 12]. Interestingly, even
in the specific case of fusion, preservation results are not so easy to prove as
can be seen in [9].

Fibring is a very general mechanism for combining logics that was proposed
in [8]. At the language level fibring is an interleaving in the sense that the
constructors of the two logics can be interleaved in the language expressions.
The same applies to deduction. In a fibring deduction, we can interleave the
application of inference rules of the original logics [19, 4]. When developing
techniques for fibring one of the main objectives is not imposing too much
requirements on the logics being considered. For instance, it would be very
interesting to be able to fiber modal logic with a paraconsistent logic getting a
new logic suitable for paraconsistent modal reasoning.

A starting point for defining fibring is to set-up the notion of logic sys-
tem [1]. That is, it has to be specified, in a general way, what is a signature, an
interpretation structure and a deductive system, so that a large class of logics
can be expressed in this context. Herein, we follow [20], where signatures, inter-
pretation structures and deductive systems are defined based on the concept of
multi-graph (m-graph). This graph-theoretic approach goes very well with the
interleaving aspects of fibring and offers a very general, intuitive and uniform
way of looking into fibring of logic systems and its components.

An interesting aspect of graph-theoretic fibring is that, semantically, it is
explicitly defined for each pair of interpretation structures. That is, each in-
terpretation structure in the fibring results from a clear and understandable
construction applied to an interpretation structure of each component. This
counts as a positive aspect per se, but also since it makes possible to have in
the fibring a representative of all the models of the original logics (this feature
was not present for instance in [23]). It is also worthwhile to mention that
fibring is seen as the same universal construction at all levels: at the signa-
ture level, at the interpretation structure level and at the deduction level. This
means that the logic system resulting from fibring is somehow minimal among
the universe of logic systems considered.

Preservation of soundness and weak completeness are proved herein under
very general conditions, in contrast with strong completeness that is shown to
be preserved but under tighter conditions. These preservation results allow us to
conclude that the graph-theoretic semantics we propose for fibring goes hand
in hand with the usual fibred deduction. It is worthwhile to mention that,
to our knowledge, other approaches to fibring were not successful in proving
preservation of weak completeness.

The collapsing problem appearing in several combinations of logic systems
can be avoided in this graph-theoretic approach to fibring. Namely, the well
known collapse when combining classical propositional logic with intuitionistic
propositional logics does not appear [7, 21, 3]. This happens since in our setting
the fibred semantics is in a sense an exhaustive interleaving of the semantics of
the components, and so the characteristics of the semantics of the components
are present in the fibring.

The structure of the paper is as follows. In Section 2, the graph-theoretic
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fibring of signatures is defined. Section 3 is dedicated to fibring of interpretation
structures, and Section 4 concentrates on fibring of deductive systems. These
sections start with a motivating example illustrating the main notions to be
introduced in the section. Fibring is then defined and illustrated. Afterwards
a universal perspective of fibring is given, showing that the constructions are
minimal. Finally, the motivating example is revisited on the light of the notions
introduced. In Section 5, fibring of logic systems is defined by putting together
signatures, interpretation systems and deductive systems. In Section 6, we dis-
cuss preservation of soundness. Finally, in Section 7, we investigate preservation
of both weak and strong completeness. Throughout the paper we use the fib-
ring of classical and intuitionist logics as the running example. We assume a
very moderate knowledge of category theory (the interested reader can consult
[16]).

2 Fibring signatures

The motivation is that a formula over the signature resulting from the fibring
of two signatures is in some sense a path resulting from the interleaving of
the constructors in both signatures. For instance, the path ¬i⊃c〈qi, qc〉 in
Figure 1 corresponds to the formula ¬i(qi ⊃c qc) over the signature resulting

♦
qi // π

>>>>>>>>

⊃c // π
¬i // π

♦
qc // π

��������

Figure 1: Formula ¬i(qi ⊃c qc) as a path.

from the fibring of the signature for classical propositional logic including the
binary constructor ⊃c and the propositional symbol qc, with the signature for
intuitionistic propositional logic including the unary constructor ¬i and the
propositional symbol qi.

Putting signatures together

By a multi-graph (in short a m-graph) we mean a tuple

G = (V,E, src, trg)

where V is a set (of vertexes or nodes), E is a set (of m-edges), and src : E → V +

and trg : E → V are maps. A language signature or, simply, a signature is a
tuple

Σ = (G, π, ♦)
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where G is a m-graph, and π and ♦ are in V . Nodes in a signature play the
role of language sorts. Node π is the propositions sort (the sort of schema for-
mulas), and node ♦ is the concrete sort, used as the source sort of propositional
symbols. The m-edges play the role of constructors for building expressions of
the available sorts.

Example 2.1 Let Π be a set of propositional symbols. The classical propo-
sitional signature ΣΠ is a m-graph G with sorts π and ♦ and the following
m-edges:

• q : ♦→ π for each q in Π;

• ¬ : π → π;

• ⊃ : ππ → π.

The m-edges ¬ and ⊃ represent the connectives negation and implication, re-
spectively. The m-edge q represents a propositional symbol q. ∇

We now describe the signature used for intuitionistic propositional logic.

Example 2.2 Let Π be a set of propositional symbols. The intuitionistic
propositional signature with conjunction and disjunction Σ∧,∨Π is a m-graph ob-
tained from ΣΠ by adding the m-edges

• ∧,∨ : ππ → π

for representing conjunction ∧ and disjunction ∨. ∇

The signature resulting from the fibring of two signatures can now be de-
fined. We start by assuming that both m-graphs underlying each signature have
the same nodes. That is, they share the same sorts. The fibring of signatures
Σ1 and Σ2 with the same set V of nodes is the triple

Σ1 ] Σ2 = ((V,E, src, trg), π, ♦)

where

• E is the disjoint union of E1 and E2 with injections ie1 : E1 → E and
ie2 : E2 → E, respectively;

• src ◦ ie1 = src1 and src ◦ ie2 = src2, and similarly for trg.

Example 2.3 The fibring
ΣΠ ] Σ∧,∨Π

of the signature ΣΠ, described in Example 2.1, with the signature Σ∧,∨Π , de-
scribed in Example 2.2, is the signature ((V,E, src, trg), π, ♦) defined as follows

• V = {π, ♦};
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ΣΠ ] Σ∧,∨Π

Figure 2: Fibring of the signatures described in Examples 2.1 and 2.2.

• E(♦, π) = Πc ∪Πi where Πc and Πi are disjoint copies of Π;

• E(π, π) = {¬c,¬i};

• E(ππ, π) = {⊃c,⊃i,∧i,∨i};

• E(s, v) = ∅ otherwise;

• iec(¬) = ¬c, iec(⊃) = ⊃c, and iec(q) = qc for each q ∈ Π;

• iei (¬) = ¬i, iei (∧) = ∧i, iei (∨) = ∨i, iei (⊃) = ⊃i, and iei (q) = qi, for each
q ∈ Π;

including the classical and the intuitionistic constructors. So, it is possible to
consider in its context more expressible formulas than over each component
signature. For a diagrammatic description of this example see Figure 2 (where,
for the sake of simplicity, only negation connectives as well as one propositional
symbol for each component are considered). ∇

As Figure 2 clearly hints, it is possible to relate the signatures ΣΠ and Σ∧,∨Π

with the signature ΣΠ ] Σ∧,∨Π resulting from their fibring. This relationship is
established mainly at the level of the m-graphs of the signatures by m-graph
morphisms.

An m-graph morphism h : G1 → G2 is a pair of maps{
hv : V1 → V2

he : E1 → E2

such that src2 ◦ he = hv ◦ src1 and trg2 ◦ he = hv ◦ trg1. A signature morphism
is an m-graph morphism respecting the pointed sorts.

That is, a signature morphism from signature Σ1 to signature Σ2 both with
the same set V of sorts,

h : Σ1 → Σ2

is a m-graph morphism h : G1 → G2 such that h(π1) = π2 and h(♦1) = ♦2.
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Example 2.4 The signature morphisms for the Example 2.3,

ic : ΣΠ → ΣΠ ] Σ∧∨Π and ii : Σ∧∨Π → ΣΠ ] Σ∧∨Π

are defined as follows:

• ic is such that iec is defined in Example 2.3 and ivc is the identity on V ;

• ii is such that iei is defined in Example 2.3 and ivi is the identity on V . ∇

It remains to discuss the case of fibring of signatures where the set of sorts
is not the same. The solution in this case is to enrich both signatures with the
appropriate sorts so that after the enrichment they are equal. For instance, as-
sume that Σ1 and Σ2 are signature with the sets of sorts V1 and V2, respectively.
Then we consider enriched signatures Σ+

1 and Σ+
2 such that V +

1 = V1∪(V2\V1),
E+

1 = E1, V +
2 = V2 ∪ (V1 \ V2) and E+

2 = E2. The fibring of Σ1 and Σ2 is then
defined as Σ+

1 ] Σ+
2 .

Universal construction

The fibring of signatures is a minimal construction in the sense that it contains
nothing but information on the components. This fact can be stated by proving
a universal property. We denote by Sig the category of signatures and their
morphisms, and by SigV the subcategory of Sig whose objects are signatures
with sort set V and whose morphisms h are such that hv = idV . In Figure 3, we

Σ1 Σ2

Σ1 ] Σ2

Σ

i1

''

i2

ww

h1

**

h2

tt

h

��

= =

Figure 3: Coproduct of Σ1 and Σ2.

describe the main ingredients for showing that the fibring is a coproduct: (1) ex-
istence of morphisms i1 and i2; (2) universal property: given any morphisms
h1 : Σ1 → Σ and h2 : Σ2 → Σ, there is a unique morphism h : Σ1 ] Σ2 → Σ
such that h ◦ i1 = h1 and h ◦ i2 = h2.

Proposition 2.5 Category SigV has binary coproducts (and so all non-empty
finite coproducts).

Proof: Let Σ1 and Σ2 be signatures with sort set V . Their coproduct is the
triple

(Σ1 ] Σ2, i1, i2)
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where Σ1]Σ2 is the fibring of signatures Σ1 and Σ2 and ij = (idV , iej) for j = 1, 2.
(1) It is straightforward to check that i1 are i2 are signature morphisms; (2)
Assume that h1 : Σ1 → Σ and h2 : Σ2 → Σ are signature morphisms. Define
h = (idV , he) as follows: he(ie1(e1)) = he

1(e1) and he(ie2(e2)) = he
2(e2). It is

easy to see that h is a signature morphism, and moreover, that it is the unique
morphism that makes the diagrams to commute, QED

Finally, we present fibring as an operator on Sig. Let Σ1 and Σ2 be sig-
natures in Sig not necessarily with the same set of sorts. The first step when
defining fibring is to enrich the given signatures so that they have the same set
of sorts. To this end, we introduce a Set♦-indexed map ·(V1,π1,♦1) on signatures,
such that

Σ(V1,π1,♦1)
2 = ((V,E2, src, trg), π, ♦)

where

• ((V, π, ♦), i1, i2) is the coproduct in Set♦ of (V1, π1, ♦1) and (V2, π2, ♦2);

• src = i2 ◦ src2 and trg = i2 ◦ trg2;

then, the fibring FibSig of signatures is defined as a map from |Sig|2 to |Sig|
such that

FibSig(Σ1,Σ2) = Σ(V2,π2,♦2)
1 ] Σ(V1,π1,♦1)

2 .

Interleaving of expressions

It is more convenient to work with formulas as morphisms, instead of as paths,
in order to capitalize on the additional structure of categories. The formula
depicted in Figure 1 as a path, can be seen as the morphism ¬i ◦ ⊃c ◦〈qi, qc〉
presented in Figure 4. In that diagram, ππ is a sequence of sorts that corre-

♦ ππ π π
〈qi, qc〉 // ⊃c // ¬i //

¬i ◦ ⊃c ◦〈qi, qc〉

&&

Figure 4: Formula ¬i(qi ⊃c qc) as a morphism.

sponds to the object of the product of π by π. That is, the product of π by π
is the triple

π × π = (ππ, pππ1 , pππ2 )

where pππ1 : ππ → π and pππ2 : ππ → π are projections. The underlying cat-
egory, G+, (for more details see [20]), has as objects sequences of sorts in G
and as morphisms, besides the ones related to products, tuples and projections,
the m-edges and compositions. In this category, for instance, the implication
⊃c is a morphism from the object ππ (of the product of π and π) to the ob-
ject π. Working in the scope of a category is also very important namely for
schema formulas, which are at the heart of the fibring. For instance, the formula

7



¬i(ξ ⊃c qc) containing the schema variable ξ (which can be instantiated by any
other formula) corresponds to the morphism ¬i ◦⊃c ◦〈pπ♦

1 , qc ◦ pπ♦
2 〉 depicted in

Figure 5.

π♦ ππ π π
〈pπ♦

1 , qc ◦ pπ♦
2 〉 // ⊃c // ¬i //

¬i ◦ ⊃c ◦〈pπ♦
1 , qc ◦ pπ♦

2 〉

((

Figure 5: The schema formula ¬i(ξ ⊃c qc) as a morphism.

Observe that the schema variable corresponds to the projection pπ♦
1 . The

formula ¬i(qi ⊃c qc) can be seen as an instantiation of formula ¬i(ξ ⊃c qc) by
〈qi, id♦〉 as can be seen in Figure 6. Observe that (¬i ◦ ⊃c ◦〈pπ♦

1 , qc ◦ pπ♦
2 〉) ◦

〈qi, id♦〉 = ¬i ◦ ⊃c ◦〈pπ♦
1 ◦ 〈qi, id♦〉, qc ◦ pπ♦

2 ◦ 〈qi, id♦〉〉 = ¬i ◦ ⊃c ◦〈qi, qc ◦ id♦〉 =
¬i ◦ ⊃c ◦〈qi, qc〉. Instantiation corresponds to composition in this categorial

π♦

π

¬i ◦ ⊃c ◦〈pπ♦
1 , qc ◦ pπ♦

2 〉
��

♦

π♦

〈qi, id♦〉��

♦

π

¬i ◦ ⊃c ◦〈qi, qc〉

��

Figure 6: Formula ¬i(qi ⊃c qc) as an instantiation.

setting.

3 Fibring interpretation structures

Consider the formula in Figure 1. Intuitively speaking, a denotation for that for-
mula is based on a denotation path as the one in Figure 7. The nodes should be
truth-values and the edges are operations in some interpretation structure, say
I, for the signature resulting from the fibring of the signature of propositional
logic and the signature of intuitionistic logic. It is clear that the operations de-
noting qc and to ⊃c should be operations that evaluate the constructors q,⊃ of
the propositional signature in some interpretation structure, say Ic. Moreover,
the operations corresponding to qi and ¬i should be operations that evaluate
the constructors q and ⊃ of the intuitionistic signature in some interpretation
structure, say Ii. Thus, operations from Ic and Ii should be interleaved in order
to get the denotation of a formula over the signature resulting from the fibring
of the signatures for classical and intuitionistic logic. The only question is re-
lated to the nodes of I. Precisely because of the interleaving of operations the
nodes should contain information about truth values from both Ic and Ii.
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. . .
q′i // . . .

DDDDDDDD

⊃′c // . . .
¬′i // . . .

. . .
q′c // . . .

zzzzzzzz

Figure 7: Denotation of ¬i(qi ⊃c qc) as a path.

Thus, in a nutshell and omitting the details, an interpretation structure I for
the fibring of signatures Σ1 and Σ2 can be obtained from interpretation struc-
tures I1 for Σ1 and I2 for Σ2 in the following way. A truth value in I is a pair
(v′1, v

′
2) where v′1 is a truth value in I1 and v′2 is a truth value in I2 either both

designated or both non-designated. An operation o′ : (v′11, v
′
21) . . . (v′1n, v

′
2n) →

(v′1, v
′
2) should be in I providing that a corresponding operation o : v′1n . . . v

′
1n →

v′1 is in I1, and similarly for operations in I2.

Putting interpretation structures together

As motivated above, an interpretation structure is an m-graph where the nodes
correspond to truth values and m-edges to operations on values. Another key
ingredient is that each value should be assigned to a sort and each operation to
a constructor in the signature. That is, interpretation structures and signatures
should be related by morphisms.

So, an interpretation structure I over a signature (G, π, ♦) is a triple

(G′, α,D, �)

where G′ is an m-graph, α : G′ → G is an m-graph morphism, D ⊆ (αv)−1(π)
is a non-empty set and � ∈ (αv)−1(♦).

Observe that V ′ is partitioned by α: we denote by V ′v the domain (αv)−1(v)
of values for each v in V . The elements of V ′π are the truth values and the
elements of V ′♦ are the concrete values. We assume that there is at least a
concrete value.

An interpretation structure is a pair

(Σ, I)

where Σ is a signature and I is an interpretation structure over Σ.
We now present interpretation structures for classical propositional logic

and intuitionistic propositional logic.

Example 3.1 Let v : {q1, q2, q3} → {0, 1} be a classical valuation such that
v(q1) = 1 and v(q2) = v(q3) = 0. The interpretation structure Ic = (G′, α,D, �)
over signature ΣΠ introduced in Example 2.1, where Π = {q1, q2, q3}, corre-
sponding to v, is defined as follows:

• G′ = (V ′, E′, src′, trg′) is such that1:
1Using module 2 arithmetical operations within V ′.
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V ′ = {0, 1} ∪ {�};
E′ = {q′1, q′2, q′3,¬0,¬1,⊃00,⊃01,⊃10,⊃11};
src′ and trg′ are such that:

q′1 : �→ 1;
q′k : �→ 0 for k = 2, 3;
¬v′ : v′ → (1− v′) for each v′ in {0, 1};
⊃v′1v′2 : v′1 v

′
2 → ((1− v′1) + v′2) for each v′1 and v′2 in {0, 1}.

• α : G′ → G is such that:

αv(0) = π;

αv(1) = π;

αv(�) = ♦;

αe(q′k) = qk for k = 1, 2, 3;

αe(¬v′) = ¬ for each v′ in V ′π;

αe(⊃v′1v′2) = ⊃ for each v′1 and v′2 in V ′π.

• D = {1}. ∇

Example 3.2 Let (W,R, v) be the intuitionistic Kripke structure where W =
{u1, u2}, R = {(u1, u1), (u1, u2), (u2, u2)}, v(q1) = {u2}, v(q2) = {u1, u2},
and v(q3) = ∅, for Π = {q1, q2, q3}. By simplicity we will denote by u2 and
u1u2 the sets {u2} and {u1, u2} respectively. The interpretation structure
Ii = (G′, α,D, �) over the signature Σ∧,∨Π introduced in Example 2.2, corre-
sponding to the Kripke structure is defined as follows:

• G′ = (V ′, E′, src′, trg′) is such that:

V ′ = {∅, u2, u1u2} ∪ {�};
E′ = {q′1, q′2, q′3,¬∅,¬u2 ,¬u1u2} ∪ {⊃v′1v′2 : v′1, v

′
2 ∈ V ′π} ∪ {∧v′1v′2 :

v′1, v
′
2 ∈ V ′π} ∪ {∨v′1v′2 : v′1, v

′
2 ∈ V ′π};

src′ and trg′ are such that:

q′1 : �→ u2;
q′2 : �→ u1u2;
q′3 : �→ ∅;
¬∅ : ∅ → u1u2;
¬u2 : u2 → ∅;
¬u1u2 : u1u2 → ∅;
⊃v′1v′2 : v′1 v

′
2 → u1u2 whenever v′1 ⊆ v′2 for each v′1 and v′2 in V ′π;

⊃v′1v′2 : v′1 v
′
2 → v′2 whenever v′1 6⊆ v′2 for each v′1 and v′2 in V ′π;

∧v′1v′2 : v′1 v
′
2 → v′1 ∩ v′2 for each v′1 and v′2 in V ′π;

∨v′1v′2 : v′1 v
′
2 → v′1 ∪ v′2 for each v′1 and v′2 in V ′π.

• α : G′ → G is such that:
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αv(b) = π for each b ∈ {∅, u2, u1u2};
αv(�) = ♦;
αe(q′k) = qk for k = 1, 2, 3;
αe(¬v′) = ¬ for each v′ ∈ V ′π;
αe(⊃v′1v′2) = ⊃ for each v′1 and v′2 in V ′π;
αe(∧v′1v′2) = ∧ for each v′1 and v′2 in V ′π;
αe(∨v′1v′2) = ∨ for each v′1 and v′2 in V ′π.

• D = {u1u2}. ∇

The fibring of interpretation structures (Σ1, I1) and (Σ2, I2), with the same
set V of sorts, denoted by

(Σ1, I1) ] (Σ2, I2)

is the interpretation structure (Σ, I) where

• Σ is the object of the coproduct in SigV of Σ1 and Σ2 with injections i1
and i2;

• I = ((V ′, E′, src′, trg′), α,D, �) is defined as follows:

– V ′ is such that:
∗ V ′π = (D1 ×D2) ∪ ((V ′1π \D1)× (V ′2π \D2));
∗ V ′v = V ′1v × V ′2v for each v ∈ V \ {π};

– E′(s′, t′) is, for each s′ and t′ in V ′+, the object of the coproduct in
Set of E′1((s′)1, (t′)1) and E′2((s′)2, (t′)2) with injections (τ1)es′t′ and
(τ2)es′t′ , respectively;

– src′((τj)es′t′(e
′
j)) = s′ and trg′((τj)es′t′(e

′
j)) = t′ for j = 1, 2;

– α is such that
∗ αv((v′1, v

′
2)) = αv

1(v′1);
∗ αe((τj)es′t′(e

′
j)) = iej(α

e
j(e
′
j)) for j = 1, 2;

– D = D1 ×D2;
– � = (�1, �2);

Observe that the truth values in the fibring are either pairs of distinguished
elements or pairs of non distinguished elements.

For the sake of illustration we now describe the interpretation structure
resulting from the fibring of the interpretation structure for classical logic, in-
troduced in Example 3.1, with the interpretation structure for intuitionistic
logic, introduced in Example 3.2.

Example 3.3 The fibring of the interpretation structures for classical logic,
(ΣΠ, Ic), introduced in Example 3.1, and for intuitionistic logic, (Σ∧,∨Π , Ii), in-
troduced in Example 3.2, denoted by

(Σ, Ic+i)

is as follows:
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Figure 8: Fibring of interpretation structures for classical and intuitionistic
logics (partial representation).

• Σ = ((V,E, src, trg), π, ♦) where:

– V = {π, ♦};
– E(π, π) = {¬c,¬i};
– E(ππ, π) = {⊃c,⊃i,∧i,∨i};
– E(♦, π) = {qc, q2c, q3c, qi, q2i, q3i};
– all the other components are empty;

• Ic+i = ((V ′, E′, src′, trg′), α,D, (�, �)) where:

– V ′ = {(0, ∅), (0, u2), (1, u1u2)};
– E′((0, u2), (1, u1u2)) = {¬0c1

};
– E′((0, u2), (0, ∅)) = {¬u2i

};
– E′((1, u1u2), (0, u2)) = {¬1c1

};
– E′((0, ∅), (1, u1u2)) = {¬∅i ,¬0c2

};
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– E′((1, u1u2), (0, ∅)) = {¬u1u2i
,¬1c2

};
– E′((�, �), (0, ∅)) = {q′c2};
– E′((�, �), (0, u2)) = {q′c1 , q

′
i};

– αv((0, ∅)) = αv((0, u2)) = αv((1, u1u2)) = π;
– αe(q′c1) = αe(q′c2) = qc;
– αe(q′i) = qi;
– αe(¬0c1

)=αe(¬0c2
)=αe(¬1c1

)=αe(¬1c2
)=¬c;

– αe(¬∅i) = αe(¬u2i
) = αe(¬u1u2i

) = ¬i;
– D is {(1, u1u2)}.
– similarly for the implications, disjunction, conjunction and the re-

maining propositional symbols;

A graphical description of part of the interpretation structure (Σ, Ic+i) (with-
out the implications, disjunction, conjunction and with only a classical and a
intuitionistic propositional symbol) can be seen in Figure 8. ∇

By looking into Figure 8, we get the impression that there is a relationship
between the interpretation structure in (ΣΠ, Ic)](Σ∧,∨Π , Ii) to the interpretation
structures in both (ΣΠ, Ic) and (Σ∧,∨Π , Ii). That is, a contravariant relationship
between the interpretation structures besides the covariant relationship between
signatures. In order to define such a contravariant relationship we introduce
the notion of m-graph transformation.

A m-graph transformation τ : G2 → G1 is a pair{
τ v : V2 → V1

{τ e
st : G1(τ v(s), τ v(t))→ G2(s, t)}s,t∈V +

2
.

So, an interpretation structure morphism between (Σ1, I1) and (Σ2, I2), is a pair

(h, τ) : (Σ1, I1)→ (Σ2, I2)

where h : Σ1 → Σ2 is a signature morphism and τ : G′2 → G′1 is a m-graph
transformation such that:

• hv ◦ αv
1 ◦ τ v = αv

2;

• he(αe
1(e′1)) = αe

2(τ e
s′2t

′
2
(e′1)) for e′1 ∈ E′1(τ v(s′2), τ v(t′2)) and s′2, t

′
2 ∈ V ′

+

2 ;

• (τ v)−1(D1) ⊆ D2;

• τ v((V ′2)π \D2) ⊆ ((V ′1)π \D1).

As expected the m-graph transformation is contravariant with the signature
morphism. Moreover, the truth value map τ v is contravariant with the sig-
nature morphism. Finally, note that each operation in G′1 can be mapped to
several operations in G′2, and note that the third condition in the definition of
interpretation structure morphism is equivalent to saying that if v′1 = τ v(v′2)
and v′1 ∈ D1 then v′2 ∈ D2.

We now briefly describe the interpretation structure morphisms (ic, τc) :
(ΣΠ, Ic)→ (Σ, Ic+i) and (ii, τi) : (Σ∧,∨Π , Ii)→ (Σ, Ii).
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Example 3.4 Consider the fibring of interpretation structures in Example 3.3.
The interpretation structure morphisms (ic, τc) : (ΣΠ, Ic)→ (Σ, Ic+i) and (ii, τi) :
(Σ∧,∨Π , Ii)→ (Σ, Ii) are such that:

• τ v
c ((0, ∅)) = 0;

• τ v
c ((1, u1u2)) = 1;

• τ v
i ((0, ∅)) = ∅;

• τ v
i (1, u1u2) = u1u2;

• (τc)e(0,∅)(1,u1u2)(¬0) = ¬0c2
;

where the other cases are omitted since they are defined similarly. ∇

Universal construction

The objective now is to prove that the fibring of interpretation structures is
a minimal construction by showing that it satisfies a universal property. We
denote by Int the category of interpretation structures and their morphisms,
and by IntV the subcategory of Int composed by all interpretation structures
with sort set V and morphisms (h, τ) : (Σ1, I1) → (Σ2, I2) such that hv = idV .
Moreover, given a sequence s of pairs, we denote by (s)j the sequence of all
j-components of the pairs in s, for j = 1, 2.

Lemma 3.5 Given interpretation structures (Σ1, I1) and (Σ2, I2) with the same
set of sorts, the pair (ij , τj) such that

• ij is the injection from Σj to the coproduct in SigV of Σ1 with Σ2;

• τ v
j ((v′1, v

′
2)) = v′j ;

• (τj)e = {(τj)es′t′}s′,t′∈V ′+ is such that (τj)es′t′ is an injection in Set from
E′j((s

′)j , (t′)j) to the coproduct of E′1((s′)1, (t′)1) and E′2((s′)2, (t′)2);

is an interpretation system morphism from (Σj , Ij) to (Σ1, I1) ] (Σ2, I2), for
j = 1, 2.

Proof: It is straightforward to show that τ1 and τ2 are m-graph transforma-
tions. Note that i1 and i2 are signature morphisms by definition. Furthermore,
the tuple (ij , τj) is an interpretation structure morphism for j = 1, 2 since

• ivj(α
v
j(τ

v
j ((v′1, v

′
2)))) = ivj(α

v
j(v
′
j)) = αv

j(v
′
j) = αv((v′1, v

′
2)) by definition of

αv using also the fact that ivj is the identity;

• iej(α
e
j(e
′
j)) = αe((τj)es′t′(e

′
j)) for e′j ∈ E′j((τj)v(s′), (τj)v(t′)) by definition of

αe;

• (τ v
1 )−1(D1) ⊆ D. Let v′ = (v′1, v

′
2) ∈ (τ v

1 )−1(D1). Then τ v
1 (v′) = v′1 ∈ D1

and so, by definition of D, v′ ∈ D. Similarly for (τ v
2 )−1(D2) ⊆ D;
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• τ v
1 (V ′π \D) ⊆ V ′1π \D1. Let (v′1, v

′
2) ∈ V ′π \D. By definition of D, we know

that v′1 /∈ D1. Similarly for τ v
2 (V ′π \D) ⊆ V ′2π \D2.

QED

Proposition 3.6 Category IntV has binary coproducts.

Proof: Let (Σ1, I1) and (Σ2, I2) be interpretation structures with sort set V .
Their coproduct is

((Σ1, I1) ] (Σ2, I2), (i1, τ1), (i2, τ2))

where ((Σ1, I1)] (Σ2, I2) is the fibring of interpretation structures (Σ1, I1) and
(Σ2, I2), and (ij , τj) for j = 1, 2 are as in Lemma 3.5.
It is now shown the universal property of the coproduct. Let (Σ3, I3) be a
interpretation structure in IntV and (g1, σ1) : (Σ1, I1)→ (Σ3, I3) and (g2, σ2) :
(Σ2, I2) → (Σ3, I3) interpretation structure morphisms. Consider the tuple
(g, σ) such that:

• g = (idV , ge) where ge is the unique morphism in Set such that ge
1 = ge◦ ie1

and ge
2 = ge ◦ ie2;

• σ = (σv, σe) where σv(v′3) = (σv
1(v′3), σv

2(v′3)) and

σe
s′3t

′
3
((τj)eσv(s′3)σv(t′3)(e

′
j)) = (σe

j)s′3t′3(e′j)

for every e′j ∈ E′j((τj)v(σv(s′3)), (τj)v(σv(t′3))).

1. (g, σ) is an interpretation structure morphism from (Σ, I) to (Σ3, I3).

(a) (σv
1(v′3), σv

2(v′3)) ∈ V ′. For instance, assume that αv
3(v′3) = π and v′3 ∈ (V ′3 \

D3). Since αv
1 ◦ σv

1 = αv
3, then σv

1(v′3) ∈ (V ′1)π. Moreover, σv
1(v′3) ∈ (V ′1)π \D1,

since σv
1((V ′3)π \D3) ⊆ (V ′1)π \D1.

(b) τ v
j ◦ σv = σv

j for j = 1, 2. Indeed τ v
j (σv(v′3)) = τ v

j ((σv
1(v′3), σv

2(v′3))) = σv
j (v
′
3).

(c) σe is a family of well defined maps. Let s′3, t
′
3 ∈ V ′3

+. Assume that
e′ ∈ E′(σv(s′3), σv(t′3)). Then e′ = (τj)eσv(s′3),σv(t′3)(e

′
j) for some j = 1, 2. We now

show that src′j(e
′
j) = σv

j (s
′
3) and trg′j(e

′
j) = σv

j (t
′
3). Indeed, src′j(e

′
j) = τ v

j (σv(s′3)).
By (b), τ v

j (σv(s′3)) = σv
j (s
′
3) as we wanted to show. Similarly for trg′j .

(d) gv ◦ αv ◦ σv = αv
3. Indeed, gv(αv(σv(v′3))) = gv(αv((σv

1(v′3), σv
2(v′3)))) by

definition of σv, which is equal to αv((σv
1(v′3), σv

2(v′3))) since gv = idV . Since
αv((σv

1(v′3), σv
2(v′3))) = αv

j(σ
v
j (v
′
3)) for j = 1, 2 and αv

j(σ
v
j (v
′
3)) = αv

3(v′3) (due to
the fact that σj is a m-graph transformation), the thesis follows.

(e) ge(αe(e′)) = αe
3(σe

s′3t
′
3
(e′)) for e′ ∈ E′(σv(s′3), σv(t′3)) for s′3, t

′
3 ∈ V ′3

+. As-
sume that e′ = (τj)eσv(s′3)σv(t′3)(e

′
j) with e′j ∈ E′j(τ

v
j (σv(s′3)), τ v

j (σv(t′3))). Then
αe

3(σe
s′3t

′
3
(e′)) = αe

3((σe
j)σv

j(s
′
3)σv

j(t
′
3)(e′j)), by definition of σe, which is equal to

ge
j(α

e
j(e
′
j)) since 〈gj , σj〉 is a m-graph transformation. On the other hand, by

definition of ge, ge
j(α

e
j(e
′
j)) = ge(iej(α

e
j(e
′
j))). Finally, the thesis follows, since
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iej(α
e
j(e
′
j)) = αe((τj)eσv(s′3)σv(t′3)(e

′
j)).

(f) (σv)−1(D) ⊆ D3. Let v′3 ∈ (σv)−1(D). Then σv(v′3) = (σv
1(v′3), σv

2(v′3)) ∈ D.
Without loss of generality, assume that σv

1(v′3) ∈ D1. Hence v′3 ∈ (σv
1)−1(D)

and so v′3 ∈ D3.

(g) σv(V ′3π \ D3) ⊆ V ′π \ D. Let v′3 ∈ V ′3π \ D3. Then σv
1(v′3) ∈ V ′1π \ D1 and

σv
2(v′3) ∈ V ′2π \D2 and so (σv

1(v′3), σv
2(v′3)) = σv(v′3) ∈ V ′π \D.

2. (g, σ) ◦ (ij , τj) = (gj , σj) for j = 1, 2.

(a) g ◦ ij = gj . That is, gv ◦ ivj = gv
j and ge ◦ iej = ge

j . The first equality follows
directly since all the maps are identities on V . The second equality follows by
the universal property of the coproduct.

(b) σv
j = τ v

j ◦ σv. This follows by 1(b) above.

(c) (σe
j)s′3t′3 = σe

s′3t
′
3
◦ τ e

σv(s′3)σv(t′3). The thesis follows since E′j(σ
v
j (s
′
3), σv

j (t
′
3)) is

E′j((τj)
v(σv(s′3)), (τj)v(σv(t′3))) by (c) above.

3. Uniqueness of (g, σ). Assume that there is a m-graph transformation (ĝ, σ̂)
such that (ĝ, σ̂) ◦ (ij , τj) = (gj , σj) for j = 1, 2.

(a) ĝv = gv since both are the identity on V .

(b) ĝe = ge. This follows from the universal property.

(c) σ̂v = σv. Let v′3 ∈ V ′3 and σ̂v(v′3) = (u′1, u
′
2). Then σv(v′3) = (σv

1(v′3), σv
2(v′3))

using the definition of σv. So (σv
1(v′3), σv

2(v′3)) = (τ v
1 (σ̂v(v′3)), τ v

2 (σ̂v(v′3))) by com-
mutativity. By definition of τ v

j , (τ v
1 (σ̂v(v′3)), τ v

2 (σ̂v(v′3))) = (u′1, u
′
2) and hence

σv(v′3) = σ̂v(v′3).

(d) σ̂e
s′3t

′
3

= σe
s′3t

′
3
. Note that σ̂v = σv. Let e′ ∈ E′(σv(s′3), σv(t′3)). Then

e′ = (τj)eσv(s′3)σv(t′3)(e
′
j) with e′j ∈ E′j(τ

v
j (σv(s′3)), τ v

j (σv(t′3))). Then σe
s′3t

′
3
(e′) =

(σe
j)σv

j(s
′
3)σv

j(t
′
3)(e′j) = σ̂e

s′3t
′
3
(e′). QED

In order to be able to define fibring for any pair of interpretation structures,
and not only for structures with the same set of sorts, we define a Set♦ indexed
map ·(V1,π1,♦1) that enriches each interpretation structure with the sorts only in
the other structure, in such a way that satisfaction is maintained:

• (Σ2, I2)(V1,π1,♦1) = (Σ(V1,π1,♦1)
2 , I

(V1,π1,♦1)
2 ) where:

– ((V, π, ♦), i1, i2) is the coproduct in Set♦ of (V1, π1, ♦1) and (V2, π2, ♦2);

– I
(V1,π1,♦1)
2 = ((V ′, E′2, src

′, trg′), (αv, αe
2), D2, �2) is such that:

∗ V ′ = V ′2 ∪ {v1
′ : v1 ∈ V1 \ V2};

∗ αv : V ′ → V is such that
· αv(v′) = i2(αv

2(v′)) for v′ in V ′2 ;
· αv(v1

′) = i1(v1) otherwise;
∗ src′ : E′2 → V ′+ and trg′ : E′2 → V ′ coincide with src′2 and trg′2;

Proposition 3.7 The interpretation structure (Σ2, I2) and (Σ2, I2)(V1,π1,♦1) sat-
isfy the same formulas.
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We omit the proof of the proposition above since it follows straightforwardly.
So, the fibring FibInt of interpretation structures is defined as a map from

|Int|2 to |Int| such that:

FibInt((Σ1, I1), (Σ2, I2)) = (Σ1, I1)(V2,π2,♦2) ] (Σ2, I2)(V1,π1,♦1).

Interleaving of denotations

Consider the interpretation structure (Σ, Ic+i) in Example 3.3 depicted in Fig-
ure 8 resulting from the fibring of the interpretation structure (ΣΠ, Ic) for clas-
sical logic and of the interpretation structure (Σ∧,∨Π , Ii) for intuitionistic logic.
The denotation

[[¬i ⊃c 〈qi, qc〉]]Ic+i

of the path ¬i ⊃c 〈qi, qc〉 corresponding to the formula ¬i(qi ⊃c qc) should be
based on the denotation of qc and of qi and on the operations assigned to
the connectives ¬i and ⊃c. In general, for evaluating ew1 over I, we start by
evaluating w1 and getting a set of values. Then, for each value s′ we pick up
all the m-edges in G′ with source s′ and which are mapped into e. Finally,
the envisaged denotation is obtained by taking the collection of targets of such
edges. In the case at hand, starting by the denotation of qc,

[[qc]]
Ic+i = trg′({q′c1 : (�, �)→ (0, u2), q′c2 : (�, �)→ (0, ∅)})

= {(0, u2), (0, ∅)}.

Observe that there are two operations, q′c1 : � → (0, u2) and q′c2 : � → (0, ∅),
denoting qc in the interpretation structure Ic+i, that is, operations that are
assigned by αe to qc. So the denotation of qc is the set of truth values cor-
responding to the target of those operations. Similarly for the denotation of
qi:

[[qi]]
Ic+i = trg′({q′i : (�, �)→ (0, u2)})

= {(0, u2)}

The denotation of [[〈qi, qc〉]]Ic+i is the concatenation of the denotation of each
formula in the tuple.

[[〈qi, qc〉]]Ic+i = [[〈q〉i]]Ic+i [[〈q〉c]]Ic+i

= {(0, u2)}{(0, u2), (0, ∅)}
= {(0, u2)(0, u2), (0, u2)(0, ∅)}

Respecting the structure of the path, the denotation of [[ ⊃c 〈qi, qc〉]]Ic+i is ob-
tained from the denotation of [[〈qi, qc〉]]Ic+i by applying the operations corre-
sponding to ⊃c:

[[⊃c 〈qi, qc〉]]Ic+i = trg′(E′⊃c([[〈qi, qc〉]]
Ic+i ,−))

= trg′(E′⊃c((0, u2)(0, u2),−)) ∪ trg′(E′⊃c((0, u2)(0, ∅),−))
= {(1, u1u2)}
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Similarly,

[[¬i ⊃c 〈qi, qc〉]]Ic+i = trg′(E′¬i([[⊃c 〈qi, qc〉]]
Ic+i ,−))

= trg′(E′¬i((1, u1u2),−))
= trg′({¬u1u2i

: (1, u1u2)→ (0, ∅)})
= {(0, ∅)}.

The denotation of a concrete formula corresponding to the concrete path
w : ♦→ t over G† at I, represented by

[[w]]I

is a concatenation of basic sets contained in V ′+t , inductively defined on the
complexity of the path w as follows:

• [[ε♦]]I is {�};

• [[pv1...vm
i w1]]I is ([[w1]]I)i where v1, . . . , vm are in V ;

• [[〈w1, . . . , wn〉w0]]I is [[w1w0]]I . . . [[wnw0]]I ;

• [[ew1]]I is the union of trg′(E′e(v
′,−)) for each v′ in [[w1]]I , when e is in E;

where a subset S of V ′+v1...vn is a concatenation of basic sets whenever there exist
S1 ⊆ V ′v1

, . . . , Sn ⊆ V ′vn such that S is S1 . . . Sn.
Consider now the denotation of a schema formula. In this case the denota-

tion of the schema variables should be given by an assignment, which must be
also a component in the denotation process. More precisely, an assignment

ρ

for an interpretation structure I over a signature Σ is a family {ρs}s∈V + such
that ρs is [[ws]]

I for some concrete path ws : ♦→ s.
The denotation of a formula corresponding to the path w : s → t over G†

at I and ρ, denoted by
[[w]]Iρ

is inductively defined on the complexity of the path w similarly to the denotation
of a concrete path with the exception that [[εs]]

Iρ is ρs.
A formula ϕ is said to be satisfied by I and ρ, written as

I, ρ 
 ϕ

whenever [[ϕ]]Iρ is non-empty and is contained in D. Moreover, we say I satisfies
ϕ, written as

I 
 ϕ

whenever I, ρ 
 ϕ for every assignment ρ over I. Satisfaction is extended to
sets of schema formulas as expected: I, ρ 
 Γ if I, ρ 
 γ for each γ ∈ Γ, and
similarly for sequences of schema formulas: I, ρ 
 ϕ1 . . . ϕn if I, ρ 
 ϕi for
i = 1, . . . , n.
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Example 3.8 Observe that

Ic+i, ρ 6
 (¬i (¬iξ))⊃i ξ

where ρ is such that ρπ = [[qi]]
Ic+i since [[ ⊃i 〈¬i ¬i ξ, ξ〉]]Iρ = {(0, u2)} is not

contained in D. Indeed,

[[επ]]Ic+iρ = ρπ

= [[qi]]
Ic+i

= trg′({q′i : (�, �)→ (0, u2)})
= {(0, u2)}

[[ξ]]Ic+iρ = [[pπ1 ]]Ic+iρ

= [[pπ1 επ]]Ic+iρ

= ([[επ]]Ic+iρ)1

= [[επ]]Ic+iρ

= {(0, u2)}

[[¬i ξ]]Ic+iρ = trg′(E′¬i([[ξ]]
Ic+iρ,−))

= trg′(E′¬i((0, u2),−))
= trg′({¬u2i

: (0, u2)→ (0, ∅)}
= {(0, ∅)}

[[¬i ¬i ξ]]Ic+iρ = trg′(E′¬i([[¬iξ]]
Ic+iρ,−))

= trg′(E′¬i((0, ∅),−))
= trg′({¬∅i : (0, ∅)→ (1, u1u2)}
= {(1, u1u2)}

[[〈¬i ¬i ξ, ξ〉]]Ic+iρ = [[¬i ¬i ξ]]Ic+iρ[[ξ]]Ic+iρ

= {(1, u1u2)}{(0, u2)}
= {(1, u1u2)(0, u2)}

[[⊃i 〈¬i ¬i ξ, ξ〉]]Ic+iρ = trg′(E′⊃i([[〈¬i ¬i ξ, ξ〉]]
Ic+iρ,−))

= trg′(E′⊃i((1, u1u2)(0, u2),−))
= {(0, u2)}.

This example shows that the intuitionistic implication does not collapse into
the classical implication. Therefore, the graph-theoretic fibring of interpretation
structures retains the intuitionistic character of the component. ∇

Thus, the example above shows that the fibring of classical propositional
logic with intuitionistic propositional logic does not collapse into classical logic,
since otherwise the interpretation structure (Σ, Ic+i) would satisfy ((¬i(¬i ξ))⊃i
ξ) showing that intuitionistic connectives behave like classical connectives.
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4 Fibring deductive systems

Consider again the fibring of classical and intuitionistic logics. In Figure 9
we present what should be a derivation of ¬i ¬i qc from {¬i(qi ⊃c qc), (¬i(qi ⊃c
qc))⊃i qc, qc⊃c (¬i ¬i qc)} in the fibring of classical and intuitionistic logic. The
derivation should proceed by applying first MPi (the Modus Ponens rule in
intuitionistic logic) and then MPc (the Modus Ponens rule in classical logic).
From an intuitive point of view a derivation in the deductive system resulting
from the fibring should result from the interleaving of rules and axioms from
both deductive systems.

¬i(qi ⊃c qc) (¬i(qi ⊃c qc))⊃i qc qc ⊃c (¬i ¬i qc)

qc

MPi

��
qc ⊃c (¬i ¬i qc)

ididπ

��

¬i ¬i qc

MPc

��

Figure 9: Derivation in the fibring of classical and intuitionistic logics

In order to define derivations we now introduce the notion of deductive
system, again as an m-graph but now with formulas as nodes and inference
rules as m-edges. Axioms are seen as inference rules as we shall see below.

Putting deductive systems together

According to what we said before we start by enriching a signature with symbols
to represent both axioms and inference rules. A meta-signature is a tuple

Φ = (Σ,>,R)

where Σ = (G, π, ♦) is a language signature such that GΦ = (V Φ, EΦ, srcΦ, trgΦ)
is a m-graph extending G and

• V Φ = V ;

• EΦ = E ∪ R where R = {Rn :
n︷ ︸︸ ︷

π . . . π → π}n>0;

and > is a set {>s : s→ π}s∈V + . Each Rn is a symbol for representing inference
rules with n premises. The edge >s is called s-verum and is important to
represent, in our setting, axioms. An axiom is the target of a unary rule whose
antecedent is a verum schema formula. We denote by G> the m-graph obtained
by enriching G with the m-edges >s : s→ π.
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A morphism between meta-signatures h from Φ1 = (Σ1,>1,R1) to Φ2 =
(Σ2,>2,R2) is a m-graph morphism h : GΦ1

> → GΦ2
> such that its restriction hG1

to G1 is a signature morphism from Σ1 to Σ2, he(>s) = >hv(s) and he((R1)n) =
(R2)n for each n > 0. As seen for interpretation structures we assume that, for
fibring, the signatures have the same set V of sorts. In this case a meta-signature
morphism h is equivalent to a signature morphism, and in this situation we may
confuse h with hG1 and with hG1> .

Our objective now is to say what is a deductive system based on a m-graph.
According to the intuition, the nodes are language expressions and there are
two kinds of m-edges to consider. One kind is for inference rules and axioms as
illustrated in Figure 10 and in Figure 11, respectively.

ππ

π

pππ1

���
�
�
�
� ππ

π

⊃

���
�
�
�
� ππ

π

pππ2

���
�
�
�
�

MP
//

Figure 10: M-edge for Modus Ponens.

As it is well known Modus Ponens (MP) is a binary inference rule. The
intuition for the graph description of MP is based on the fact that MP is
applied to an implication formula and its antecedent (the first argument of
the implication), and allows to conclude the consequent of the implication (its
second argument). Thus, MP is an m-edge whose source is a sequence of two
morphisms, one for the implication and the other for the first projection. The
target of MP is the second projection. In the same vein, an axiom is an m-
edge whose source is an appropriate special morphism >s and the target is the
morphism corresponding to the axiom formula. That is, an axiom is seen as
a special case of unary rule (see Figure 11). The second kind of m-edges in a

ππ

π

>ππ

���
�
�
�
� ππ

π

A1

���
�
�
�
�

ax1
//

Figure 11: M-edge for axiom ax1.

deductive system corresponds to the constructors that make formula morphisms
to commute, see Figure 12.

A deductive system over over a meta-signature Φ is a pair (G′′, β) where G′′

is such that

• V ′′ is the set of all expressions over G> (that is, the morphisms of G+

>);
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s

π

s

π

ϕ

���
�
�
�

¬c ◦ ϕ
���
�
�
�

¬c
//

Figure 12: M-edges for a constructor in the deductive system for the fibring of
classical and intuitionistic logics.

• E′′(ϕ1 : s → v1 . . . ϕn : s → vn, ϕ : s → v), for ϕ in G+, contains, among
others, the m-edges e : v1 . . . vn → v of E such that ϕ = e ◦ 〈ϕ1, . . . , ϕn〉
is in G+;

• E′′(ϕ1 : s1 → v1 . . . ϕn : sn → vn, ϕ : s→ v) = ∅ whenever ϕ is not in G+

or sk 6= s for some k = 1, . . . , n, or ϕk is not in G+ and n 6= 1;

and β is a signature morphism from G′′ to GΦ such that

• βv(ϕ : s→ v) = v;

• βe(e : (ϕ1 : s → v1 . . . ϕn : s → vn) → (ϕ : s → v)) = e if e is in E and
ϕ = e ◦ 〈ϕ1, . . . , ϕn〉;

• βe(f ′) ∈ R otherwise.

The first clause on E′′ imposes the inclusion of the constructor morphisms
that when composed with the source expression coincides with the target ex-
pression, as exemplified in Figure 12. As stated in the last clause of βe all
the other m-edges correspond to inference rules. The m-edges corresponding
to inference rules must have as premises and conclusion, expressions with the
same source, and with target π. The same source condition is imposed by the
second clause of the definition of E′′ and is crucial for instantiating a rule in a
derivation.

A deductive system D is a triple

(Φ, G′′, β)

such that Φ is a meta-signature and (G′′, β) is a deductive system over Φ.

Example 4.1 The deductive system Dc = (ΦΠ, G
′′, β) for classical proposi-

tional logic is as follows:

• ΦΠ is the meta-signature (ΣΠ,>,R) where ΣΠ is the propositional signa-
ture (G, π, ♦) introduced in Example 2.1;

• G′′ has, besides the mandatory m-edges for connectives, the following ones
for rules:

– m-edge ax1 : >ππ → (ξ ⊃ (ξ′ ⊃ ξ)) where ξ is pππ1 and ξ′ is pππ2 , see
Figure 11;

– m-edge ax2 : >πππ → ((ξ ⊃ (ξ′ ⊃ ξ′′))⊃ ((ξ ⊃ ξ′)⊃ (ξ ⊃ ξ′′))) where ξ
is pπππ1 , ξ′ is pπππ2 and ξ′′ is pπππ3 ;
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– m-edge ax3 : >ππ → (((¬ ξ) ⊃ (¬ ξ′)) ⊃ (ξ′ ⊃ ξ)) where ξ is pππ1 and
ξ′ is pππ2 ;

– m-edge MP : pππ1 ⊃ → pππ2 , see Figure 10;

• β : G′′ → GΦΠ is such that:

– βe(axk) = R1 for k = 1, 2, 3;

– βe(MP) = R2.

In the sequel, we can denote the target of ax by A. The target of axi is the
usual axiom of an Hilbert calculus for classical propositional logic but written
with the schema variables ξ, ξ′ and ξ′′, so that they can be instantiated with
formulas in the fibred language when applied in a derivation. ∇

Example 4.2 The deductive system Di = (ΦΠ, G
′′, β) for intuitionistic propo-

sitional logic is as follows:

• ΦΠ is the meta-signature (Σ∧,∨Π ,>,R) where Σ∧,∨Π is the intuitionistic
propositional signature (G, π, ♦) introduced in Example 2.2;

• G′′ has, besides the mandatory m-edges for connectives, the following
ones:

– m-edge ax1 : >ππ → (ξ ⊃ (ξ′ ⊃ ξ)) where ξ is p̂ππ1 and ξ′ is p̂ππ2 , see
Figure 11;

– m-edge ax2 : >πππ → ((ξ ⊃ (ξ′ ⊃ ξ′′))⊃ ((ξ ⊃ ξ′)⊃ (ξ ⊃ ξ′′))) where ξ
is p̂πππ1 , ξ′ is p̂πππ2 and ξ′′ is p̂πππ3 ;

– m-edge ax3 : >ππ → (ξ ⊃ (ξ′ ⊃ (ξ ∧ ξ′)) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax4 : >ππ → ((ξ ∧ ξ′)⊃ ξ) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax5 : >ππ → ((ξ ∧ ξ′)⊃ ξ′) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax6 : >ππ → (ξ ⊃ (ξ ∨ ξ′)) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax7 : >ππ → (ξ′ ⊃ (ξ ∨ ξ′)) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax8 : >πππ → ((ξ ⊃ ξ′′)⊃ ((ξ′ ⊃ ξ′′)⊃ ((ξ ∨ ξ′)⊃ ξ′′))) where
ξ is p̂πππ1 , ξ′ is p̂πππ2 and ξ′′ is p̂πππ3 ;

– m-edge ax9 : >ππ → ((ξ ⊃ ξ′)⊃ ((ξ ⊃ (¬ ξ′))⊃ (¬ ξ))) where ξ is p̂ππ1

and ξ′ is p̂ππ2 ;

– m-edge ax10 : >ππ → (ξ ⊃ ((¬ ξ)⊃ ξ′)) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge MP : p̂ππ1 ⊃ → p̂ππ2 , see Figure 10;

• β : G′′ → GΦΠ is such that:

– βe(axk) = R1 for k = 1, . . . , 10;

– βe(MP) = R2. ∇
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The fibring of deductive systems D1 = (Φ1, G
′′
1, β1) and D2 = (Φ2, G

′′
2, β2)

with the same set V of sorts, the same > and the same R is the deductive
system

D1 ] D2 = ((Σ,>,R), G′′, β)

such that

• Σ = (G, π, ♦) is the coproduct Σ1]Σ2 in SigV of Σ1 and Σ2 with injections
i1 and i2);

• G′′ = (V ′′, E′′, src′′, trg′′) is such that,

– V ′′ is the class of morphism of G+

> whose target is in V ;

– E′′ contains:

∗ e : (ϕ1 : s → v1 . . . ϕn : s → vn) → (e ◦ 〈ϕ1, . . . , ϕn〉 : s → v)
whenever e : v1 . . . vn → v0 is in E and ϕ1, . . . , ϕn are in G+;

∗ the disjoint union of (β1
e)−1(R) and (β2

e)−1(R)
such that src′′(r) = (iek)

+(src′′1(rk)) and trg′′(r) = (iek)
+(trg′′k(rk)),

whenever r is the image of rk ∈ (βke)−1(R) in the disjoint union,
for k = 1, 2;

• βv(ϕ : s→ v) = v;

• βe(e : (ϕ1 : s → v1 . . . ϕn : s → vn) → (e ◦ 〈ϕ1, . . . , ϕn〉 : s → v)) = e if e
is in E and ϕ1, . . . , ϕn are in G+;

• βe(r) = Rn if r is the image of rk ∈ (βke)−1(Rn) in the disjoint union, for
some k = 1, 2.

Example 4.3 The deductive system

Dc+i

resulting from the fibring of the deductive system Dc for classical logic in-
troduced in Example 4.1 and the deductive system Di for intuitionistic logic
introduced in Example 4.2 is the deductive system

Dc ] Di = (Φ, G′′, β)

defined as follows:

• Φ is the meta-signature (Σc ] Σi,>,R) with injections ic and ii;

• G′′ has

– the mandatory m-edges for constructors, renamed according to the
appropriate signature morphisms ic and ii;

– m-edge axkc corresponding to the axiom axk in Dc by appropriately
renaming its source and target according to the signature morphism
ic, for k = 1, 2, 3;
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– m-edge axki corresponding to the axiom axk in Di by appropriately
renaming its source and target according to the signature morphism
ii, for k = 1, . . . , 8;

– m-edge MPc for MP in Dc, where ⊃ is renamed to ⊃c;
– m-edge MPi for MP in Di, where ⊃ is renamed to ⊃i.

• β : G′′ → GΦ is such that:

– βe(axkc) = R1 for k = 1, 2, 3;
– βe(axki) = R1 for k = 1, . . . , 8;
– βe(MPc) = βe(MPi) = R2.

A graphical representation of part of this deductive system can be seen in
Figure 13. ∇

Dc Di(Dc ] Di)
〈ic,jc〉 +3 〈ii,ji〉ks

β

OO

β
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π
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NN♦
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Figure 13: Fibring of deductive systems for classical and intuitionistic logic.

It is clear that the fibring of two deductive systems is related with the
components via a morphim.
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A deductive system morphism from the deductive system (Φ1, G
′′
1, β1) to

the deductive system (Φ2, G
′′
2, β2) is a pair (h, g) where h is a meta-signature

morphism from Φ1 to Φ2 and g is a m-graph morphism from G′′1 to G′′2 such
that:

• gv(ϕ1) is (he)+(ϕ1) for each node ϕ1 of V ′′1 ;

• hv ◦ βv
1 = βv

2 ◦ gv;

• he ◦ βe
1 = βe

2 ◦ ge.

We will prove later on, on Proposition 4.5, that there are deductive system
morphisms (i1, j1) : D1 → D1 ] D2 and (i2, j2) : D2 → D1 ] D2 relating the
deductive systems to the deductive system resulting from their fibring.

Universal constructions

We denote by MSigV the category of meta-signatures with the same set V os
sorts and their morphisms. We now show that meta-signatures with the same
set of sorts can be composed.

Proposition 4.4 Category MSigV has binary coproducts.

Proof: Let (Σ1,>1,R1) and (Σ2,>2,R2) be meta-signatures denoted by Φ1 and
Φ2 respectively, with the same set V of sorts. Their coproduct is the triple

Φ1 ] Φ2 = ((Σ1 ] Σ2,>,R), i1, i2)

where (Σ1 ] Σ2, i1G1
, i2G2

) is a coproduct in SigV of Σ1 and Σ2. It is straight-
forward to check that the triple is indeed a coproduct. QED

We say that a formula ϕ ofG+

> is in G+ whenever there is a path overG† such
that the corresponding formula is equal to ϕ. We may denote a schema formula
of G+

> not in G+ as a verum schema formula. Given morphisms ϕ1 : s → s1

and ϕ2 : s1 → s2 of G+

> in G+, it is straightforward to see that ϕ2 ◦ ϕ1 is also
in G+. Moreover given the morphism >s : s→ π of G+

> it is straightforward to
see that for any ϕ : s→ s1 in G+

> the morphism >s ◦ ϕ is also not in G+.
Let Ded be the category of deductive systems and their morphisms and

DedV the full subcategory of Ded composed by all deductive systems with the
same set V of sorts.

Proposition 4.5 Category DedV has coproducts.

Proof: The coproduct of deductive systems D1 = (Φ1, G
′′
1, β1) and D2 =

(Φ2, G
′′
2, β2) in DedV is

(D1 ] D2, (i1, j1), (i2, j2))

where

• D1 ] D2 is the fibring of D1 and D2;
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• ((Σ,>,R), i1, i2) is a coproduct in MSigV of Φ1 and Φ2;

• jv1(ϕ) = (iek)
+(ϕ) for each ϕ in V ′′k , for k = 1, 2;

• jke(e) = ik
e(e) if e is in Ek, for k = 1, 2;

• (jke) restricted to (βke)−1(R) is an injection to the coproduct in Set of
(β1

e)−1(R) and (β2
e)−1(R), for k = 1, 2.

It is straightforward to show that (i1, j1) and (i2, j2) are deductive system mor-
phisms.

Let D3 be a deductive system in DedV and (h1, g1) : D1 → D3 and (h2, g2) :
D2 → D3 deductive system morphisms. Consider the pair (h, g) such that:

• h = (idV , he) is the unique morphism in MSig such that h1 = h ◦ i1 and
h2 = h ◦ i2;

• gv(ŵ) = (he)+(ŵ) for each vertex ŵ of V ′′;

• ge(i1e(e1)) = g1
e(e1) and ge(i2e(e2)) = g2

e(e2);

• ge(j1e(f1)) = g1
e(f1) when f1 ∈ (β1

e)−1(R1);

• ge(j2e(f2)) = g2
e(f2) for f2 ∈ (β2

e)−1(R2).

(1) h is a meta-signature morphism from Φ to Φ3 by definition.

(2) g is a m-graph morphism from G′′ to G′′3 since:

(a) gv(ŵ) = (he)+(ŵ) for each object ŵ of G′′.

(b) hv ◦ βv = βv
3 ◦ gv. The thesis follows since hv(βv(ŵ : s → v)) = hv(v) and

βv
3(gv(ŵ)) = βv

3((he)+(ŵ) : (hv)+(s)→ hv(v)) = hv(v).

(c) he ◦ βe = βe
3 ◦ ge. There are two cases to consider: (i) he(βe(i1e(e1))) =

he(i1e(e1)) and βe
3(ge(i1e(e1))) = βe

3(g1
e(e1)) = h1

e(βe
1(e1)) = h1

e(e1) and so
the result follows by definition of h. Similarly for e2 in E2. (ii) Let r1 ∈
(β1

e)−1(R1n). Then he(βe(j1e(r1))) = he(Rn) = (R3)n and βe
3(ge(j1e(r1))) =

βe
3(g1

e(r1)) = he
1(βe

1(r1)) = he
1(R1n) = (R3)n.

(3) (h, g)◦(i1, j1) = (h1, g1). Commutativity for the first argument holds by def-
inition. On the other hand, gv(j1v(ŵ1)) = (he)+(jv1(ŵ1)) = (he)+((ie1)+(ŵ1)) =
(he

1)+(ŵ1) = gv
1(ŵ1). Moreover, (i) given e1 in E1, ge(je1(e1)) = ge(ie1(e1)) =

ge
1(e1); and (ii) given f1 ∈ (β1

e)−1(R1), ge(je1(f1)) = g1
e(f1) by definition.

(4) (h, g) ◦ (i2, j2) = (h2, g2). Similar to case (3).

(5) Uniqueness of (h, g). Let (h′, g′) be a deductive system morphism from
D1∪D2 to D3 such that (h′, g′)◦(i1, j1) = (h1, g1) and (h′, g′)◦(i2, j2) = 〈h2, g1〉.
Then h′v = idV . Since h′e◦ i1 = he then h′e = he. Moreover g′v(ŵ) = gv(ŵ) since
g′v(ŵ) = (h′e)+(ŵ) = (he)+(ŵ) = gv(ŵ) by definition of deductive system mor-
phism. Let e1 be in E1. Then g′e(je1(e1)) = ge

1(e1) = ge(i1e(e1)) = ge(j1e(e1)).
Let f1 ∈ (β1

e)−1(R1). Then g′e(j1e(f1)) = g1
e(f1) = ge(j1e(f1)). QED
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As we did for signatures and interpretation structures, we only consider the
coproduct of deductive systems over signatures with the same set of sorts. So,
in order to define the unconstrained fibring of deductive systems over signatures
with different sets of sorts, we have to enrich each deductive system with the
sorts of the other system. For that we define a Set♦ indexed map ·(V1,π1,♦1) on
deductive systems as follows:

• ((Σ2,>2,R2), G′′2, β2)(V1,π1,♦1) = ((Σ2
(V1,π1,♦1),>2,R2), G′′, (βv, βe

2)) with:

– Σ(V1,π1,♦1)
2 = (G, π, ♦);

– G′′ = (V ′′, E′′2 , src
′′, trg′′) is such that

∗ V ′′ is the class of morphisms of G+

> whose target is in V ;
∗ src′′ : E′′2 → V ′′+, trg′′ : E′′2 → V ′′ coincide with src′′2 and trg′′2,

respectively;
∗ βv : V ′′ → V is such that βv(ŵ : s→ v) = v.

The fibring FibDed of deductive systems is a map from |Ded|2 to |Ded|
such that:

FibDed(D1,D2) = D1
(V2,π2,♦2) ] D2

(V1,π1,♦1).

Interleaving of derivations

Revisiting the motivating example of this section, assume that we want to show
that ¬i ¬i qc follows from {¬i(qi⊃cqc), (¬i(qi⊃cqc)⊃iqc, qc⊃c (¬i ¬i qc)} in Dc+i.
This means that we have to provide a derivation whose conclusion is ¬i ¬i qc and
whose hypotheses are elements of the set {¬i(qi ⊃c qc), (¬i(qi ⊃c qc)⊃i qc, qc ⊃c
(¬i ¬i qc)}. Herein a derivation is described by two sequences separated by a
semi-colon. A sequence of steps where each step corresponds to the application
of either one inference rule or several rules (putted together by the operator ⊗)
to different formulas, and the sequence of the formulas used but not generated
in the derivation. For instance, the derivation depicted in Figure 9 is described
by:

MPc, (MPi ⊗ ididπ) ; ¬i(qi ⊃c qc), (¬i(qi ⊃c qc)⊃i qc, qc ⊃c (¬i¬iqc),

and consists of two steps, MPc and (MPi ⊗ ididπ), applied to the sequence of
formulas ¬i(qi ⊃c qc), (¬i(qi ⊃c qc) ⊃i qc, qc ⊃c (¬i¬iqc). Observe that when a
formula is not used by an inference rule in a step the ididπ morphism is used
instead.

The formulas used but not generated in a derivation can be either hypotheses
or axioms. For instance,

MPc, (ididπ ⊗ ax1c) ; qi, qi ⊃c (qc ⊃c qi)

is a derivation in Dc+i, depicted in Figure 14, for qc⊃c qi from {qi}. Recall that
axioms are seen as unary inference rules having as source a verum morphism,
that is, a morphism involving the > morphism.
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qi >ππ ◦ 〈qi, qc〉

qi qi ⊃c (qc ⊃c qi)

ididπ

��

ax1c

��

qc ⊃c qi

MPc
��

Figure 14: Derivation of qc ⊃c qi from {qi}.

For more details on the notion of derivation in a graph-theoretic account of
logics the reader can consult [20] (namely for notions like instantiation of rules,
instantiation of derivation steps, derivation as a morphism, and the categorical
context in which derivations are set up).

Given a set Γ of formulas and a sequence of formulas ~ϕ, we say that ~ϕ is
derived from Γ in the deductive system D, written

Γ `D ~ϕ

whenever there is a derivation l1, . . . , ln; ~ψ of ~ϕ such that the formulas in ~ψ that
are not premises of axioms are in Γ. For instance, from the examples above we
can conclude that

{¬i(qi ⊃c qc), (¬i(qi ⊃c qc))⊃i qc, qc ⊃c (¬i¬iqc)} `Dc+i ¬i¬iqc

and
{qi} `Dc+i qc ⊃c qi.

5 Fibring of logic systems

A logic system has three components: the signature, the interpretation system
and the deduction system. All of them are defined in terms of m-graphs. The
language and derivation are described in the induced categories. A logic system
is a triple L = (Σ, I,D) such that I = (Σ, I) is an interpretation system and
D = (Φ, G′′, β) is a deductive system; where Φ is a meta-signature over Σ. Given
an interpretation system I = (Σ, I) and a set Γ ∪ {ϕ} of schema formulas over
Σ, we say that Γ entails ϕ in I, written as

Γ �I ϕ,

whenever I 
 Γ implies I 
 ϕ for every I in I. Similarly, entailment over
sequences of schema formulas can be defined. The logic system L is said to be
sound if

Γ �I ϕ whenever Γ `D ϕ
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for a set Γ ∪ {ϕ} of formulas and is said to be strong complete if the converse
holds. The logic system L is said to be weak complete if

`I ϕ whenever �D ϕ.

Observe that a strong complete logic system is also weak complete but not the
other way around in general. Finally, an interpretation structure I in I is said
to be sound for a rule r in D if

I, ρ 
 CONC(r) whenever I, ρ 
 proper(ANT(r))

for every assignment ρ over I, where the map proper(·) when applied to a se-
quence ~ϕ of schema formulas in G+

> returns the subsequence of schema formulas
that are in G+. When I is sound for all the rules in D we say that I is sound
for D. These schema formulas are called proper. The logic system L is said to
be sound for a deductive rule r in D, if all its interpretation structures over its
signature are sound for r.

Example 5.1 The tuple (ΣΠ, Ic, Dc) where

• ΣΠ is the signature for classical logic introduced in Example 2.1;

• Ic is the class of all interpretation structures over ΣΠ sound for Dc;

• Dc is the deductive system for classical logic introduced in Example 4.1;

is a logic system, denoted by Lc, for classical propositional logic. Note that
the interpretation structure Ic for classical logic introduced in Example 3.1 is
sound for Dc as it is straightforward to show. So Ic is in Ic. ∇

Example 5.2 The tuple (Σ∧,∨Π , Ii,Di) where

• Σ∧,∨Π is the signature intuitionistic logic introduced in Example 2.2;

• Ii is the class of all interpretation structures over Σ∧,∨Π sound for Di;

• Di is the intuitionistic deductive system for introduced in Example 4.2

is a logic system, denoted by Li, for intuitionistic propositional logic. Note that
the interpretation structure Ii for intuitionistic logic introduced in Example 3.2
is sound for Di as it is straightforward to show. So Ii is in Ii. ∇

We denote by Log the class of all logic systems. The fibring Fib of logic
systems is a map from Log2 to Log such that:

Fib(L1,L2) = (Σ, I,D)

where

• Σ = FibSig(Σ1,Σ2);

• I is composed by the interpretation structures I over Σ such that the pair
(Σ, I) = FibInt((Σ1, I1), (Σ2, I2)) for each I1 ∈ I1 and I2 ∈ I2;
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• D = FibDed(D1,D2).

We now explain why there is no collapse, semantically, in the logic system
resulting from the graph-theoretic fibring of the logic systems for classical and
intuitionistic logics presented above.

Example 5.3 The fibring of the logic system Lc, described in Example 5.1
and the logic system Li, described in Example 5.2, is the logic system Lc+i =
(Σc+i, Ic+i,Dc+i) where

• Σc+i = FibSig(ΣΠ,Σ
∧,∨
Π );

• Ic+i is composed by the interpretation structures I over Σc+i such that
(Σc+i, I) = FibInt((ΣΠ, I1), (Σ∧,∨Π , I2)) for each I1 ∈ Ic and I2 ∈ Ii;

• Dc+i = FibDed(Dc,Di);

and so the interpretation structure described in Example 8 resulting from the
fibring of interpretation structures for classical and intuitionistic logic is also in
Ic+i. Hence, taking into account Example 3.8, 6�Ic+i (¬i(¬i qi))⊃i qi. ∇

6 Soundness preservation

We start by investigating a property of the interpretation structure morphism
that is important in the proof of the preservation of soundness. In particular,
the injection morphisms from the components to the fibring enjoy this property.

An interpretation structure morphism (h, τ) : (Σ1, I1) → (Σ2, I2) is said to
be non-creative whenever for each e1 in E1 and e′2 : s′2 → t′2 in E′2h(e1) there is
e′1 in E′1e1 such that τ e

s′2t
′
2
(e′1) = e′2. Moreover, given an interpretation structure

morphism (h, τ) : (Σ1, I1) → (Σ2, I2) and an assignment ρ2 over I2, we denote
by

ρ2
(h,τ)

the assignment over I1 such that (ρ2
(h,τ))s1 = τ v((ρ2)hv(s1)).

The next result relates denotations in different interpretation structures
related by a non-creative interpretation structure morphism.

Lemma 6.1 Given a non-creative interpretation structure morphism (h, τ) :
(Σ1, I1)→ (Σ2, I2), a morphism ŵ1 of G1

+, and an assignment ρ2 over I2,

[[ŵ1]]I1ρ2
(h,τ)

= τ v([[h+(ŵ1)]]I2ρ2).

Proof: We show equivalently that [[w1]]I1ρ2
(h,τ)

= τ v([[h†(w1)]]I2ρ2) by induction
on the complexity of w1:

- w1 is εs1 . Then [[w1]]I1ρ2
(h,τ)

= (ρ2
(h,τ))s1 = τ v((ρ2)hv(s1)) = τ v([[εhv(s1)]]

I2ρ2) =
τ v([[h†(w1)]]I2ρ2).

- w1 is pv1...vn
i w10. Then [[w1]]I1ρ2

(h,τ)

= [[pv1...vn
i w10]]I1ρ2

(h,τ)

= ([[w10]]I1ρ2
(h,τ)

)i =
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(τ v([[h†(w10)]]I2ρ2))i = τ v(([[h†(w10)]]I2ρ2)i) = τ v([[ph
v(v1)...hv(vn)
i h†(w10)]]I2ρ2) =

τ v( [[h†(pv1...vn
i w10)]]I2ρ2);

- w1 is 〈w11, . . . , w1n〉w10. Then [[w1]]I1ρ2
(h,τ)

= [[〈w11, . . . , w1n〉w10]]I1ρ2
(h,τ)

=
[[w11w10]]I1ρ2

(h,τ)

. . . [[w1nw10]]I1ρ2
(h,τ)

which, by induction hypothesis, is equal to
τ v([[h†(w11w10)]]I2ρ2) . . . τ v([[h†(w1nw10)]]I2ρ2) equal to the set τ v([[h†(w11w10]]I2ρ2

. . . [[h†(w1nw10)]]I2ρ2) = τ v([[〈h†(w11), . . . , h†(w1n)〉h†(w10)]]I2ρ2) as we wanted to
show;

- w1 is ew10. So [[w1]]I1ρ2
(h,τ)

= [[ew10]]I1ρ2
(h,τ)

= trg′1(E′1e([[w10]]I1ρ2
(h,τ)

,−)) =
trg′1(E′1e(τ

v([[h†(w10)]]I2ρ2),−)) = τ v(trg′2(E′2h(e)([[h
†(w10)]]I2ρ2 ,−))) since (h, τ)

is non-creative, which is τ v([[h†(ew10)]]I2ρ2). QED

The relationship established for denotations can be extended to satisfaction
in a similar way.

Proposition 6.2 Given a non-creative interpretation structure morphism (h, τ) :
(Σ1, I1)→ (Σ2, I2), a morphism ϕ1 in G1

+, and an assignment ρ2 over I2,

I2, ρ2 
 h+(ϕ1) whenever I1, ρ2
(h,τ) 
 ϕ1.

Proof: Assume that I1, ρ2
(h,τ) 
 ϕ1. Henceforth [[ϕ1]]I1ρ2

(h,τ)

⊆ D1. Then
(τ v)−1([[ϕ1]]I1ρ2

(h,τ)

) ⊆ D2 since (h, τ) is an interpretation structure morphism
and so (τ v)−1(D1) ⊆ D2. So, by Lemma 6.1, (τ v)−1(τ v([[h+(ϕ1)]]I2ρ2)) ⊆ D2.
Hence [[h+(ϕ1)]]I2ρ2 ⊆ D2 and so I2, ρ2 
 h+(ϕ1). QED

The next result states the converse of the previous proposition under differ-
ent conditions.

Proposition 6.3 Given a interpretation structure morphism (h, τ) : (Σ1, I1)→
(Σ2, I2) such that τ v(D2) ⊆ D1, a schema formula ϕ1 in G1

+, and an assignment
ρ2 over I2,

I1, ρ2
(h,τ) 
 ϕ1 whenever I2, ρ2 
 h+(ϕ1).

Proof: Assume that I2, ρ2 
 h+(ϕ1). Henceforth [[h+(ϕ1)]]I2ρ2 ⊆ D2. Then
τ v([[h+(ϕ1)]]I2ρ2) ⊆ D1 by hypothesis. Hence [[ϕ1]]I1ρ2

(h,τ)

⊆ D1 by Lemma 6.1,
and so I1, ρ2

(h,τ) 
 ϕ1. QED

Recall from [20] the result stating that: A logic system is sound if it is sound
for its deductive rules.

Theorem 6.4 Soundness is preserved by the fibring of logic systems sound for
its rules.

Proof: Let L1 and L2 be logic systems sound for the rules. Note that the
rules of FibDed(D1,D2) are the image by the respective signature morphisms
of the rules in D1 and in D2, respectively. We show that Fib(L1,L2) is sound
for its inference rules. Let (Σ, I) = (Σ1, I1)(V2,π2,♦2) ] (Σ2, I2)(V1,π1,♦1) be an
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interpretation structure in the fibring and ρ an assignment over I. Let r1 be a
rule in D1. Assume that I, ρ 
 i1

+(proper(ANT(r1))). Then, by Proposition 6.3,
I1

(V2,π2,♦2), ρ(i1,τ1) 
 proper(ANT(r1)). Hence, I1, ρ
(i1,τ1) 
 proper(ANT(r1)) by

Proposition 3.7 and so, since L1 is sound for its rules, I1, ρ
(i1,τ1) 
 CONC(r1).

Again by Proposition 3.7, I1
(V2,π2,♦2), ρ(i1,τ1) 
 CONC(r1). Finally, by Propo-

sition 6.2, I, ρ 
 i1
+(CONC(r1)) since the morphism from (Σ1, I1)(V2,π2,♦2) to

(Σ, I) is non-creative. The proof for a rule in D2 follows a similar reasoning so
we omit it. QED

Basically, Theorem 6.4 says that soundness is in almost all cases preserved by
fibring, since normally a logic system does not contain interpretation structures
that are not sound for its rules. Soundness is useful for establishing the non-
collapse of intuitionistic into classic connectives, deductively, in Lc+i. Recall
that in Example 5.3 we already concluded that there is not, semantically, such
a collapse in Lc+i.

Example 6.5 The logic system Lc+i presented in Example 5.3 resulting from
the fibring of the logic system Lc for classical propositional logic and of the logic
system Li for intuitionistic propositional logic is sound. So, 6`Dc+i (¬i(¬i qi))⊃i
qi since 6�Ic+i (¬i(¬i qi))⊃i qi. ∇

Taking into account Theorem 6.4, it is straightforward to see that the fibring
of the logic systems composed by the deductive systems described in [20] and
with all the interpretation structures sound for the rules, is sound (the case
of the relevance logic has to be worked further due to the different notion of
derivation). Moreover, it is also straightforward to see that there is also no
collapse of the entailment and of the consequence relations of one system into
another.

7 Completeness preservation

The goal of this section is to investigate preservation of completeness. Preser-
vation of completeness means that the logic system resulting from the fibring
is complete whenever the component logic systems are complete. Usually com-
pleteness is not preserved unless we impose more properties on the components
of the logic systems at hand. That is, in most cases, it is not possible to prove
completeness preservation for all possible complete component logic systems.
We start by defining the canonical interpretation structure induced by a deduc-
tive system.

Canonical structure

Let D1 and D2 be deductive systems with the same set of sorts, and Γ a set of
formulas in G+ where G is G1]G2. The canonical structure SΓ

D2
(D1) generated

by D1 over D2 and Γ, is such that:

• SΓ
D2

(D1) = (Σ1, (G′1, α1, D1, �1)) where
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– G′1 = 〈V ′1 , E′1, src′1, trg′1〉 is such that

∗ V ′1 are the morphisms of G+ whose target is an element of V ;
∗ E′1(ŵ1 . . . ŵn, ŵ) is composed by all the m-edges e in E1 such

that ŵ = ê ◦ 〈ŵ1, . . . , ŵn〉 is in G+;

– αv
1(e : s→ v) = v and αe

1(c) = c;

– D1 = {ŵ ∈ V ′1 : Γ `D1]D2 ŵ};
– ◦1 is the morphism id♦ in G+.

In the sequel we will write SD2(D1) for S∅D2
(D1), and will assume that G means

the m-graph G1 ] G2 (the disjoint union of the two m-graphs). We now show
that the SD2(D1) is sound for the deductive rules in D1.

Lemma 7.1 Given deductive systems D1 and D2 with the same set of sorts, a
set Γ of formulas in G+, a path w : s → t over G†, and an assignment ρ over
SΓ
D2

(D1), [[w]]S
Γ
D2

(D1),ρ = ŵ ◦ ρs.

Proof: The proof follows by induction on the complexity of w:

- w is εs. Then [[w]]S
Γ
D2

(D1),ρ = ρs = ids ◦ ρs = ε̂s ◦ ρs = ŵ ◦ ρs;

- w is ps1i w1. Then [[w]]S
Γ
D2

(D1),ρ = [[ps1i w1]]S
Γ
D2

(D1),ρ = ([[w1]]S
Γ
D2

(D1),ρ)i =
(ŵ1 ◦ ρs)i = p̂s1i ◦ ŵ1 ◦ ρs = ŵ ◦ ρs;

- w is 〈w1, . . . , wn〉w0. Hence [[w]]S
Γ
D2

(D1),ρ = [[w1w0]]S
Γ
D2

(D1),ρ
. . . [[wnw0]]S

Γ
D2

(D1),ρ =
(ŵ1 ◦ ŵ0 ◦ ρs) . . . (ŵn ◦ ŵ0 ◦ ρs) = ̂〈w1, . . . , wn〉 ◦ ŵ0 ◦ ρ̂s as we wanted to show;

- w is ew1. Therefore [[w]]S
Γ
D2

(D1),ρ = trg′(E′e([[w1]]S
Γ
D2

(D1),ρ
,−)) = trg′(E′e(ŵ1 ◦

ρs,−)) = ê ◦ ŵ1 ◦ ρs = ŵ ◦ ρs. QED

The importance of the canonical structure is that in the context of this
structure it is possible to relate satisfaction with derivation.

Lemma 7.2 Given deductive systems D1 and D2 with the same set of sorts,
and a set Γ ∪ {ϕ : s → π} of schema formulas in G+, Γ `D1]D2 ϕ ◦ ρs if and
only if SΓ

D2
(D1), ρ 
 ϕ, for every assignment ρ over SΓ

D2
(D1).

Proof: Let ρ be an assignment over SΓ
D2

(D1). Then Γ `D ϕ ◦ ρs if and only if,

by Lemma 7.1, Γ `D [[ϕ]]S
Γ
D2

(D1),ρ iff [[ϕ]]S
Γ
D2

(D1),ρ ⊆ D iff SΓ
D2

(D1), ρ 
 ϕ. QED

We now state a useful lemma that when the proper premises of a rule are
derivable, then the conclusion of the rule is also derivable. We omit its proof
since it constitutes a particular case of Lemma 6.6 in [20].

Lemma 7.3 For every deductive rule r in D1, set of formulas Γ and expression
û in G+, Γ `D1]D2 CONC(r) ◦ û whenever Γ `D1]D2 proper(ANT(r)) ◦ û.

In the following two propositions we show that SΓ
D2

(D1) is sound for the
rules in D1.
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Proposition 7.4 For every deductive rule r in D1, set of formulas Γ in G+,
and assignment ρ over SΓ

D2
(D1), SΓ

D2
(D1), ρ 
 CONC(r) whenever SΓ

D2
(D1), ρ 


proper(ANT(r)).

Proof: Let proper(ANT(r)) be ϕ1 . . . ϕn. Assume SΓ
D2

(D1), ρ 
 proper(ANT(r)).
Then Γ `D1]D2 ϕi ◦ ρs, by Lemma 7.2, for i = 1, . . . , n. As a consequence,
Γ `D1]D2 CONC(r) ◦ ρs, by Lemma 7.3, and so, SΓ

D2
(D1), ρ 
 CONC(r), by

Lemma 7.2. QED

Weak completeness

We start by investigating preservation of weak completeness (that is, no hy-
potheses are present). With this purpose in mind, we need to better understand
the denotation of a formula in the fibring of two canonical structures.

Lemma 7.5 Given deductive systems D1 and D2 sharing the same set of
sorts V , a set Γ of formulas in G+ and a concrete path w over G†, (ŵ, ŵ) ∈
[[w]]S

Γ
D2

(D1)]SΓ
D1

(D2) if trg†(w) is an element of V .

Proof: The proof follows by induction on the complexity of w:

- w is ε♦. The thesis follows since (ŵ, ŵ) is (id♦, id♦) and [[w]]S
Γ
D2

(D1)]SΓ
D1

(D2) =
ρ♦ = {�} = {(�1, �2)} = {(id♦, id♦)};

- w is ps1i w1. Note that w1 is not ε♦, since otherwise s1 is ♦, which is not possible
since the source of a projection has length at least 2. Hence, the path w1 ends in
a tuple as it is straightforward to see. So, assume that w1 is 〈w11, . . . , w1n〉w0.
Then (ŵ, ŵ) = (p̂s1i ◦ŵ1, p̂

s1
i ◦ŵ1) = (p̂s1i ◦ ̂〈w11, . . . , w1n〉◦ŵ0, p̂

s1
i ◦ ̂〈w11, . . . , w1n〉◦

ŵ0) = (ŵ1i ◦ ŵ0, ŵ1i ◦ ŵ0) and [[w]]S
Γ
D2

(D1)]SΓ
D1

(D2) = [[ps1i w1]]S
Γ
D2

(D1)]SΓ
D1

(D2) =

([[w1]]S
Γ
D2

(D1)]SΓ
D1

(D2))i = ([[w11w0]]S
Γ
D2

(D1)]SΓ
D1

(D2)
. . . [[w1nw0]]S

Γ
D2

(D1)]SΓ
D1

(D2))i =
[[w1iw0]]S

Γ
D2

(D1)]SΓ
D1

(D2) and so the thesis follows by induction hypothesis;

- w is ew1. Observe that [[w]]S
Γ
D2

(D1)]SΓ
D1

(D2) = trg′(E′e([[w1]]S
Γ
D2

(D1)]SΓ
D1

(D2)
,−)).

The thesis follows since trg′(E′e((ŵ1, ŵ1),−)) ⊆ trg′(E′e([[w1]]S
Γ
D2

(D1)]SΓ
D1

(D2)
,−))

by induction hypothesis, and (ŵ, ŵ) = (ê ◦ ŵ1, ê ◦ ŵ1) ∈ trg′(E′e((ŵ1, ŵ1),−)).
QED

Recall from [20], the notion of representative which plays an important role
in the proof of completeness for a single logic system. A logic system contains
a representative of the canonical structure over a set Γ when it contains an
interpretation structure IΓ such that

• IΓ 
 ϕ implies SΓ(D) 
 ϕ;

• IΓ 
 Γ;

for every formula ϕ and set of formulas Γ in G+.
The next result shows that SD2(D1) ] SD1(D2) is a representative of the

canonical structure for the fibring of deductive systems D1 and D2.
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Proposition 7.6 Given deductive systems D1 and D2 sharing the same set of
sorts and a formula ϕ of formulas in L(Σ1 ] Σ2), then

SD2(D1) ] SD1(D2) 
 ϕ implies S(D1 ] D2) 
 ϕ.

Proof: Assume that SΓ
D2

(D1) ] SΓ
D1

(D2) 
 ϕ. Then [[ϕ]]S
Γ
D2

(D1)]SΓ
D1

(D2) is a
set of distinguished truth values in SΓ

D2
(D1) ] SΓ

D1
(D2). On the other hand, by

Lemma 7.5, (ϕ,ϕ) ∈ [[ϕ]]S
Γ
D2

(D1)]SΓ
D1

(D2). Therefore ϕ is distinguished in both
SΓ
D2

(D1) and SΓ
D1

(D2). Hence, Γ `D1]D2 ϕ and so ϕ is also distinguished in

SΓ(D1 ] D2). So SΓ(D1 ] D2) 
 ϕ since [[ϕ]]S
Γ(D1]D2) = {ϕ} using Lemma 6.4

of [20]. QED

In order to show preservation of weak completeness, we use the following
result proved in Theorem 6.9 of [20]: A logic system is weakly complete if it
contains a representative of the canonical structure over the empty set.

Theorem 7.7 Weak completeness is preserved by fibring of logic systems, each
containing the canonical structure over the other and the empty set.

Proof: Let L1 and L2 be such that SD2(D1) ∈ I1 and SD1(D2) ∈ I2. So
SD2(D1) ] SD1(D2) is in I. Using Proposition 7.6, we can conclude that
SD2(D1) ] SD1(D2) is a representative of the canonical structure generated by
D1 ] D2 and ∅. So the fibring has a representative of that deductive system
for the empty set. Hence, invoking Theorem 6.9 of [20], we can conclude that
L1 ] L2 is weakly complete. QED

We omit the proof of the next result since it follows straightforwardly by
Theorem 7.7 and Proposition 7.4.

Corollary 7.8 Weak completeness is preserved by fibring logic systems con-
taining all the interpretation structures that are sound with respect to the rules.

Corollary 7.8 basically says that in almost all cases the logic system resulting
from the fibring is at least weak complete. Similarly to Theorem 6.4, this hap-
pens since a logic system, normally, does not contain interpretation structures
that are not sound for its rules.

Example 7.9 Weak completeness for the logic system resulting from the fibring
of the logic systems for classical and intuitionistic propositional logics.
The logic system Lc+i presented in Example 5.3, resulting from the fibring of
the logic system Lc for classical propositional logic and of the logic system Li
for intuitionistic propositional logic, is weak complete. ∇

Taking into account Corollary 7.8, it is straightforward to see that the fibring
of the logic systems composed by the deductive systems described in [20] and
with all the interpretation structures sound for the rules, is weak complete (the
case of the relevance logic has to be worked further due to the different notion of
derivation). So, for instance, the fibring of the logic systems for paraconsistent
and modal logic T is weak complete as well as the fibring of the logic systems
for paraconsistent and intuitionistic propositional logics, as well as the fibring
of the logic systems for equational and paraconsistent propositional logics.
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Strong completeness

Preservation of strong completeness is a harder task in finding sufficient condi-
tions for the component logics. A key concept is the notion of a truth consistent
interpretation structure.

Given an interpretation structure I = 〈G′, β, �〉 over a signature Σ, a set
S ⊆ V ′π is truth consistent whenever S ⊆ D or S ∩D = ∅. The interpretation
structure I is truth consistent if for every e : v1 . . . vn → π in E and Si contained
in V ′vi such that Si is truth consistent when vi is π, for i = 1, . . . , n, then
trg′(E′e(S1 . . . Sn,−)) is truth consistent.

Lemma 7.10 Let I be a truth consistent interpretation structure over a sig-
nature Σ, ρ an assignment over I, w : s→ v1 . . . vn a path in G† with v1, . . . , vn
in V and [[w]]I,ρ = S1 . . . Sn with Si contained in V ′si for i = 1, . . . , n. Then Si
is truth consistent when si is π, for all i = 1, . . . , n.

Proof: The proof follows by induction on the complexity of w:

w is εs. Then [[w]]I,ρ = ρs which satisfies the requirement.

w is ps1i w1. Then [[w]]I,ρ = ([[w1]]I,ρ)i which is truth consistent by induction
hypothesis.

w is 〈w1, . . . , wn〉w0 and wi : s0 → si for i = 1, . . . , n and w0 : s → s0. Then
[[w]]I,ρ = [[w1w0]]I,ρ . . . [[wnw0]]I,ρ. So the result follows straightforwardly by
induction hypothesis.

w is ew1. Then [[w]]I,ρ is trg′(E′e([[w1]]I,ρ,−)). The result follows immediately,
using the induction hypothesis on [[w1]]I,ρ since I is truth consistent. QED

The following notion is the deductive counterpart of the truth consistency
presented above. It resembles congruence as was adopted in previous works like
[23]. But is that work the component logic systems had to share implication
which is not the case herein.

A deductive system D is said to be componentwise congruent for Γ whenever
Γ `D ϕi iff Γ `D ψi for i = 1, . . . , n implies

Γ `D c(ϕ1, . . . , ϕn) iff Γ `D c(ψ1, . . . , ψn)

for each m-edge c in Σ.
The following result relates componentwise congruence with truth consis-

tency over the canonical structures.

Lemma 7.11 Let D1 and D2 be deductive systems. If D1 ]D2 is component-
wise congruent then SΓ

D2
(D1) is truth consistent.

Proof: Assume that D1]D2 is componentwise congruent. Let e : v1 . . . vn → π
in E and Si contained in V ′vi such that Si is truth consistent when vi is π,
for i = 1, . . . , n. Let ϕ1, ϕ2 ∈ trg′(E′e(S1 . . . Sn,−)). Assume that ϕ1 is a
distinguished value. Let ϕi1, . . . , ϕin be such that ϕi = e ◦ (ϕi1 . . . ϕin) for
i = 1, 2. Observe that, for each j = 1, . . . , n, either ϕ1j , ϕ2j are distinguished
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values or none is. So either Γ `D1]D2 ϕ1j and Γ `D1]D2 ϕ2j or neither holds, for
j = 1, . . . , n. Using the fact that D1 ] D2 is componentwise congruent, either
Γ `D1]D2 ϕ1 and Γ `D1]D2 ϕ2 or neither holds. Hence Γ `D1]D2 ϕ2 and so ϕ2

is distinguished as well. QED

The following result establishes the preservation of truth consistency by the
fibring of canonical structures for the component logics.

Lemma 7.12 Let D1 and D2 be deductive systems. If SΓ
D2

(D1) and SΓ
D1

(D2)
are truth consistent then so is SΓ

D2
(D1) ] SΓ

D1
(D2).

Proof: Let e : v1 . . . vn → π in E and Si contained in V ′vi such that Si
is truth consistent when vi is π, for i = 1, . . . , n. Let (ϕ1, ϕ2), (ψ1, ψ2) ∈
trg′(E′e(S1 . . . Sn,−)). Assume that (ϕ1, ϕ2) is a distinguished value. Then ϕ1

and ϕ2 are distinguished elements in SΓ
D2

(D1) and SΓ
D1

(D2), respectively. As-
sume, with no loss of generality, that e ∈ E1. So ϕ1 = e ◦ (ϕ11 . . . ϕ1n) and
ψ1 = e ◦ (ψ11 . . . ψ1n) where (ϕ1i, δ2i) ∈ Si for some δ2i and (ψ1i, θ2i) ∈ Si for
some δ1i and θ2i, i = 1, . . . , n. Since Si is truth consistent then either (ϕ1i, δ2i)
and (ψ1i, θ2i) are distinguished values in SΓ

D2
(D1) ] SΓ

D1
(D2) or none is. So

either ϕ1i and ψ1i are distinguished values in SΓ
D2

(D1) or none is. So either
ϕ1 and ψ1 are distinguished values in SΓ

D2
(D1) or none is. Therefore ψ1 is a

distinguished element in SΓ
D2

(D1) and so (ψ1, ψ2) is a distinguished value in
SΓ
D2

(D1) ] SΓ
D1

(D2). QED

The next result shows that SΓ
D2

(D1) ] SΓ
D1

(D2) is a representative of the
canonical structure for the fibring of deductive systems D1 and D2, providing
that the fibring of deductive systems is componentwise congruent.

Proposition 7.13 Given deductive systems D1 and D2 sharing the same set
of sorts, and a set Γ ∪ {ϕ} of formulas in G+, then

• SΓ
D2

(D1) ] SΓ
D1

(D2) 
 ϕ implies SΓ(D1 ] D2) 
 ϕ;

• SΓ
D2

(D1) ] SΓ
D1

(D2) 
 Γ

assuming that D1 ] D2 is componentwise congruent for Γ.

Proof:
(1) SΓ

D2
(D1) ] SΓ

D1
(D2) 
 ϕ implies SΓ(D1 ] D2) 
 ϕ. The proof of this impli-

cation mimics the proof of Proposition 7.6 so we omit it.

(2) SΓ
D2

(D1) ] SΓ
D1

(D2) 
 Γ. Let γ ∈ Γ. Then Γ `D1]D2 γ. So γ is a
distinguished truth value in both SΓ

D2
(D1) and SΓ

D1
(D2) and so (γ, γ) is a

distinguished truth value in SΓ
D2

(D1) ] SΓ
D1

(D2). By Lemma 7.5, (γ, γ) ∈
[[γ]]S

Γ
D2

(D1)]SΓ
D1

(D2) and so all the truth values of [[γ]]S
Γ
D2

(D1)]SΓ
D1

(D2) are dis-
tinguished, since SΓ

D2
(D1) ] SΓ

D1
(D2) is truth consistent by Lemma 7.12 and

Lemma 7.11. Hence, SΓ
D2

(D1) ] SΓ
D1

(D2) 
 γ. QED
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We now introduce the well known notion of a maximal set of formulas. A
logic system L has maximals if for each consistent set Γ of formulas and formula
ϕ such that Γ 6`D ϕ, there is a consistent set Γ extending Γ such that Γ 6`D ϕ
and Γ ∪ {ψ} `D ϕ for every ψ /∈ Γ. We call Γ a maximal set for Γ and ϕ.

Theorem 7.14 A logic system with maximals containing a representative of
the canonical structure over a maximal set for each set of formulas and formula
is strong complete.

Proof: Let Γ be a set of formulas and ϕ a formula. Assume that Γ 6`D ϕ.
Then there is a maximal set Γ for Γ and ϕ. Let IΓ ∈ I be an interpretation
structure representing SΓ(D). Then, SΓ(D) 
 Γ and SΓ(D) 6
 ϕ and so IΓ 6
 ϕ
and IΓ 
 Γ. Therefore, Γ 6�I ϕ since IΓ 6
 ϕ and IΓ 
 Γ and IΓ ∈ I. QED

We are now ready to provide a sufficient condition for the preservation of
strong completeness by fibring.

Theorem 7.15 Strong completeness is preserved by fibring of logic systems
such that:

• the fibring has maximals, for each set of formulas Γ and formula, enjoying
componentwise congruence for Γ;

• each component contains the canonical structure over the other and those
maximal sets.

Proof: Let Γ be a set of formulas and ϕ a formula. Then there is a maximal set
Γ for Γ and ϕ. Moreover, D1]D2 is componentwise congruent for Γ. Moreover,
by hypothesis, SΓ

D2
(D1) ∈ I1 and SΓ

D1
(D2) ∈ I2. Using Proposition 7.13, we

can conclude that SΓ
D2

(D1) ] SΓ
D1

(D2) ∈ I is a representative of the canonical
structure SΓ(D1 ] D2). Finally, by Theorem 7.14, we can conclude that the
fibring is complete. QED

The conditions in Theorem 7.15 are not so general as the ones we obtained
for the preservation of soundness and weak completeness. Therefore, less logic
systems can be fibred with preservation of strong completeness. Nevertheless,
preservation of strong completeness holds, among others, in the fibring of modal
logics at least as stronger as T .

The preservation of soundness and completeness ensures that the graph-
theoretic semantics developed herein is adequate with respect to the envisaged
deductive system. Moreover, it provides a criterion for checking in a semantic
way that other combination approaches are sound and complete with respect to
the widely recognized deductive system for fibring. For instance, the combina-
tion approaches described in [22, 3]. We can further outline this idea. Consider
two logics each one characterized by a class of models M ′ and M ′′, respec-
tively. Let (Σ′, I ′,D′) and (Σ′′, I ′′,D′′) be graph-theoretic logic systems for
the same logics whose graph-theoretic fibring is sound and complete. Assume
that m′ tm′′ is the model resulting from combining m′ ∈ M ′ and m′′ ∈ M ′′.
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One can ask whether the combined logic characterized by the class of models
M = {m′ tm′′ : m′ ∈ M ′,m′′ ∈ M ′′} is sound and complete with respect to
the deductive system for fibring. The results in this paper help to provide an
answer to this question when the following conditions are satisfied:

• for every m ∈M there are I ′ ∈ I ′ and I ′′ ∈ I ′′ such that I ′ ] I ′′ satisfies
the same formulas as m;

• for every I ′ ∈ I ′ and I ′′ ∈ I ′′ there is m ∈ M such that m satisfies the
same formulas as I ′ ] I ′′.

The first condition guarantees that the combination is sound with respect to
the deductive system for fibring. For instance, assume that `D ϕ. Let m ∈ M
be an arbitrary model. Then, by the first condition, there are I ′ ∈ I ′ and
I ′′ ∈ I ′′ such that I ′ ] I ′′ satisfies the same formulas as m. By soundness of the
graph-theoretic approach we conclude that I ′ ] I ′′ 
 ϕ and so m satisfies ϕ as
desired.

The second condition guarantees that the combination is complete with
respect to the deductive system for fibring. For instance, assume that ϕ is valid
in M . It is enough to show that ϕ is valid in the graph-theoretic semantics
resulting from fibring. Let I ′ ∈ I ′ and I ′′ ∈ I ′′. Then, by the second condition,
there is m ∈M such that m and I ′ ] I ′′ satisfies the same formulas. So, I ′ ] I ′′
satisfies ϕ as wanted.

8 Concluding remarks

In the sequel of [20], we developed a graph-theoretic account of fibring of logic
systems. The approach is general enough to cover fibring of a large class of
logics, encompassing logics with a non-deterministic semantics as well as sub-
structural logics like relevance logic. Preservation of soundness and weak com-
pleteness were proved under very general assumptions. Preservation of strong
completeness by fibring requires a tighter context. To the best of our knowl-
edge, results on weak completeness were not proved before in previous work on
fibring.

It is also worthwhile to point out that the graph-theoretic setting provides
the means to avoid some well known collapses [7] in a very natural way, dif-
ferent from previous works on the topic [21, 3]. For instance, in the case of
the modulated fibring, the collapse was avoided by restricting instantiation in
derivation which is not the case in the graph-theoretic approach.

Several extensions of this work are worthwhile to pursue. The first step is
to analyze preservation results about cut elimination, interpolation, quantifier
elimination and decidability, among others. We hope to capitalize on the results
obtained in [5, 10, 17] for interpolation and general characterizations of logics
with cut elimination [18]. We also believe that the graph-theoretic approach
should be explored in the field of fusion of modal logics, namely to cope with
modal logics endowed with general semantics and having different valuation
sets. We also intend to investigate a graph-theoretic account of combination of
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theories with the aim of obtaining preservation of interpolation and decidability.
Some results on combining theories can be seen in [2, 13].
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[7] L. Fariñas del Cerro and A. Herzig. Combining classical and intuitionistic
logic. In Frontiers of Combining Systems, volume 3, pages 93–102. Kluwer
Academic Publishers, 1996.

[8] D. Gabbay. Fibring Logics, volume 38 of Oxford Logic Guides. Oxford
University Press, 1999.

[9] D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-
dimensional Modal Logics: Theory and Applications, volume 148 of Studies
in Logic and the Foundations of Mathematics. North-Holland Publishing
Co., 2003.

41



[10] D. M. Gabbay and L. Maksimova. Interpolation and Definability, vol-
ume 46 of Oxford Logic Guides. Oxford University Press, 2005. Modal and
intuitionistic logics.

[11] D. M. Gabbay and V. B. Shehtman. Products of modal logics. I. Logic
Journal of the IGPL. Interest Group in Pure and Applied Logics, 6(1):73–
146, 1998.

[12] D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Products of
‘transitive’ modal logics. The Journal of Symbolic Logic, 70(3):993–1021,
2005.

[13] S. Ghilardi, E. Nicolini, and D. Zucchelli. A comprehensive combination
framework. ACM Transactions on Computational Logic, 9(2):8–54, 2008.

[14] J. Y. Halpern, R. van der Meyden, and M. Y. Vardi. Complete axiom-
atizations for reasoning about knowledge and time. SIAM Journal on
Computing, 33(3):674–703 (electronic), 2004.

[15] R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. Spatial
logic+temporal logic=? In Handbook of Spatial Logics, pages 497–564.
Springer, 2007.

[16] S. Mac Lane. Categories for the Working Mathematician, volume 5 of
Graduate Texts in Mathematics. Springer-Verlag, New York, second edi-
tion, 1998.

[17] L. L. Maksimova. A method for proving interpolation in paraconsistent ex-
tensions of minimal logic. Algebra i Logika. Institut Diskretnŏı Matematiki
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