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Abstract

Sufficient conditions are provided for quantifier elimination to hold in
a first-order theory. The conditions have two main purposes: (1) to ensure
that satisfaction of existential formulas is reflected by an embedding; and
(2) to guarantee the existence of a “minimal" model of the theory extend-
ing a model of the universal formulas entailed by the theory. The first
goal is obtained by requiring that a theory is ∃-adequate and the second
by imposing the existence of an adjunction. Recognizing that, in some
cases, a “minimal" model extending another can be obtained by iterating
a construction, we also provide conditions that guarantee the existence of
a ω-“limit" functor identifying such an extension, when the theories are in
∀2. Examples are provided along the paper.
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1 Introduction

Quantifier elimination is a key property to be investigated, namely when study-
ing model completeness, completeness, minimality, definability or decidability
of a first-order theory. It was first used by Alfred Tarski for proving the decid-
ability of the theories of real closed fields, boolean algebras, and algebraically
closed fiels of characteristic 0 or prime characteristic, among others (see [43]),
and by Skolem, see [40]. Quantifier elimination has been used extensively by
the model theoretic community when investigating mathematical theories, see
for instance [21, 32, 10, 23, 17, 45, 27, 16, 2, 7, 28, 25, 5, 20, 43].

Nowadays quantifier elimination is also being used in theoretical computer
science, namely in the areas of theorem proving and data abstractions [47, 15,
48]. Moreover, there is also a trend, motivated by applications, for proving
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elimination of quantifiers of arbitrary order and for analyzing the computational
complexity of its decision problem, see [41, 14, 4, 31, 6, 13].

Quantifier elimination was first proved in a deductive way by showing how to
eliminate quantifiers in formulas of the form ∃xϕ where ϕ is a conjunction of lit-
erals, see, for instance, [43, 35, 42, 46, 11]. On the other hand, as first advocated
by Robinson, there are model theoretic ways to prove quantifier elimination, see
for instance [26, 19, 18, 38, 8, 34, 33].

Herein, looking into different proofs of quantifier elimination in specific the-
ories, we were able to abstract away the details and provide a sufficient (general)
condition for a theory Θ to have quantifier elimination. Firstly, there should
be an adjunction between the category Mod(Θ) (of the models of Θ and their
embeddings) and the category Mod(Θ∀) (where Θ∀ is the theory composed by
the formulas of the form ∀ψ entailed by Θ, where ψ is a quantifier free for-
mula) having as right adjoint the inclusion functor. Secondly, the theory should
be ∃-adequate for some sets of literals (a condition imposing the reflection of
satisfaction of relevant literals along specific embeddings).

The adjunction condition imposes a close relationship between Mod(Θ) and
Mod(Θ∀), see [24] or [1] for some background on category theory. To each model
I of Θ∀ we should be able to associate a “minimal" model I∗ of Θ extending I,
satisfying a “universal" property. Minimal in the sense that for every embedding
of I in a model I ′ of Θ there is an embedding of I∗ into I ′ that agrees in some
way with the original embedding, and universal in the sense that this embedding
is the unique that extends in this way the original embedding. On the other
hand, the ∃-adequate condition guarantees the reflection along an embedding
of the satisfaction of formulas of the form ∃xϕ where ϕ is a quantifier free
formula. We illustrate our results by applying them to the theories of non-
trivial torsion free divisible Abelian groups, Presburger arithmetic, real closed
fields and algebraically closed fields.

Relying on the good property that composition of adjunctions is still an
adjunction, the adjunction condition can be proved in a modular way. For
instance, in the context of the theory Θrcof of real closed ordered fields we es-
tablish the adjunction between Mod(Θ∀rcof) (whose objects are interpretation
structures induced by ordered integral domains) and Mod(Θrcof), by first estab-
lishing an adjunction from Mod(Θ∀rcof) to Mod(Θof) (whose objects are interpre-
tation structures induced by ordered fields) through the ordered fraction field
functor, and then an adjunction from Mod(Θof) to Mod(Θrcof).

Sometimes a “minimal" model extending another can be seen as obtained
by iterating a certain construction, like in the theory of algebraically closed
fields using the Artin construction [3]. Herein, we abstract away the details
of obtaining in this way such an extension, and provide general results that
can be used in several situations of this kind. More specifically, we start by
considering an arbitrary functor E defining the one step construction, and from
it we explicitly define a ω-“limit" functor Eω. Then we prove that under some
conditions over E, the functor Eω can indeed be used for proving that the
underlying theory enjoys quantifier elimination. It is worthwhile to mention that
we cover all ∀2 theories and that our approach is constructive, contrasting with
the generalized use of Zorn’s lemma for addressing these questions. Moreover
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we stress that the conditions are over E and not over Eω. We explore and
illustrate this technique in the context of algebraically closed fields.

As far as we know this more categorical perspective of quantifier elimination,
in the terms presented herein, is new. We offer a collection of techniques and
results that can be used to tackle the problem of whether a theory Θ enjoys
quantifier elimination, and which provides a road map than can be followed:
(1) Analyze the cardinality of the models of Θ; (2) Identify an exhaustive set
of literals for Θ; (3) Prove the ∃-adequate property; (4) Find the left adjoint of
the inclusion functor from Mod(Θ) to Mod(Θ∀).

We start with some preliminaries on Section 2 for recalling and introducing
some basic facts and definitions needed throughout the paper. In Section 3 we
discuss reflection of the satisfaction of existential formulas along an embedding
and reduce this question to the simpler question of a theory be ∃-adequate. As
illustration, the theories of non-trivial torsion free divisible Abelian groups, Pres-
burger arithmetic, real closed fields and algebraically closed fields, are showed
to be ∃-adequate. The sufficient conditions for quantifier elimination are es-
tablished in Section 4 and illustrated in the context of some of the running
examples. In the case of real closed fields we capitalize on the fact that the
composition of adjunctions is still an adjunction to consider an intermediate
category and two left adjoints functors whose composition is the left adjoint
required. By observing that for some theories a model extending in a “minimal"
way another is obtained by iterating ω-times a certain construction, we provide
in Section 5 a categorial view of this process and investigate sufficient condi-
tions over the functor for the one step construction, that guarantee that the
functor corresponding to its iteration ω-times, is useful for proving quantifier
elimination. The theory of algebraically closed fields is used to illustrate these
results. Finally in Section 6 we draw some concluding remarks and highlight
future work.

2 Preliminaries

In this section we recall and introduce some basic facts and definitions. We
consider that first-order signatures include a binary predicate ∼= for equality,
and assume that the denotation ∼=P of ∼= is =. As usual, a literal is either an
atomic formula or a negation of an atomic formula, and a theory over a signature
is a set of sentences (that is, formulas with no free variables). We write ρ ≡x σ
to indicate that assignments ρ and σ over a same interpretation structure are
x-equivalent, and assume, with no loss of generality, that each quantifier free
formula is presented as a finite disjunction of a finite conjunction of literals (that
is, is presented in disjunctive normal form).

Given a signature Σ we say that a set Γ of formulas locally entails a formula ϕ,
denoted by Γ �lΣ ϕ, if for every interpretation structure I over Σ and assignment
ρ over I, Iρ 
Σ ϕ whenever Iρ 
Σ Γ, and Γ entails ϕ, denoted by Γ �Σ ϕ, if for
every interpretation structure I over Σ, I 
Σ ϕ whenever I 
Σ Γ. Entailment
and local entailment coincide when Γ is a set of sentences and ϕ is a sentence.
Given a set Γ of formulas we denote by Γ�Σ the set of formulas entailed by Γ. In
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the sequel, in order to simplify the presentation, we implicitly assume that an
interpretation structure I is the tuple (D, ·F, ·P), an interpretation structure I ′

is the tuple (D′, ·F′ , ·P′), an interpretation structure I1 is the tuple (D1, ·F1 , ·P1),
and so on so forth.

A formula ϕ is said to be universal if ϕ is ∀ψ for some quantifier free formula
ψ, and given a theory Θ, we denote by Θ∀ the set of all universal sentences in
Θ�Σ . Given formulas ϕ1 and ϕ2, a theory Θ, and a set of literals Ω over Σ, we
say that ϕ1 is equivalent to ϕ2 in the context of Θ, denoted by ϕ⇔Θϕ2 whenever
Θ �Σ ϕ1⇔ ϕ2. Moreover, we say Ω is Θ-exhaustive, whenever for every literal
ν in L(Σ), there is a quantifier free formula ϕ using only literals in Ω such that
ϕ⇔Θ ν. A variable x is (Θ,Ω)-essential in a literal ν ∈ Ω if whenever µ⇔Θ ν
then x occurs in µ, for every µ ∈ Ω. The concept of (Θ,Ω)-essential generalizes
to any set of literals contained in Ω in the expected way.

Recall that {∀n}n∈N, {∀+
n }n∈N, {∃n}n∈N and {∃+

n }n∈N are the families of sets
inductively defined as follows:

• ∀0, ∃0 are the set of quantifier free formulas;

• ∀n+1 is composed by formulas of the form ∀ψ where ψ ∈ ∃+
n , and ∃+

n is the
least set such that ∃n ⊆ ∃+

n and is closed for conjunction and disjunction;

• ∃n+1 is composed by formulas of the form ∃ψ where ψ ∈ ∀+
n , and ∀+

n is the
least set such that ∀n ⊆ ∀+

n and is closed for conjunction and disjunction;

and, given interpretation structures I and I ′ over a signature Σ, an homomor-
phism h from I to I ′, denoted by h : I → I ′, is a map h : D → D′ such
that

• h(fF
n (d1, . . . , dn)) = fF′

n (h(d1), . . . , h(dn));

• if pP
n(d1, . . . , dn) = 1 then pP′

n (h(d1), . . . , h(dn)) = 1;

and an embedding h from I to I ′ is an injective homomorphism from I to I ′

such that pP
n(d1, . . . , dn) = 1 if pP′

n (h(d1), . . . , h(dn)) = 1.
We denote by IntΣ the category whose objects are the interpretation struc-

tures over Σ and the morphisms are the embeddings between those interpreta-
tion structures.

Proposition 2.1 Let h : I → I ′ be an embedding, ρ : X → D an assignment
and ϕ a quantifier free formula. Then

1. Iρ 
Σ ϕ if and only if I ′ h ◦ ρ 
Σ ϕ;

2. if Iρ 
Σ ∃xϕ then I ′ h ◦ ρ 
Σ ∃xϕ;

3. if I ′ 
Σ ϕ then I 
Σ ϕ;

4. if I ′ 
Σ ∀ϕ then I 
Σ ∀ϕ. ♦

We omit the proof of the previous proposition, Proposition 2.1, since it fol-
lows straightforwardly. The result on item 2. of Proposition 2.1 can be extended
to formulas in ∃+

1 as we now state.
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Proposition 2.2 Let h : I → I ′ be an embedding, ρ : X → D an assignment
and ϕ a formula in ∃+

1 with free variables x1, . . . , xn. Then I ′ h◦ρ 
Σ ϕ whenever
Iρ 
Σ ϕ. ♦

Given a set Γ of formulas over Σ, we denote by Mod(Γ) the category whose
objects are the models of Γ and the morphisms are the embeddings between
those models. We observe that Mod(Θ) is a subcategory of Mod(Θ∀) for any
theory Θ. Whenever Mod(Υ) is a subcategory of Mod(Γ), we denote the in-
clusion functor from Mod(Υ) to Mod(Γ) by JΥ,Γ. Moreover, we denote the
inclusion functor from Mod(Υ) to IntΣ by JΥ,Σ.

Proposition 2.3 Let Θ be a theory over Σ and h : I → I ′ an embedding in
Mod(Θ). Then h(I) is also a model in Mod(Θ). ♦

We omit the proof of the previous proposition, Proposition 2.3, since it
follows straightforwardly.

Proposition 2.4 Let I and I ′ be interpretation structures over Σ, h : I → I ′

an embedding and Θ a theory over Σ. Then, I ∈ Mod(Θ∀) if I ′ ∈ Mod(Θ).

Proof: Assume that I ′ ∈ Mod(Θ). Let (∀ϕ) ∈ Θ∀ where ϕ is a quantifier free
formula. Then, I ′ 
Σ (∀ϕ) and so, by Proposition 2.1, I 
Σ (∀ϕ). QED

3 Reflecting satisfaction of existential formulas

In item 2. of Proposition 2.1 we stated that satisfaction of ∃ϕ formulas where
ϕ is a quantifier free formula is preserved by embeddings. The reflection of the
satisfaction of those formulas by an embedding does not hold in general. In this
section we provide a sufficient condition for the reflection to happen. Such a
sufficient condition is based on the notion of (∃, x)-adequate.

Let Θ be a theory over a signature Σ, Ω a Θ-exhaustive set of literals, Ψ ⊆ Ω
and x a (Θ,Ω)-essential variable in Ψ. We say that Θ is (∃, x)-adequate for Ψ
and Ω if for every

• embedding h : I → I ′ in Mod(Θ);

• assignment ρ′ over I ′ with ρ′(x) in D′ \ h(D) and ρ′(y) in h(D) for y 6= x;

• quantifier free formula
∨n
j=1 δj with literals in Ω and i in 1, . . . , n such

that I ′ρ′ 
 δi;

there is an assignment ρ over I such that

• ρ′ ≡x h ◦ ρ;

• for every literal ν in δi, if ν ∈ Ψ then Iρ 
Σ ν;

• if ν ∈ Ω \Ψ and x is (Θ,Ω)-essential in ν then ν is not in δi.
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A theory Θ is ∃-adequate whenever it is (∃, x)-adequate for some variable x and
sets Ω and Ψ.

Observe that Ψ should be chosen so that when proposing such an assignment
ρ we should look only for the satisfaction of the literals of δi in Ψ. Note also
that if a theory Θ is (∃, x)-adequate for some variable x and sets Ω and Ψ then
for every variable y there is a set Ψy such that Θ is (∃, y)-adequate for Ω and
Ψy.

Proposition 3.1 Let Θ be an ∃-adequate theory and ϕ a quantifier free formula
over a signature Σ, h : I → I ′ in Mod(Θ) and σ an assignment over I. Then
Iσ 
Σ ∃xϕ whenever I ′ h ◦ σ 
Σ ∃xϕ.

Proof:
Assume that Θ is (∃, x)-adequate for a Θ-exhaustive set Ω of literals and for a
set Ψ ⊆ Ω and that x is (Θ,Ω)-essential in Ψ. With no loss of generality, assume
that ϕ is a quantifier free formula

∨n
i=1 δi whose literals are in Ω. Suppose that

I ′ h ◦ σ 
Σ ∃xϕ. Then there is an assignment ρ′ such that ρ′ ≡x h ◦ σ and
I ′ρ′ 
Σ ϕ. Assume that I ′ρ′ 
Σ δi. Let ρ be an assignment over I satisfying
the conditions in the definition of (∃, x)-adequate and ν a literal in δi. We have
two cases to consider:
(1) ν ∈ Ψ and so Iρ 
Σ ν;
(2) ν /∈ Ψ. Observe that ν ∈ Ω. Then, x is not (Θ,Ω)-essential in ν. Indeed,
otherwise ν would not occur in δi by definition of (∃, x)-adequate. Denote by
µ the literal equivalent to ν in which x does not occur. Therefore I ′ρ′ 
Σ µ.
Then I ′h ◦ ρ 
Σ µ, hence by Proposition 2.1, Iρ 
Σ µ and so Iρ 
Σ ν.
On the other hand, ρ is x-equivalent to σ: ρ(y) = σ(y) for any variable y 6= x
since h(ρ(y)) = ρ′(y) = h(σ(y)) and h is injective. Therefore, Iσ 
Σ ∃xϕ. QED

The ∃-adequate property is satisfied by a wide range of theories. As illustra-
tion, we now show that the theories for non-trivial torsion free divisible Abelian
groups, Presburger arithmetic, real closed fields and algebraically closed fields
are ∃-adequate.

Non-trivial torsion free divisible Abelian groups

Let Σtfdag be a signature such that F0 = {0}, F1 = {−}, F2 = {+} and P2 =
{∼=}, and Θtfdag be a theory for non-trivial abelian groups, see for instance [26],
enriched with the following axioms, for any n > 0:

• (∀x((¬(x ∼= 0))⇒ (¬(nx ∼= 0))));

• (∀y(∃x ((nx ∼= y)));

where

zx is


x+ · · ·+ x︸ ︷︷ ︸

z times

if z ≥ 0

−x+ · · ·+−x︸ ︷︷ ︸
−z times

otherwise.
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We can assume that each literal is either of the form

¬(t ∼= 0) or t ∼= 0

where t is z1x1 + . . . + . . . znxn for non-zero integers z1, . . . , zn and pairwise
distinct variables x1, . . . , xn.

Given a model I of Θtfdag, a and b in D, and an integer z such that za = b,
we denote such an element a by b

z . Observe that if also c ∈ D is such that
zc = b then a = c. Given an embedding h : I → I ′ in Mod(Θtfdag), if b

z exists
then h(b)

z exists and h( bz ) = h(b)
z . Indeed zh( bz ) = h(z bz ) = h(b).

The cardinality of the models of Θtfdag plays an important role in the exis-
tence of the assignment required by the ∃-adequate condition.

Proposition 3.2 Every model of Θtfdag has an infinite domain.

Proof: We show that for each model of Θtfdag there is an injective map from N
to it. Let I be a model of Θtfdag. Then D has at least one more element besides
0F. Let d be one such element. Consider the map h : N→ D such that

h(m) = dm.

and assume that m1 6= m2. Suppose without loss of generality that m1 < m2.
Then

dm1 = 0F +F dm1

6= d(m2 −m1) +F dm1 (†)
= dm2

and so h is injective. Regarding (†), let ρ be such that ρ(x) = d. Then Iρ 
Σtfdag

(¬(x ∼= 0)) and so Iρ 
Σtfdag (¬((m2 −m1)x ∼= 0)) by Θtfdag. Therefore 0F 6=
d(m2 −m1) as we wanted to show. QED

Let Ωtfdag be the set of all literals over Σtfdag and Ψtfdag the set of literals
of the form

¬((t+ zx) ∼= 0)

where x does not occur in t and z is non-zero such that there is no equivalent
literal in the context of Θtfdag in which x does not occur.

Proposition 3.3 The theory Θtfdag is (∃, x)-adequate for Ψtfdag and Ωtfdag.

Proof:
Let h : I → I ′ be an embedding in Mod(Θtfdag), ρ′ an assignment over I ′ such
that ρ′(x) ∈ D′\h(D) and ρ′(y) ∈ h(D) for every y 6= x, and

∨n
i=1 δi a quantifier

free formula such that I ′ρ′ 
Σtfdag δi for some i = 1, . . . , n.

Let ¬((t1 + z1x) ∼= 0), . . . ,¬((tn + znx) ∼= 0) be the literals of Ψtfdag in δi.

Consider the assignment ρ over I such that:

ρ(x) /∈ {−Fh
−1([[ti]]

I′ρ′)
zi

: i = 1, . . . , n}.
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and ρ(y) = h−1(ρ′(y)) for every y 6= x.

Note that [[ti]]
I′ρ′ ∈ h(D) since, by hypothesis, x does not occur in ti. Observe

also that there is such a value for ρ(x) since D is infinite by Proposition 3.2.
Then:

(a) ρ′ ≡x h ◦ ρ: Immediate by definition of ρ.

(b) Let ν ∈ δi be such that ν ∈ Ψtfdag. Hence ν is of the form ¬((ti + zix) ∼= 0)
for some i = 1, . . . , n. Suppose, by contradiction, that Iρ 6
Σ ¬((ti + zix) ∼= 0),
that is, Iρ 
Σ ((ti + zix) ∼= 0). Then [[ti]]

Iρ = −Fziρ(x) and so

ρ(x) = −F [[ti]]
Iρ

zi
= −Fh

−1([[ti]]
I′ρ′)

zi

which is a contradiction with the definition of ρ(x).

(c) Let ν ∈ Ωtfdag\Ψtfdag. Assume that x is (Θtfdag,Ωtfdag)-essential in ν. Hence
ν is of the form ((t+zx) ∼= 0) where z is a non-zero integer and x does not occur
in t. Suppose, by contradiction, that ν occurs in δi. Then I ′ρ′ 
Σ (t+ zx) ∼= 0,
hence [[t]]I

′ρ′ = −F′zρ′(x) and so

ρ′(x) = −F′ [[t]]
I′ρ′

z
= h(−F [[t]]Iρ

z
)

which is a contradiction with the initial hypothesis on ρ′. QED

Presburger arithmetic

Consider the theory of arithmetic as proposed by Presburger, see [30, 26]. Let
Σpa be the signature where: F0 = {0, 1}, F1 = {−}, F2 = {+}, P1 = {pn : n =
2, 3, . . .} and P2 = {∼=, <}, and Θpa be the theory composed by the sentences:

• ∀x (¬(x < x));

• ∀x ∀y∀z(((x < y) ∧ (y < z))→ (x < z));

• ∀x ∀y((x < y) ∨ (x ∼= y) ∨ (y < x));

• ∀x ∀y∀z((x < y)→ ((x+ z) < (y + z)));

• ∀x ∀y((x+ y) ∼= (y + x));

• ∀x ((0 + x) ∼= x);

• ∀x ∀y∀z((x+ (y + z)) ∼= ((x+ y) + z));

• ∀x ∀y∀z(((x+ (−y)) ∼= z)⇔ (x ∼= (y + z)));

• 0 < 1;

• ∀x ((x ≤ 0) ∨ (x ≥ 1));

• ∀x (pn(x)⇔∃y (x ∼= ny)) for each n = 2, 3, . . . ;
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• ∀x (
∨n−1
r=0 (pn(x+ r1) ∧

∧
i 6=r ¬pn(x+ i1))) for each n = 2, 3, . . . .

Observe that pn is interpreted as the elements divisible by n. We start by
discussing the cardinality of the models of Θpa.

Proposition 3.4 Every model of Θpa has an infinite domain.

Proof: Let I be a model of Θpa. Consider the map h : N→ D such that

h(m) = 1Fm.

Then:

(a) 0F <F 1Fm for every positive natural m. Base: m is 1. Then the thesis
holds immediately by the axiomatics in Θpa. Step: m > 1. Then:

0F <F 1F

= 1F +F 0F

<F 1F +F 1F(m− 1) by the axioms in Θpa since 0F <F 1F(m− 1) by HI
= 1Fm.

(b) h is injective. Assume that m1 6= m2 and suppose with no loss of generality
that m1 < m2. Then

1Fm1 = 1Fm1 +F 0F

<F 1Fm1 +F 1F(m2 −m1) by Θpa and (a) since 0F <F 1F(m2 −m1)
= 1Fm2

and so h(m1) 6= h(m2). QED

Let Ωpa be the set of literals of the form

pn(t), s < t and t ∼= 0

where s and t are terms.

Lemma 3.5 The set Ωpa is Θpa-exhaustive.

Proof:
It is enough to observe that

• (¬pn(s))⇔Θpa

∨
i=1,...,n−1

pn(s+ i);

• (¬(s ∼= t))⇔Θpa ((s < t) ∨ (t < s));

• (¬(s < t))⇔Θpa ((s ∼= t) ∨ (t < s)).

QED
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Let Ψpa be the set of literals of the form

pn(t+ zx), t < zx and zx < t

where x does not occur in t and z is a non zero integer. It is obvious that x is
(Θpa,Ωpa)-essential in Ψpa.

Proposition 3.6 The theory Θpa is (∃, x)-adequate for Ψpa and Ωpa.

Proof:
Let h : I → I ′ be an embedding in Mod(Θpa), x a variable, ρ′ an assignment
over I ′ such that ρ′(y) ∈ h(D) for every y 6= x and ρ′(x) ∈ D′\h(D) and

∨n
i=1 δi

a quantifier free formula whose literals are in Ωpa such that I ′ρ′ 
Σpa δi for some
i = 1, . . . , n.

In the context of Θpa, observe that u < v is equivalent to −v < −u and
pn(t) is equivalent to pn(−t), and given natural n′ > 0, pn(t) is equivalent to
pn′n(n′t) and u < v is equivalent to n′u < n′v. So with no loss of generality
let pn1(mx + t1), . . . , pnm1

(mx + tm1), s1 < mx, . . . , sm2 < mx and mx <
v1, . . . ,mx < vm3 be the literals of Ψpa occurring in δi where m is a non-zero
natural and x does not occur in t1, . . . , tm1 , s1, . . . , sm2 , and v1, . . . , vm3 .

Let ρ̂′ be an assignment x-equivalent to ρ′ such that ρ̂′(x) = mρ′(x) and δ̂i the
formula

(
m1∧
i=1

pni(x+ ti))
∧

(
m2∧
j=1

sj < x)
∧

(
m3∧
k=1

x < vk).

Then I ′ρ̂′ 
Σpa δ̂i.

Denote by q′i the element of D′ such that

ρ̂′(x) +F′ [[ti]]
I′ρ̂′ = niq

′
i.

Observe that for every assignment σ over I such that h ◦ σ ≡x ρ′ there is no
natural number n such that

max([[s1]]Iσ, . . . , [[sm2 ]]Iσ)−F min([[v1]]Iσ, . . . , [[vm3 ]]Iσ) = n1F

as we now show: let σ be an assignment over I such that h ◦ σ ≡x ρ′ and
suppose, by contradiction, that there is such a natural number n. Then

max([[s1]]I
′ρ′ , . . . , [[sm2 ]]I

′ρ′)−F′ min([[v1]]I
′ρ′ , . . . , [[vm3 ]]I

′ρ′) = n1F′ .

Note that there is no natural number n′ less than n with

max([[s1]]I
′ρ′ , . . . , [[sm2 ]]I

′ρ′) +F′ n′1F′ <F′ mρ′(x)

and
mρ′(x) <F′ max([[s1]]I

′ρ′ , . . . , [[sm2 ]]I
′ρ′) +F′ (n′ + 1)1F′

since otherwise

0F′ < mρ′(x)−F′ max([[s1]]I
′ρ′ , . . . , [[sm2 ]]I

′ρ′)−F′ n′1F′ < 1F′

10



which cannot happen by Θpa. Therefore, since < is a total order and

max([[s1]]I
′ρ′ , . . . , [[sm2 ]]I

′ρ′) <F′ mρ′(x) <F′ min([[v1]]I
′ρ′ , . . . , [[vm3 ]]I

′ρ′)

there is a natural number n′ with

max([[s1]]I
′ρ′ , . . . , [[sm2 ]]I

′ρ′) +F′ n′1F′ = mρ′(x)

which implies that ρ′(x) ∈ h(D) which is a contradiction;

Let 0 ≤ r′ < n1 . . . nk be a natural and q′ an element of D′ such that

−F′ ρ̂′(x) +F′ r′1F′ = mn1 . . . nkq
′

and 0 ≤ r < mn1 . . . nk a natural and q an element of D with

h−1(max([[s1]]I
′ρ′ , . . . , [[sm2 ]]I

′ρ′)) +F r1F = mn1 . . . nkq.

So, take an assignment ρ̂ over I with h ◦ ρ̂ ≡x ρ′ such that:

ρ̂(x) = h−1(max([[s1]]I
′ρ′ , . . . , [[sm2 ]]I

′ρ′)) +F (r + r′ +mn1 . . . nk)1F.

Observe that D is infinite by Proposition 3.4. Then:
(1) Iρ̂ 
Σ δ̂i. Let ν̂ be a literal in δ̂i. We have to consider the following cases:

(i) ν̂ is sj < x for j in {1, . . . ,m2}. Then

[[sj ]]
Iρ̂ ≤F h−1(max([[s1]]I

′ρ′ , . . . , [[sm2 ]]I
′ρ′)

<F h−1(max([[s1]]I
′ρ′ , . . . , [[sm2 ]]I

′ρ′)) +F (r + r′ +mn1 . . . nk)1F

= ρ̂(x)

and so Iρ̂ 
Σ ν̂;

(ii) ν̂ is x < vk for i in {1, . . . ,m3}. Suppose, by contradiction, that

h−1(min([[v1]]I
′ρ′ , . . . , [[vm3 ]]I

′ρ′)) <F ρ̂(x).

Then
h−1(min([[v1]]I

′ρ′ , . . . , [[vm3 ]]I
′ρ′))−F ρ̂(x) <F 0F.

Hence

h−1(min([[v1]]I
′ρ′ , . . . , [[vm3 ]]I

′ρ′))−F h−1(max([[s1]]I
′ρ′ , . . . , [[sm2 ]]I

′ρ′))
<F

(r + r′ +mn1 . . . nk)1F

which contradicts the fact that for any assignment σ over I with h◦σ ≡x ρ′ there
is no such natural number. Similarly if h−1(min([[v1]]I

′ρ′ , . . . , [[vm3 ]]I
′ρ′)) = ρ̂(x).

Hence
ρ̂(x) <F h−1(min([[v1]]I

′ρ′ , . . . , [[vm3 ]]I
′ρ′))

≤F [[vk]]
Iρ̂

11



and so Iρ̂ 
Σpa ν̂;

(iii) ν̂ is pni(x+ ti) for i in {1, . . . ,m1}. Observe that

ρ̂(x) = h−1(max([[s1]]I
′ρ′ , . . . , [[sm2 ]]I

′ρ′)) +F (r + r′ +mn1 . . . nk)1F

= mn1 . . . nkq +F r′1F +F mn1 . . . nk1F

= r′1F +F mn1 . . . nk(q +F 1F)

and so
h(ρ̂(x)) = r′1F′ +F′ mn1 . . . nk(h(q) +F′ 1F′).

Since

h(ρ̂(x) +F [[ti]]
Iρ̂) = r′1F′ +F′ mn1 . . . nk(h(q) +F′ 1F′) +F′ [[ti]]

I′ρ̂′

= mn1 . . . nkq
′ +F′ ρ̂′(x) +F′ mn1 . . . nk(h(q) +F′ 1F′) +F′ [[ti]]

I′ρ̂′

= mn1 . . . nkq
′ +F′ niq

′
i +F′ mn1 . . . nk(h(q) +F′ 1F′)

then
pF′
ni(h(ρ̂(x) +F [[ti]]

Iρ̂)) = 1

and so, since h is an embedding,

pF
ni(ρ̂(x) +F [[ti]]

Iρ̂) = 1.

Therefore Iρ̂ 
Σpa ν̂.

(2) Iρ̂ 
Σpa pm(x). Capitalizing in some parts of (iii)

h(ρ̂(x)) = r′1F′ +F′ mn1 . . . nk(h(q) +F′ 1F′)

= mn1 . . . nkq
′ +F′ ρ̂′(x) +F′ mn1 . . . nk(h(q) +F′ 1F′)

= mn1 . . . nkq
′ +F′ mρ′(x) +F′ mn1 . . . nk(h(q) +F′ 1F′).

Hence
pF′
m(h(ρ̂(x)))

and so, since h is an embedding,

pF
m(ρ̂(x)) = 1.

as we wanted to show.

So, let d ∈ D be such that
ρ̂(x) = md

and let ρ be an assignment x-equivalent to ρ̂(x) such that ρ(x) = d. Then

ρ̂(x) = mρ(x)

and since Iρ̂ 
Σpa δ̂i and taking into account the definition of δi we can conclude
that

Iρ 
Σpa δi

as we wanted to show. Moreover:
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(a) It is immediate to see that ρ′ ≡x h ◦ ρ.

(b) Let ν ∈ δi be such that ν ∈ Ψpa. Then Iρ 
Σpa ν since Iρ 
Σpa δi as we
showed above.

(c) Let ν ∈ Ωpa \ Ψpa be such that x is (Θpa,Ωpa)-essential in ν. Then ν is
of the form ((s + wx) ∼= 0) where w is a non zero integer and s is a term not
containing x. Assume, by contradiction, that ν ∈ δi. Then I ′ρ′ 
Σpa ν, hence
ρ′(x) ∈ h(D), which is a contradiction. QED

Algebraically closed fields

Consider algebraically closed fields, see [22, 26]. Let Σf be the signature for fields
where: F0 = {0, 1}, F1 = {−}, F2 = {+,×}, and P2 = {∼=}, and Θf the theory
containing the field axioms. Let Σacf = Σf be the signature for algebraically
closed fields, and Θacf an enrichment of Θf with the following sentences:

(†) ∀x1 . . . ∀xn∃y (yn + x1y
n−1 + · · ·+ xn ∼= 0),

for every n > 0.

Proposition 3.7 Every model of Θacf has an infinite domain.

Proof: Let I be a model of Θacf. Assume by contradiction that it is finite.
Consider the map q : D → D such that

q(d) = d2 +F (−F1F)d.

Then q(0F) = 0F and q(1F) = 0F. Hence q is not surjective and so there is a ∈ D
such that q(d) 6= a for every d in D. That is, d2 +F (−F1F)d 6= a for every d in
D. Hence d2 +F (−F1F)d +F (−Fa) 6= 0F for every d in D. Therefore there are
values of x1 and x2 for which the polynomial equation y2 + x1y + x2

∼= 0 does
not have a root in D, and so, I does not satisfy the axiom (†) in Θacf. QED

Observe that each atomic formula can be seen as a polynomial equation

q(x1, . . . , xn, x) ∼= 0.

Let Ωacf be the set of all literals and Ψacf be the set of all negations of atomic
formulas

¬(q(x1, . . . , xn, x) ∼= 0)

where x is (Θacf,Ωacf)-essential.

Proposition 3.8 The theory Θacf is (∃, x)-adequate for Ψacf and Ωacf.

Proof:
Let h : I → I ′ be an embedding in Mod(Θacf), ρ′ an assignment over I ′ such
that ρ′(y) ∈ h(D) for every y 6= x and ρ′(x) ∈ D′ \h(D) and

∨n
i=1 δi a quantifier

free formula such that I ′ρ′ 
Σacf δi for some i = 1, . . . , n.
Assume that ¬q1(x11, . . . , x1n1 , x) ∼= 0, . . . ,¬qk(xk1, . . . , xknk , x) ∼= 0 are the
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literals of Ψacf in δi.

Let ρ be an assignment over I such that h◦ρ ≡x ρ′ and ρ(x) is not a root of the
polynomial equation qFi (h−1(ρ′(xi1)), . . . , h−1(ρ′(xini)), x) = 0F for i = 1, . . . , k
which exists since D is infinite, see Proposition 3.7, and the number of such
roots are finite. Then:
(i) Let ν in δi be such that ν ∈ Ψacf. Then Iρ 
Σacf ν by definition of ρ.
(ii) Let ν ∈ ΩΘacf \Ψacf. Assume that x is (Θacf,Ωacf)-essential in ν with respect
to ΩΘacf . Then ν is of the form q(x1, . . . , xn, x) ∼= 0. Assume, by contradiction,
that

q(x1, . . . , xn, x) ∼= 0 ∈ δi.

Then I ′ρ′ 
Σacf q(x1, . . . , xn, x) ∼= 0 and so ρ′(x) is a solution of the polynomial
equation qF

′
(ρ′(x1), . . . , ρ′(xn), x) = 0F′ . Let m be the number of roots of the

polynomial equation qF(ρ(x1), . . . , ρ(xn), x) = 0F in D and d1, . . . , dm those
roots. Note that h(d1), . . . , h(dm) are also the m roots in D′ of the equation
qF
′
(h(ρ(x1)), . . . , h(ρ(xn)), x) = 0F′ . So ρ′(x) = h(dj) for some j in {1, . . . ,m}

since ρ′(xi) = h(ρ(xi)) for i = 1, . . . , n, which contradicts the fact that ρ′(x) ∈
D′ \ h(D). QED

Real closed fields

Let Σof be the enrichment of the signature Σf with a new binary predicate
symbol <, and Θrcof, the theory of real closed ordered fields, see [26, 19, 6], an
enrichment of the theory Θof, for ordered fields, with the following axioms:

• ∀x1 . . . ∀xn∃y ((yn+x1y
n−1 + · · ·+xn−1y+xn) ∼= 0) for every odd natural

number n;

• ∀x∃y ((y2 ∼= x) ∨ (y2 ∼= (−x));

• ∀x1 . . . ∀xn ¬((x2
1 + · · ·+ x2

n + 1) ∼= 0).

Recall that an ordered field is a pair (R,<) where R is a field and <⊆ R2 is a
linear order such that for every elements r, r1 and r2 of R: (1) r1 + r < r2 + r
whenever r1 < r2; and (2) 0 < r1 × r2 whenever 0 < r1 and 0 < r2. So
Θof extends Θf with the axioms for linearity as well as axioms representing the
properties above. Observe that, in an ordered field, for every elements r, r1,
r2, r3 and r4 of the field: (1) either −r < 0 < r or r = 0 or r < 0 < −r; (2)
r1 +r3 < r2 +r4 whenever r1 < r2 and r3 < r4; and (3) r1×r < r2×r whenever
r1 < r2 and 0 < r.

A real closed field can be ordered by a binary relation defined such that
the relation holds between any two of its elements whenever their difference is
a nonzero square. That ordering is the only possible ordering of a real closed
field, see [26]. The models of Θrcof are exactly the models induced by real closed
fields with that unique ordering. Observe that

Θrcof �Σof ∀x∀y((x < y)↔ ∃z ((¬(z ∼= 0)) ∧ ((x+ z2) ∼= y))).
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In fact, for every real closed field there is a model of Θrcof with the same domain
such that a set is definable over the real closed field if and only if it is definable
over the Θrcof model.

Proposition 3.9 Every model of Θrcof has an infinite domain.

Proof: Let I be a model of Θrcof. Assume by contradiction that it is finite.
Consider the map q : D → D such that q(d) = d3 +F (−F1F)d. Then q(0F) = 0F

and q(1F) = 0F. Hence q is not surjective and so there is a ∈ D such that
q(d) 6= a for every d in D. That is, d3 +F (−F1F)d 6= a for every d in D. Hence
d3 +F (−F1F)d +F (−Fa) 6= 0F for every d in D. Therefore there are values of
x1, x2 and x3 for which the polynomial equation y3 + x1y

2 + x2y+ x3
∼= 0 does

not have a root in D, and so, I cannot satisfy all the axioms in Θrcof. QED

Let Ωrcof be the set of all atomic formulas, that is, with no loss of generality,
formulas of the form

q(x1, . . . , xn, x) ∼= 0 or 0 < q(x1, . . . , xn, x).

Lemma 3.10 The set Ωrcof is Θrcof-exhaustive.

Proof:
It is enough to observe that

• ¬(q(x1, . . . , xn, x) ∼= 0) is equivalent to (0 < −q(x1, . . . , xn, x)) ∨ (0 <
q(x1, . . . , xn, x)) in Θrcof;

• ¬(0 < q(x1, . . . , xn, x)) is equivalent to (q(x1, . . . , xn, x) ∼= 0) ∨ (0 <
−q(x1, . . . , xn, x)) in Θrcof.

QED

Let Ψrcof be the set of atomic formulas of the form

0 < q(x1, . . . , xn, x)

where x is (Θrcof,Ωrcof)-essential.

Proposition 3.11 The theory Θrcof is (∃, x)-adequate for Ψrcof and Ωrcof.

Proof:
Let h : I → I ′ be an embedding in Mod(Θrcof), ρ′ an assignment over I ′ such
that ρ′(y) ∈ h(D) for every y 6= x and ρ′(x) ∈ D′ \h(D) and

∨n
i=1 δi a quantifier

free formula such that I ′ρ′ 
Σof δi for some i = 1, . . . , n.

Assume that 0 < q1(x11, . . . , x1n1 , x), . . . , 0 < qk(xk1, . . . , xknk , x) are the literals
of Ψrcof in δi. Since I ′ρ′ 
Σof δi then ρ

′(x) is a solution of the polynomial inequal-
ities 0F′ <F′ qF

′
1 (ρ′(x11), . . . , ρ′(x1n1), x), . . . , 0F′ <F′ qF

′

k (ρ′(xk1), . . . , ρ′(xknk), x).

Observe that each root of qF
′

1 (ρ′(x11), . . . , ρ′(x1n1), x) in D′ is in h(D). Suppose
by contradiction that there is a root d′ of qF

′
1 (ρ′(x11), . . . , ρ′(x1n1), x) inD′ which
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is not in h(D). Then I ′ is a proper algebraic extension of h(I). But this can
not happen since h(I) is also a model of Θrcof, by Proposition 2.3, and so does
not have any proper formally real algebraic extension.

Let a′i be the root of q
F′
i (ρ′(xi1), . . . , ρ′(xini), x) less than ρ′(x) closest to ρ′(x) if

the polynomial has a root less than ρ′(x), otherwise let a′i be undefined. More-
over let b′i be the root of q

F′
1 (ρ′(xi1), . . . , ρ′(xini), x) greater than ρ′(x) closest to

ρ′(x) if the polynomial has a root greater than ρ′(x), otherwise let b′i be unde-
fined. Let a′ be the maximum of the a′i that are not undefined, or be undefined
if all the a′i are undefined. Similarly, let b′ be the minimum of the b′i that are
not undefined, or be undefined if all the b′i are undefined.

Let ρ be an assignment over I such that h◦ρ ≡x ρ′. Observe that D and D′ are
both infinite by Proposition 3.9. In order to define ρ(x) consider the following
four cases:
(i) a′ and b′ are defined. Then a′ and b′ are in h(D), a′ <F′ ρ′(x) and ρ′(x) <F′ b′.
Hence a′ 6= b′ and so h−1(a′) 6= h−1(b′). So there are an infinite number of el-
ements of D strictly between h−1(a′) and h−1(b′) since I is a real closed field.
Let ρ(x) be one such element;

(ii) a′ is undefined and b′ is defined. Then for every i = 1, . . . , n there is no
root in D of qFi (h−1(ρ′(xi1)), . . . , h−1(ρ′(xini)), x) whose image by h is less than
ρ′(x). Observe that b′ is in h(D). Let ρ(x) be an element in D less than h−1(b′);

(iii) a′ is defined and b′ is undefined. Let ρ(x) be an element in D greater than
h−1(a′);

(iv) a′ and b′ are undefined. Let ρ(x) be any element of D.

Hence by the intermediate value theorem and since h is an embedding, ρ(x)
is a solution of the inequalities 0F <F qFi (h−1(ρ′(xi1)), . . . , h−1(ρ′(xini)), x) for
i = 1, . . . , n.

Therefore:
(i) Let ν in δi be such that ν ∈ Ψrcof. Then Iρ 
Σ ν by definition of ρ.
(ii) Let ν ∈ Ωrcof\Ψrcof be such that x is (Θrcof,Ωrcof)-essential in ν. Then ν is of
the form q(x1, . . . , xn, x) ∼= 0. Assume, by contradiction, that q(x1, . . . , xn, x) ∼=
0 ∈ δi. Then I ′ρ′ 
Σ q(x1, . . . , xn, x) ∼= 0 and so ρ′(x) is a solution of the poly-
nomial equation qF

′
(ρ′(x1), . . . , ρ′(xn), x) = 0F′ . Hence, by the observation at

the beginning of the proof, ρ′(x) ∈ h(D) which can not happen by the initial
hypothesis over ρ′. So q(x1, . . . , xn, x) ∼= 0 /∈ δi. QED

4 Quantifier elimination via adjunction

In this section we establish sufficient conditions for a theory to have quantifier
elimination. We start by recalling and introducing some useful notions and
stating some needed results.

A theory Θ over Σ has quantifier elimination providing that for every formula
ϕ there is a quantifier free formula ϕ∗ such that Θ �Σ ϕ⇔ ϕ∗ and ϕ and ϕ∗

have the same set of free variables.
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Proposition 4.1 Let Θ be a theory over Σ. Assume that for every quanti-
fier free formula ψ, with {x, x1, . . . , xn} as the set of free variables, there is a
quantifier free formula ψ̄, with {x1, . . . , xn} as the set of free variables, such
that

Θ �Σ (∃xψ)⇒ ψ̄.

Then, Θ has elimination of quantifiers. ♦

The following result establishes a relationship between the existence of a quan-
tifier free formula equivalent to a given formula in the scope of a theory and the
satisfaction of that formula by models of the theory.

Proposition 4.2 Let Σ be a signature, Θ a theory over Σ and ϕ a formula over
Σ. Then the following statements are equivalent:

• there is a quantifier free formula ψ over Σ such that fvΣ(ψ) = fvΣ(ϕ) and
Θ �Σ (ϕ⇔ ψ);

• I1 g1 ◦ ρ 
Σ ϕ if and only if I2 g2 ◦ ρ 
Σ ϕ for all ρ over I whenever I1

and I2 are models of Θ and I is an interpretation structure such that there
is an embedding gj : I → Ij for j = 1, 2. ♦

For the proof of Proposition 4.2 see [26].
Let Θ be a theory over Σ, gj : I → Ij an embedding in Mod(Θ∀) for j = 1, 2

with I1, I2 ∈ Mod(Θ). We say that I1 is g1, g2-equivalent to I2 in Θ, written
I1 ≈Θ

g1,g2
I2 if

I1g1 ◦ ρ 
Σ ∃xϕ if and only if I2g2 ◦ ρ 
Σ ∃xϕ

for every x ∈ fvΣ(ϕ), assignment ρ over I and quantifier free formula ϕ over Σ.

Proposition 4.3 Let Θ be a theory over Σ and gj : I → Ij an embedding in
Mod(Θ∀) for j = 1, 2 with I1, I2 ∈ Mod(Θ) such that

I1 ≈Θ
g1,g2

I2.

Then Θ has quantifier elimination.

Proof:
Let ϕ be a quantifier free formula such that x ∈ fvΣ(ϕ) and ρ an assignment
over I. From the hypothesis we can infer:

I1 g1 ◦ ρ 
 (∃xϕ) if and only if I2 g2 ◦ ρ 
 (∃xϕ).

By Proposition 4.2, we conclude that there is a quantifier free formula ψ with
fvΣ(ψ) = fvΣ(ϕ) \ {x} and such that

Θ �Σ (ψ⇔ (∃xϕ)).

Finally, by Proposition 4.1, Θ has quantifier elimination. QED
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Given functors F,H : C → D, a natural transformation α : F → H is a
family

α = {αc : F (c)→ H(c)}c∈|C|
of morphisms in D such that

H(f) ◦ αc1 = αc2 ◦ F (f)

for every morphism f : c1 → c2 in C.
Quantifier elimination can be characterized in a more algebraic way, using

the concept of natural transformation, as we now establish in Lemma 4.4.

Lemma 4.4 Let Θ be an ∃-adequate theory over Σ. Assume that there is
a natural transformation ηΘ∀ : idΘ∀ → JΘ,Θ∀ ◦ EΘ∀,Θ such that given any
embedding h : I → JΘ,Θ∀(I ′) in Mod(Θ∀), there is a morphism h̄ : EΘ∀,Θ(I)→
I ′ in Mod(Θ) such that JΘ,Θ∀(h̄)◦ηΘ∀I = h. Then Θ has quantifier elimination.

Proof: We show that under the hypothesis of the lemma the conditions of
Proposition 4.3 hold. Let I ′1 and I ′2 be models in Mod(Θ), I an interpretation
structure over Σ, ρ an assignment over I, h1 : I → I ′1 and h2 : I → I ′2 em-
beddings and ϕ a quantifier free formula such that x ∈ fvΣ(ϕ). Let ηΘ∀ be a
natural transformation satisfying the conditions of the lemma.
Observe that I ∈ Mod(Θ∀), by Proposition 2.4, and I ′1 and I ′2 are JΘ,Θ∀(I ′1) and
JΘ,Θ∀(I ′2), respectively. Therefore, h1 : I → JΘ,Θ∀(I ′1) and h2 : I → JΘ,Θ∀(I ′2)
are embeddings in Mod(Θ∀). Then, using the hypothesis, there are embeddings
h̄1 : EΘ∀,Θ(I)→ I ′1 and h̄2 : EΘ∀,Θ(I)→ I ′2 in Mod(Θ) such that h̄1◦(ηΘ∀)I = h1

and h̄2 ◦ (ηΘ∀)I = h2.
According to Proposition 4.3, to conclude that Θ has quantifier elimination it
is enough to show that

I ′1h1 ◦ ρ 
Σ ∃xϕ if and only if I ′2h2 ◦ ρ 
Σ ∃xϕ.

Suppose that
I ′1 h1 ◦ ρ 
Σ (∃xϕ).

Then, since h̄1 ◦ (ηΘ∀)I = h1,

I ′1 h̄1 ◦ (ηΘ∀)I ◦ ρ 
Σ (∃xϕ).

Hence, by Proposition 3.1, since Θ is ∃-adequate

EΘ∀,Θ(I) (ηΘ∀)I ◦ ρ 
Σ (∃xϕ).

Therefore
I ′2 h̄2 ◦ (ηΘ∀)I ◦ ρ 
Σ (∃xϕ)

by Proposition 2.1, and so
I ′2 h2 ◦ ρ 
Σ ∃xϕ

since h̄2 ◦ (ηΘ∀)I = h2. Similarly for the other direction. QED
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It is possible to go further in the algebraic characterization of quantifier elim-
ination by connecting it with the existence of an adjunction between Mod(Θ∀)
and Mod(Θ). We now recall the concept of adjunction.

Let F : C → D and H : D → C be functors. Functor F is said to be left
adjoint of functor H, denoted by

F a H

if there is a natural transformation

η : idC → H ◦ F,

called the unit of the adjunction satisfying the following universal property:
given any morphism h : c→ H(d) in C, there is a unique morphism h̄ : F (c)→ d
in D such that

H(h̄) ◦ ηc = h.

We say that there is an adjunction between categories C and D if there are
functors F : C→ D and H : D→ C such that F a H.

Using Lemma 4.4 it is possible to conclude that a theory enjoys quantifier
elimination whenever there is a left adjoint for the inclusion functor JΘ,Θ∀ from
Mod(Θ) to Mod(Θ∀) and Θ is ∃-adequate. We omit its proof since it follows
straightforwardly.

Theorem 4.5 Let Θ be an ∃-adequate theory over Σ. Assume that there is a
left adjoint EΘ∀,Θ of JΘ,Θ∀ . Then Θ has quantifier elimination. ♦

I JΘ,Θ∀(EΘ∀,Θ(I))

JΘ,Θ∀(I ′)

h

��:
::

::
::

::
::

::
::

::
::

::
:

JΘ,Θ∀(h̄)

��

ηΘ∀I //

=

EΘ∀,Θ(I)

I ′

h̄

��

Mod(Θ∀) Mod(Θ)

E
Θ∀,Θ−→

J
Θ,Θ∀←−

Figure 1: Adjunction between Mod(Θ∀) and Mod(Θ)

We now apply Theorem 4.5 to the theories of non-trivial torsion free divisible
Abelian groups, Presburger arithmetic and real closed fields. The elimination
of quantifiers for Θacf is used as illustration of the results in Section 5.
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Non-trivial torsion free divisible Abelian groups

Due to Theorem 4.5 since Θtfdag is ∃-adequate by Proposition 3.3 it is enough
to show that JΘtfdag,Θ

∀
tfdag

has a left adjoint in order to conclude that Θtfdag has
quantifier elimination.

Proposition 4.6 Functor JΘtfdag,Θ
∀
tfdag

has a left adjoint.

Proof:
Let EΘ∀tfdag,Θtfdag

be a functor from Mod(Θ∀tfdag) to Mod(Θtfdag) such that:

• EΘ∀tfdag,Θtfdag
(I) = Ī where Ī, denoted by Ī = (D∼, ·F̄, ·P̄) is the interpre-

tation structure over Σtfdag defined as follows:

– the domain D∼ of Ī is the quotient of the set {(d, n) : d ∈ D,n ∈
N, n > 0} by the binary relation ∼ such that (d1, n1) ∼ (d2, n2) if
n2d1 = n1d2;

– [(d1, n1)] +F̄ [(d2, n2)] = [(n2d1 +F n1d2, n1n2)];

– −F̄[(d1, n1)] = [(−Fd1, n1)];

– 0F̄ = [(0F, 1)];

• EΘ∀tfdag,Θtfdag
(h)([(d1, n)]) = [(h(d1), n)] for any h : I1 → I2;

Observe that Ī is a model of Θtfdag and EΘ∀tfdag,Θtfdag
(h) is well defined. That is,

EΘ∀tfdag,Θtfdag
(h)([(d1, n1)]) = EΘ∀tfdag,Θtfdag

(h)([(d2, n2)])

whenever (d2, n2) ∈ [(d1, n1)].

Consider the map ηI : D → D∼ such that

ηI(d) = [(d, 1)]

for each d ∈ D.

1. ηI is a group homomorphism. For instance

ηI(d1 +F d2) = [(d1 +F d2, 1)]

= [(d1, 1)] +F̄ [(d2, 1)]

= ηI(d1) +F̄ ηI(d2)

The other conditions are omitted since they follow similarly.

2. ηI is injective.
Assume that ηI(d1) = ηI(d2). Then [(d1, 1)] = [(d2, 1)] and by definition of ∼
d1 = d2.
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3. η is a natural transformation from idMod(Θ∀tfdag) to JΘtfdag,Θ
∀
tfdag
◦EΘ∀tfdag,Θtfdag

.
In fact, given h : I1 → I2,

((JΘtfdag,Θ
∀
tfdag
◦ EΘ∀tfdag,Θtfdag

(h)) ◦ ηI)(d1) = ((JΘtfdag,Θ
∀
tfdag
◦ EΘ∀tfdag,Θtfdag

(h))(ηI(d1))

= (JΘtfdag,Θ
∀
tfdag
◦ EΘ∀tfdag,Θtfdag

(h))([(d1, 1)])

= [(h(d1), 1)]
= ηI2(h(d1))
= (ηI2 ◦ h)(d1)
= (ηI2 ◦ id(h))(d1)

4. Universal property.
Let h : I → JΘtfdag,Θ

∀
tfdag

(I ′) be an embedding in Mod(Θ∀tfdag). Let h̄ : D∼ → D′

be a map such that
h̄([(d, n)]) = d′

where d′ is the unique element of I ′ such that nd′ = h(d).
(a) h̄ is a group homomorphism.

h̄([(d1, n1)] +F̄ [(d2, n2)]) = h̄([n2d1 +F n1d2, n2n1])

=
h(n2d1 +F n1d2)

n1n2

=
h(n2d1)
n1n2

+F′ h(n1d2)
n1n2

=
h(d1)
n1

+F′ h(d2)
n2

= h̄([(d1, n1)] +F′ h̄([(d2, n2)].

(b) h̄ is injective.
Assume that h̄([(d1, n1)]) = h̄([(d2, n2)]). Then

h(d1)
n1

=
h(d2)
n2

,

hence n2h(d1) = n1h(d1) and so, by the injectivity of h, n2d1 = n1d2. Therefore,
(d1, n1) ∼ (d2, n2) and so [(d1, n1)] = [(d2, n2)].

(c) h̄ ◦ ηI1 = h. In fact:

(h̄ ◦ ηI1)(d1) = h̄(ηI1(d1))
= h̄([(d1, 1)])
= h(d1)
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(d) if g′ ◦ ηI1 = h where g′ is a embedding in Mod(Θtfdag) from EΘ∀tfdag,Θtfdag
(I1)

to I ′ then g′ = h̄. In fact:

g′([(d1, n1)]) = n1g
′([(d, 1)]) where n1[(d, 1)] = [(d1, n1)] by Θtfdag

= n1((g′ ◦ ηI1)(d))
= n1h(d)
= n1h̄([(d, 1)])
= h̄(n1[(d, 1)])
= h̄([(d1, n1)]).

Hence, η is the unit of the adjunction. QED

So we can now conclude that Θtfdag has quantifier elimination.

Theorem 4.7 The theory Θtfdag has quantifier elimination. ♦

The proof of Theorem 4.7 is omitted since it follows immediately by The-
orem 4.5 taking into account that Θtfdag is ∃-adequate by Proposition 3.3 and
that JΘtfdag,Θ

∀
tfdag

has a left adjoint by Proposition 4.6.

Presburger arithmetic

We start by defining how to obtain a model of Θpa extending in a minimal way
a model of Θ∀pa. The minimality of the extension is confirmed when establishing
the adjunction in Proposition 4.9. Given I ∈ Mod(Θ∀pa), let

Ī = (D̄, ·F̄, ·P̄)

be an interpretation structure over Σpa defined as follows:

• D̄ is the quotient of the set {(d, n) : d ∈ D,n ∈ N and (n = 1 or PP
n (d) =

1)} by the equivalence relation ∼ where (d1, n1) ∼ (d2, n2) if and only if
0F = n2(−Fd1) +F n1d2;

• [(d1, n1)] +F̄ [(d2, n2)] = [(n2d1 +F n1d2, n1n2)];

• −F̄[(d1, n1)] = [(−Fd1, n1)];

• 0F̄ = [(0F, 1)];

• 1F̄ = [(1F, 1)];

• [(d1, n1)] <P̄ [(d2, n2)] if and only if 0F <P n2(−Fd1) +F n1d2;

• PnP̄(d̄) =

{
1 if d̄ is nd̄1 for some n ∈ N and d̄1 ∈ D̄
0 otherwise

.

We now show that the interpretation structure Ī defined in this way is indeed
a model of Θpa.
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Proposition 4.8 Given I ∈ Mod(Θ∀pa) then Ī ∈ Mod(Θpa).

Proof: The proof follows by showing that Ī 
 θ for each θ in Θpa. For instance:

- Ī 
 ∀x((x + (−x)) ∼= 0). Let ρ be an assignment over Ī. Suppose ρ(x) =
[(d, n)]. Then

[(d, n)] +F̄ (−F̄[(d, n)]) = [(d, n)] +F̄ [(−Fd, n)]
= [(nd+F n(−Fd), n2)]
= [(0, n2)]
= 0F̄

- Ī 
 0 < 1. In fact

1(−F0F) +F 1(1F) = 0F +F 1F

= 1F

>P 0F

The proofs of the other cases are omitted since they follow similarly. QED

Proposition 4.9 The functor JΘpa,Θ∀pa
has a left adjoint.

Proof:
Let EΘpa be the functor from Mod(Θ∀pa) to Mod(Θpa) such that:

• EΘpa(I) = Ī;

• EΘpa(h)([(d1, n)]) = [(h(d1), n)] for any h : I1 → I2;

and η a family {ηI}I∈Mod(Θ∀pa) of embeddings in Mod(Θ∀pa) where ηI : I →
JΘpa,Θ∀pa

(EΘpa(I)) is such that ηI(d) = [(d, 1)]. Then:

1. η is a natural transformation. Indeed: let h ∈ Mod(Θ∀pa)(I1, I2). Then:

(ηI2 ◦ idMod(Θ∀pa)(h))(d1) = (ηI2 ◦ h)(d1)
= ηI2(h(d1))
= [(h(d1), 1)]
= EΘpa(h)([(d1, 1)])
= JΘpa,Θ∀pa

(EΘpa(h))([(d1, 1)])
= (JΘpa,Θ∀pa

◦ EΘpa)(h)([(d1, 1)])
= (JΘpa,Θ∀pa

◦ EΘpa)(h)(ηI1(d1))
= ((JΘpa,Θ∀pa

◦ EΘpa)(h) ◦ ηI1)(d1)

2. let h : I → JΘpa,Θ∀pa
(I ′) be an embedding in Mod(Θ∀pa). Consider the embed-

ding h̄q in Mod(Θpa) from EΘpa(I) to I ′ such that

h̄q([(d, n)]) =

{
h(d) if n = 1
h(y) otherwise, where y ∈ D such that d = ny
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Then h̄q ◦ ηI = h. In fact

(h̄q ◦ ηI)(d) = h̄q([(d, 1)])
= h(d)

3. there is a unique embedding g′ in Mod(Θpa) from EΘpa(I) to I ′ such that
JΘpa,Θ∀pa

(g′) ◦ ηI = h. Let g′ be an embedding in Mod(Θpa) from EΘpa(I) to I ′

such that JΘpa,Θ∀pa
(g′) ◦ ηI = h, and [(d, n)] be an element of D̄. Consider two

cases:

- n = 1. Then
g′([(d, n)]) = g′(ηI(d))

= JΘpa,Θ∀pa
(g′)(ηI(d))

= (JΘpa,Θ∀pa
(g′) ◦ ηI)(d)

= h(d)
= h̄q([(d, n)])

as we wanted to show;

- n 6= 1. Let y ∈ D be such that d = ny. Then [(d, n)] = [(y, 1)]. So

g′([(d, n)]) = g′([(y, 1)])
= g′(ηI(y))
= JΘpa,Θ∀pa

(g′)(ηI(y))
= (JΘpa,Θ∀pa

(g′) ◦ ηI)(y)
= h(y)
= h̄q([(d, n)])

as we wanted to show. QED

Theorem 4.10 The theory Θpa has quantifier elimination.

Proof:
The result follows by Theorem 4.5 since Θpa is ∃-adequate by Proposition 3.6
and since, by Proposition 4.9, JΘpa,Θ∀pa

has a left adjoint. QED

Real closed fields

In order to use Theorem 4.5 to prove that Θrcof is a theory with quantifier
elimination, we show in this section that the functor JΘrcof,Θ

∀
rcof

has a left ad-
joint, denoted by EΘ∀rcof,Θrcof

. We capitalize on the fact that the composition
of adjunctions is also an adjunction and define the functor EΘ∀rcof,Θrcof

as the
composition of the functor RC with the functor oFF as depicted here:

Mod(Θ∀rcof)
oFF→ Mod(Θof)

RC→︸ ︷︷ ︸
E

Θ∀rcof,Θrcof

Mod(Θrcof)
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where oFF is introduced in Proposition 4.11 and RC is introduced in Proposi-
tion 4.15.

We recall that a field is said to be real or formally real if −1 is not a sum of
squares, and is real closed if and only if it is real and has no proper algebraic
extension which is real. It can be proven that a field is orderable if and only if
it is real. Moreover a orderable field has characteristic zero. As a consequence,
finite fields cannot be ordered. Recall also the basic concept of zero divisors,
integral domain and ordered integral domain. More specifically, elements r1 and
r2 of a ring are said to be zero divisors whenever r1 and r2 are not zero and its
product is zero. An integral domain is a commutative ring with no zero divisors
such that the zero and the unit are distinct. An ordered integral domain is an
integral domain with a linear order such that for every elements r, r1 and r2 of
the ring: (1) r1 + r < r2 + r whenever r1 < r2; and (2) 0 < r1 × r2 whenever
0 < r1 and 0 < r2.

Observe that the models of the theory Θ∀rcof are precisely the interpretation
structures induced by ordered integral domains.

Proposition 4.11 Let oFF = (oFF0, oFF1) be such that, given a model I of
Θ∀rcof,

oFF0(I) = (D∗, ·F
∗
, ·P
∗
),

where:

• D∗ is the quotient of the set (D×(D\{0F}))×(D×(D\{0F})) induced by
the equivalence relation ≈ where (d1, d2) ≈ (d3, d4) if and only if d1×Fd4 =
d3 ×F d2;

• +F∗([(d1, d2)], [(d3, d4)]) = [(d1 ×F d4 +F d3 × d2, d2 ×F d4)];

• −F∗([(d1, d2)]) = [(−Fd1, d2)];

• ×F∗([(d1, d2)], [(d3, d4)]) = [(d1 ×F d3, d2 ×F d4)];

• 0F∗ = [(0F, d)] for some d ∈ D \ {0F};

• 1F∗ = [(1F, 1F)];

• ∼=F∗([(d1, d2)], [(d3, d4)]) = 1 if and only if [(d1, d2)] = [(d3, d4)];

• [(d1, d2)] <P∗ [(d3, d4)] whenever

– either 0F <P d3 ×F d2 +F (−Fd1)×F d4 and 0F <P d2 ×F d4;

– or d3 ×F d2 +F (−Fd1)×F d4 <
P 0F and d2 ×F d4 <

P 0F;

and
oFF1(h : I → I ′) : oFF(I)→ oFF(I ′)

is such that
oFF(h)([(d1, d2)]) = [(h(d1), h(d2))]

for every [(d1, d2)] in oFF(I). Then oFF is a functor from Mod(Θ∀rcof) to
Mod(Θof).
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Proof:
(1) oFF0(I) is well defined. In particular, the operations are well defined. For
instance, consider the case of −F∗ , that is, we show that if (d3, d4) ∈ [(d1, d2)]
then (−Fd3, d4) ∈ [(−Fd1, d2)]. Assume that (d3, d4) ∈ [(d1, d2)]. Then, by
definition of ≈,

d1 ×F d4 = d3 ×F d2

and so
−F(d1 ×F d4) = −F(d3 ×F d2).

On the other hand,

(d1 ×F d4) +F ((−Fd1)×F d4) = 0F,

hence
((−Fd1)×F d4) = ((−Fd3)×F d2)

and, therefore, (−Fd3, d4) ∈ [(−Fd1, d2)].

(2) oFF0(I) is a model of Θof. For instance:

(i) oFF0(I) 
Σ (∀x ((x+ 0) ∼= x)). Indeed, let ρ be an assignment over oFF0(I)
and ρ′ ≡x ρ. Then

oFF0(I)ρ′ 
Σ ((x+ 0) ∼= x)) iff ρ(x) +F′ 0F′ = ρ(x)
iff +F′([(d1, d2)], [(0F, d)]) = [(d1, d2)]
iff [(d1 ×F d, d2 ×F d)] = [(d1, d2)]
iff [(d1, d2)] = [(d1, d2)]
iff true

(ii) oFF0(I) 
Σ (∀x∃y ((x × y) ∼= 1)). In fact, let ρ be an assignment over
oFF0(I), and assume that ρ(x) = [(d1, d2)]. Consider ρ′ ≡x ρ such that ρ′(x) =
(d2, d1). Then

oFF0(I)ρ′ 
Σ ((x× y) ∼= 1) iff (ρ′(x)×F′ ρ′(y)) = [(1F, 1F)]
iff ([(d1, d2)]×F′ [(d2, d1)]) = [(1F, 1F)]
iff [(d1 ×F d2, d2 ×F d1)] = [(1F, 1F)]
iff [(d1 ×F d2, d1 ×F d2)] = [(1F, 1F)]
iff true

(3) oFF1(h) is injective. Indeed:

oFF1(h)([(d1, d2)]) = oFF1(h)([(d3, d4)]) (def of oFF1(h)) iff
[(h(d1), h(d2))] = [(h(d3), h(d4))] (def of ≈) iff

h(d1)×F∗
′
h(d4) = h(d3)×F∗

′
h(d2) h homomorphism iff

h(d1 ×F∗ d4) = h(d3 ×F∗ d2) h injective iff
d1 ×F∗ d4 = d3 ×F∗ d2 (def of ≈) iff
[(d1, d2)] = [(d3, d4)]

(4) oFF1(h) is an embedding. By (3) and taking into account, for instance,
that:
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(i) oFF1(h)(0F∗) = 0F∗
′
. Indeed:

oFF1(h)(0F∗) = oFF1(h)([(0F, d)]) def of 0F∗

= [(h(0F), h(d))] def of oFF1(h)

= [(0F′ , h(d))] h embedding

= 0F∗
′

def of 0F∗
′

(ii) oFF1 preserves the order. Assume that h(d2) ×F′ h(d4) ≥P′ 0F′ and that
[(d1, d2)] <P∗ [(d3, d4)]. Since h is an embedding, then d2 ×F d4 ≥P 0F. Then

0F <P d3 ×F d2 +F (−Fd1)×F d4

and so 0F′ <P′ h(d3 ×F d2 +F (−Fd1)×F d4). Since, h is an homomorphism

0F′ <P′ h(d3)×F′ h(d2) +F′ (−F′h(d1))×F′ h(d4))

and so [h(d1), h(d2))] <P∗′ [h(d3), h(d4))] as we wanted to show.

Similarly for the other function and predicate symbols.

(5) oFF1 preserves identities and composition. The proof is omitted since it
follows straightforwardly by case analysis. QED

Given a model I of Θ∀rcof the interpretation structure oFF0(I) is called the
ordered field of fractions induced by the ordered integral domain I. Observe
that Mod(Θof) ⊆ Mod(Θ∀rcof) since every ordered field is an ordered integral
domain. Let JΘof,Θ

∀
rcof

: Mod(Θof)→ Mod(Θ∀rcof) be the inclusion functor.

Proposition 4.12 Functor oFF is left adjoint of the inclusion functor JΘof,Θ
∀
rcof

.

Proof: Given I in Mod(Θ∀rcof) take ηI : D → D∗ such that ηI(d) = [(d, 1F)] for
every d ∈ D. Then:
(a) ηI is injective. Indeed:

ηI(d1) = ηI(d2) if and only if
d1 ×F 1F = d2 ×F 1F if and only if
d1 = d2.

(b) ηI : I → JΘof,Θ
∀
rcof

(oFF(I)) is an embedding. By (a) and taking into account,
for instance, that:

(i) ηI(0F) = 0F∗ . Indeed:

ηI(0F) = [(0F, 1F)] = 0F∗ .

(ii) ηI(d1 ×F d2) = ηI(d1)×F∗ ηI(d2). Indeed:

ηI(d1 ×F d2) = [(d1 ×F d2, 1F)]
= [(d1, 1F)]×F∗ [(d2, 1F)]
= ηI(d1)×F∗ ηI(d2).
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(iii) ηI preserves the order. That is, if d1 <
P d2 then ηI(d1) <P∗ ηI(d2). Assume

that d1 <
P d2. Then

d2 ×F 1F +F (−Fd1)×F 1F = d2 +F (−Fd1) > 0F

as we wanted to show.

(c) the family η = {ηI}I∈Mod(Θrcof∀ ) is a natural transformation. The proof is
omitted since it follows straightforwardly.

We now show that oFF is left adjoint of JΘof,Θ
∀
rcof

having η as the unit of the
adjunction. Let I be a model of Θ∀rcof, I

′ a model of Θof and h : I → JΘof,Θ
∀
rcof

(I ′)
a morphism in Mod(Θ∀rcof). Consider the map h̄ : D∗ → D′ such that:

h̄([(d1, d2)]) = h(d1)×F′ h(d2)−1.

Then:

(1) h̄ is injective. Indeed:

h̄([(d1, d2)]) = h̄([(d3, d4)]) iff
h(d1)×F′ h(d2)−1 = h(d3)×F′ h(d4)−1 iff
h(d1)×F′ h(d4) = h(d2)×F′ h(d3) (inverse) iff
h(d1 ×F d4) = h(d2 ×F d3) (h homomorphism) iff
d1 ×F d4 = d2 ×F d3 (h injective) iff
[(d1, d2)] = [(d3, d4)]

(2) h̄ is an embedding. By (1) and taking into account that:

h̄([(d1, d2)]×F∗ [(d3, d4)]) = h̄([d1 ×F∗ d3, d2 ×F∗ d4])
= h(d1 ×F∗ d3)×F′ h(d2 ×F∗ d4)−1

= h(d1)×F′ h(d3)×F′ h(d4)−1 ×F′ h(d2)−1

= h(d1)×F′ h(d2)−1 ×F′ h(d3)×F′ h(d4)−1

= h̄([(d1, d2)])×F′ h̄([(d3, d4)])

and similarly for the other conditions for function and predicate symbols.

(3) JΘof,Θ
∀
rcof

(h̄)(ηI(d)) = JΘof,Θ
∀
rcof

(h̄)([(d, 1F)]) = h(d)×F′ 1F′ = h(d).

(4) Unicity. Assume that g′ : oFF0(I)→ I ′ is an embedding such that

JΘof,Θ
∀
rcof

(g′) ◦ ηI(d) = h(d).

Then
g′([d1, d2]) = g′([d1, 1F]×F∗ [d2, 1F]−1)

= g′([d1, 1F])×F′ g′([d2, 1F])−1

= h(d1)×F′ h(d2)−1

= h̄([d1, 1F])×F′ h̄([d2, 1F])−1

= h̄([d1, d2])

as we wanted to show. QED
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The objective now is to define the functor

Mod(Θof)
RC→ Mod(Θrcof).

For this purpose, we need some results related to the real closure of an
ordered field (for more details, see [9]). Recall first that a field F ′ is called a
real closure of an ordered field (F,<) whenever: (1) F ′ ⊇ F is an algebraic
extension of F ; (2) F ′ is real closed; and (3) the unique ordering of F ′ extends
the ordering of F , i.e., the inclusion of F into F ′ preserves the ordering. The
results are the following:

Proposition 4.13 Every ordered field has a real closure. Given two real clo-
sures of an ordered field there exists a unique isomorphism between them coin-
ciding on the elements of the ordered field. ♦

Proposition 4.14 Let (F,≤) be an ordered field, R a real closure of (F,≤)
and R′ a real closed extension of F whose ordering extends that of F . Then
there exists a unique F -homomorphism from R to R′. ♦

Observe that any field homomorphism is either identically zero or is injective,
see for instance [12].

Proposition 4.15 The pair RC = (RC0,RC1) such that

• RC0(I) is a real closure of I;

• RC1(h : I1 → I2) is the unique embedding from RC0(I1) to RC0(I2)
extending h;

is a functor RC : Mod(Θof)→ Mod(Θrcof).

Proof:
The element RC0(I) is a real closed field by definition.

The proof that RC1 preserves identities and composition follows immediately
using the uniqueness condition of the embedding, see Proposition 4.14. QED

We now show that RC is left adjoint to the inclusion functor JΘrcof,Θof .

Proposition 4.16 The functor RC is left adjoint to the inclusion functor JΘrcof,Θof

from Mod(Θrcof) to Mod(Θof).

Proof:
For each model I of Θof let ηI be a map from I to RC(I) such that ηI(d) = d
for each d in I. It is immediate to conclude that ηI is an embedding. Denote by
η the family {ηI}I∈Mod(Θof). Then η is a natural transformation from idMod(Θof)

to JΘrcof,Θof ◦ RC, that is, RC(h) ◦ ηI1 = ηI2 ◦ h. In fact

RC(h) ◦ ηI1(d) = RC(h)(d)
= h(d)
= ηI2(h(d))
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as we wanted to show;

Let h : I → JΘrcof,Θof(I
′) be an embedding in Mod(Θof). Then by Proposi-

tion 4.14 there is an embedding h̄ from RC(I) to I ′ that extends h to RC(I).
So h̄ ◦ ηI = h. The uniqueness condition is satisfied since by Proposition 4.14
there is a unique embedding from RC(I) to I ′ extending h. QED

Theorem 4.17 The theory Θrcof has elimination of quantifiers.

Proof:
The result follows by Theorem 4.5 since Θrcof is ∃-adequate by Proposition 3.11
and since, by Proposition 4.16, JΘrcof,Θof has a left adjoint, by Proposition 4.12,
JΘof,Θ

∀
rcof

has a left adjoint, and the composition of those left adjoints is the left
adjoint of the appropriate composition of the inclusion functors. QED

5 Adjunction from a one step endofunctor

There are cases where a model of Θ extending in a “minimal" way a model
of Υ, where Υ is contained in Θ and contains Θ∀, is obtained from successive
applications of a certain construction. This construction applied to a model of
Υ produces a model of Υ extending the given one while being “closer", in some
sense, to be a model of Θ, such that, by applying the construction at most ω
times, it is possible to obtain a model of Θ. Observe that the models of Θ are
also models of Υ.

In this section we explicitly define what we consider the ω-“limit" functor
EωΥ of another functor EΥ and provide sufficient conditions over the base functor
EΥ in order for the “limit" functor to satisfy the appropriate conditions of our
results of quantifier elimination.

Let Υ be a theory over a signature Σ, EΥ : Mod(Υ) → Mod(Υ) an end-
ofunctor and ηΥ : idMod(Υ) → EΥ a natural transformation. For 0 ≤ α ≤ ω,
consider

EαΥ : Mod(Υ)→ IntΣ

and
ηαΥ : JΥ,Σ → EαΥ

where ηαΥ = {(ηαΥ)I : I → EαΥ(I)}I∈Mod(Υ), defined as follows:

• E0
Υ = idMod(Υ) and (η0

Υ)I = idI ;

• Eα+1
Υ = EΥ ◦ EαΥ and (ηα+1

Υ )I = (ηΥ)EαΥ(I) ◦ (ηαΥ)I ;

• EωΥ(I) = (Dω, ·Fω , ·Pω), where

– Dω is composed by all sets

[d] = {d′ : (ηk,mΥ )I(d) = d′ or (ηk,mΥ )I(d′) = d, k,m ∈ N},

for
d ∈

⋃
0≤γ<ω

Dγ
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where
(ηk,mΥ )I : EkΥ(I)→ Ek+m

Υ (I)

is inductively defined as follows: (ηk,0Υ )I is idEkΥ(I) and for any positive
natural m

(ηk,mΥ )I = (ηΥ)Ek+m−1
Υ (I) ◦ · · · ◦ (ηΥ)EkΥ(I);

– fFω([d1], . . . , [dn]) = [fFk((ηk1,k−k1

Υ )I(µ[d1]), . . . , (η
kn,k−kn
Υ )I(µ[dn]))];

– pPω([d1], . . . , [dn]) = pPk((ηk1,k−k1

Υ )I(µ[d1]), . . . , (η
kn,k−kn
Υ )I(µ[dn]));

where µ[di] ∈ [di] ∩ Dki is such that for every d′i ∈ [di] there is m′i such

that d′i = (ηki,m
′
i

Υ )I(µ[di]) for i = 1, . . . , n and k = max(k1, . . . , kn);

• EωΥ(h)([d]) = [EkΥ(h)(d)] where d ∈ Dk;

• (ηωΥ)I(d) = [d].

Observe that
(ηk,nΥ )I = (ηΥ)Ek+n−1

Υ (I) ◦ (ηk,n−1
Υ )I .

We omit the proof of the next result, since it follows immediately by a
straightforward induction taking into account that the composition of functors
is also a functor.

Lemma 5.1 For every natural number k, EkΥ is a functor from Mod(Υ) to
Mod(Υ). ♦

We now show that the families ηk,nΥ are indeed natural transformations.

Lemma 5.2 For every naturals k and n, the family ηk,nΥ is a natural transfor-
mation from EkΥ to Ek+n

Υ .

Proof: The proof follows by induction on n. The base is immediate. Step:
Assume that ηk,n−1

Υ is a natural transformation. Then

Ek+n
Υ (h) ◦ (ηk,nΥ )I = Ek+n

Υ (h) ◦ (ηΥ)Ek+n−1
Υ (I) ◦ (ηk,n−1

Υ )I
= (ηΥ)Ek+n−1

Υ (I′) ◦ E
k+n−1
Υ (h) ◦ (ηk,n−1

Υ )I
= (ηΥ)Ek+n−1

Υ (I′) ◦ (ηk,n−1
Υ )I′ ◦ EkΥ(h)

= (ηk,nΥ )I′ ◦ EkΥ(h)

where h : I → I ′ is an embedding in Mod(Υ). QED

The denotation of a term is preserved by the appropriate natural transfor-
mation ηk,mΥ over the image of an interpretation structure I by functor EkΥ, as
we now show.
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Lemma 5.3 Let t be a term, I a model of Υ, and k and k′ natural numbers
with k′ ≤ k. Then

(ηk
′,k−k′

Υ )I([[t]]
Ek
′

Υ (I)ρk
′

) = [[t]]E
k
Υ(I)ρk

where ρk and ρk′ are assignments over EkΥ(I) and Ek′Υ (I) respectively such that
ρk(x) = (ηk

′,k−k′
Υ )I(ρk

′
(x)) for every x occurring in t.

Proof: By induction on t.
Base: t is x ∈ X. Indeed,

(ηk
′,k−k′

Υ )I([[x]]E
k′
Υ (I)ρk

′

) = (ηk
′,k−k′

Υ )I(ρk
′
(x)) = ρk(x) = [[x]]E

k
Υ(I)ρk .

Step: t is f(t1, . . . , tn). Then,

(ηk
′,k−k′

Υ )I([[t]]
Ek
′

Υ (I)ρk
′

) =

(ηk
′,k−k′

Υ )I(fFk′ ([[t1]]E
k′
Υ (I)ρk

′

, . . . , [[tn]]E
k′
Υ (I)ρk

′

)) =

fFk((ηk
′,k−k′

Υ )I([[t1]]E
k′
Υ (I)ρk

′

), . . . , (ηk
′,k−k′

Υ )I([[tn]]E
k′
Υ (I)ρk

′

)) =

fFk([[t1]]E
k
Υ(I)ρk , . . . , [[tn]]E

k
Υ(I)ρk) =

[[f(t1, . . . , tn)]]E
k
Υ(I)ρk

as we wanted to show. QED

With respect to EωΥ we can only show by now that it is a functor from
Mod(Υ) to IntΣ and that ηωΥ is a natural transformation from JΥ,Σ to EωΥ.
Later on, we will show in Proposition 5.10 that EωΥ is indeed a functor from
Mod(Υ) to Mod(Υ) if Υ is contained in ∀2. In this case, ηωΥ is in fact a natural
transformation from idMod(Υ) to EωΥ.

Furthermore, in Proposition 5.11, we prove thatEωΥ is a functor fromMod(Υ)
to Mod(Θ) whenever Θ contained in ∀2 contains Υ, and an additional condition
is satisfied. Then ηωΥ is even a natural transformation from idMod(Υ) to JΘ,Υ◦EωΥ
(see Proposition 5.11).

Proposition 5.4 The map EωΥ is a functor from Mod(Υ) to IntΣ and ηωΥ is a
natural transformation from JΥ,Σ to EωΥ.

Proof: In fact:

(1) EωΥ(I) is an interpretation structure. We have to show that fFω and pPω are
well defined. We only show that the first is well defined. Assume that d′i ∈ [di]
for i = 1, . . . , n. We show that

fFω([d1], . . . , [dn]) = fFω([d′1], . . . , [d′n]).

Indeed

fFω([d1], . . . , [dn]) = [fFk((ηk1,k−k1

Υ )I(µ[d1]), . . . , (η
kn,k−kn
Υ )I(µ[dn]))]

= [fFβ+k((ηk1,k−k1

Υ )I(µ[d′1]), . . . , (η
kn,k−kn
Υ )I(µ[d′n]))]

= fFω([d′1], . . . , [d′n]).
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(2) EωΥ(h) is in IntΣ for every h : I → I ′ in Mod(Υ). In fact:

(i) EωΥ(h) is well defined. Let h : I → I ′ be an embedding in Mod(Υ) and
[d1] = [d2] ∈ Dω. Assume with no loss of generality that d1 ∈ Dk1 , d2 ∈ Dk2

and k1 ≤ k2. So (ηk1,k2−k1

Υ )I(d1) = d2. Then:

EωΥ(h)([d1]) = [Ek1
Υ (h)(d1)]

= [(ηk1,k2−k1

Υ )I(Ek1
Υ (h)(d1))]

= [Ek2
Υ (h)((ηk1,k2−k1

Υ )I(d1))] by Lemma 5.2

= [Ek2
Υ (h)(d2)]

= EωΥ(h)([d2]);

(ii) EωΥ(h)(fFω([d1], . . . , [dn])) = fF′ω(EωΥ(h)([d1]), . . . , EωΥ(h)([dn])). Let h :
I → I ′ be an embedding in Mod(Υ). Then:

EωΥ(h)(fFω([d1], . . . , [dn])) =

EωΥ(h)([fFk((ηk1,k−k1

Υ )I(µ[d1]), . . . , (η
kn,k−kn
Υ )I(µ[dn]))]) =

[EkΥ(h)(fFk((ηk1,k−k1

Υ )I(µ[d1]), . . . , (η
kn,k−kn
Υ )I(µ[dn])))] =

[fF′k(EkΥ(h)((ηk1,k−k1

Υ )I(µ[d1])), . . . , EkΥ(h)((ηkn,k−knΥ )I(µ[dn])))] =

[fF′k((ηk1,k−k1

Υ )I′(E
k1
Υ (h)(µ[d1])), . . . , (η

kn,k−kn
Υ )I′(EknΥ (h)(µ[dn]))))] =

[fF′k((ηk
′
1,k−k′1

Υ )I′(µ1), . . . , (ηk
′
n,k−k′n

Υ )I′(µn))] =

[fF′k((ηk
′,k−k′

Υ )I′((η
k′1,k

′−k′1
Υ )I′(µ1)), . . . , (ηk

′,k−k′
Υ )I′((η

k′n,k
′−k′n

Υ )I′(µn)))] =

[(ηk
′,k−k′

Υ )I′(fF′
k′ ((ηk

′
1,k
′−k′1

Υ )I′(µ1), . . . , (ηk
′
n,k
′−k′n

Υ )I′(µn)))] =

[fF′
k′ ((ηk

′
1,k
′−k′1

Υ )I′(µ1), . . . , (ηk
′
n,k
′−k′n

Υ )I′(µn))] =

fF′ω([Ek1
Υ (h)(µ[d1])], . . . , [E

kn
Υ (h)(µ[dn])]) =

fF′ω(EωΥ(h)([µ[d1]]), . . . , EωΥ(h)([µ[dn]])) =

fF′ω(EωΥ(h)([d1]), . . . , EωΥ(h)([dn])).

where µi is µ[E
ki
Υ (h)(µ[di]

)]
for i = 1, . . . , n. Similarly, for p ∈ P .

(3) EωΥ is a functor from Mod(Υ) to IntΣ. Taking into account (1) and (2) it
remains to show that:

(i) EωΥ(idI)([d]) = idEωΥ(I)([d]). In fact:

EωΥ(idI)([d]) = [EkΥ(idI)(d)]
= [idEkΥ(I)(d)]
= [d]
= idEωΥ(I)([d])
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(ii) EωΥ(h′ ◦ h) = EωΥ(h′) ◦ EωΥ(h). Indeed:

EωΥ(h′ ◦ h)([d]) = [EkΥ(h′ ◦ h)(d)]
= [EkΥ(h′)(EkΥ(h)(d)]
= EωΥ(h′)([EkΥ(h)(d)])
= EωΥ(h′)(EωΥ(h)([d])).

(4) (ηωΥ)I is an embedding in IntΣ from I to EωΥ(I) for every I in Mod(Υ). In
fact (ηωΥ)I(fF(d1, . . . , dn)) = fFω((ηωΥ)I(d1), . . . , (ηωΥ)I(dn)) as we now show:

(ηωΥ)I(fF(d1, . . . , dn)) =
[fF(d1, . . . , dn)] =

[fF((η0,0
Υ )I(µ[d1]), . . . , (η

0,0
Υ )I(µ[dn]))] =

fFω([d1], . . . , [dn]) =
fFω((ηωΥ)I(d1), . . . , (ηωΥ)I(dn))

and similarly for p in P .

(5) ηωΥ is a natural transformation from JΥ,Σ to EωΥ. Taking into account result
(4) above it remains to show that:

EωΥ(h)((ηωΥ)I(d)) = EωΥ(h)([(ηΥ)I(d)])
= [EΥ(h)((ηΥ)I(d))]
= [(ηΥ)I′(h(d))]
= (ηωΥ)I′(h(d))

as we wanted to show. QED

Our next goal is to refine the class where the images of EωΥ belong. For that
we will now prove some lemmas relating the behavior of EωΥ with the behavior
of EkΥ with respect to denotation of terms and satisfaction of formulas.

Lemma 5.5 Let I be a model of Υ, ρω an assignment over EωΥ(I), t a term
with variables x1, . . . , xn, ki such that µρω(xi) ∈ Dki , k = max(k1, . . . , kn), and
ρk an assignment over EkΥ(I) such that ρk(xi) = (ηki,k−kiΥ )I(µρω(xi)). Then

[[t]]E
ω
Υ(I)ρω = [[[t]]E

k
Υ(I)ρk ].

Proof: By induction on t.
Base: t is xi for i in {1, . . . , n}. Indeed,

[[[xi]]
EkΥ(I)ρk ] = [ρk(xi)] = [(ηki,k−kiΥ )I(µρω(xi))] = [µρω(xi)] = ρω(xi) = [[xi]]

EωΥ(I)ρω .
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Step: t is f(t1, . . . , tn). Then

[[[f(t1, . . . , tn)]]E
k
Υ(I)ρk ] =

[fFk([[t1]]E
k
Υ(I)ρk , . . . , [[tn]]E

k
Υ(I)ρk)] =

[fFk((ηk
′
1,k−k′1

Υ )I([[t1]]E
k′1
Υ (I)ρk

′
1 ), . . . , (ηk

′
n,k−k′n

Υ )I([[tn]]E
k′n
Υ (I)ρk

′
n )] =

[fFk((ηk
′
1,k−k′1

Υ )I((η
k′′1 ,k

′
1−k′′1

Υ )I(µ[d1])), . . . , (η
k′n,k−k′n
Υ )I((η

k′′n,k
′
n−k′′n

Υ )I(µ[dn]))] =

[fFk((ηk
′′
1 ,k−k′′1

Υ )I(µ[d1]), . . . , (η
k′′n,k−k′′n
Υ )I(µ[dn]))] =

[fFk((ηk
′′,k−k′′

Υ )I((η
k′′1 ,k

′′−k′′1
Υ )I(µ[d1])), . . . , (η

k′′,k−k′′
Υ )I((η

k′′n,k
′′−k′′n

Υ )I(µ[dn]))] =

[(ηk
′′,k−k′′

Υ )I(fFk′′ ((ηk
′′
1 ,k
′′−k′′1

Υ )I(µ[d1]), . . . , (η
k′′n,k

′′−k′′n
Υ )I(µ[dn])))] =

[fFk′′ ((ηk
′′
1 ,k
′′−k′′1

Υ )I(µ[d1]), . . . , (η
k′′n,k

′′−k′′n
Υ )I(µ[dn]))] =

fFω([[[t1]]E
k′1
Υ (I)ρk

′
1 ], . . . , [[[tn]]E

k′n
Υ (I)ρk

′
n ]) =

fFω([[t1]]E
ω
Υ(I)ρω , . . . , [[tn]]E

ω
Υ(I)ρω) =

[[f(t1, . . . , tn)]]E
ω
Υ(I)ρω

where di = [[ti]]
E
k′i
Υ (I)ρk

′
i and k′′ = max(k′′1 , . . . , k

′′
n), using the induction hypoth-

esis and Lemma 5.3. Observe that k ≥ k′1, . . . , k
′
n, k′i ≤ k′′i for i = 1, . . . , n and

that ρk(xi) = (ηk
′
i,k−k′i

Υ )I(ρk
′
i(xi)) for i = 1, . . . , n. QED

The following result is a direct consequence of Proposition 2.2 since (ηk,mΥ )I :
EkΥ(I)→ Ek+m

Υ (I) is an embedding in Mod(Υ) and so we omit its proof.

Lemma 5.6 Let ϕ be a formula in ∃+
1 with free variables x1, . . . , xn. Then, for

every natural number m, Ek+m
Υ (I)ρk+m 
Σ ϕ whenever EkΥ(I)ρk 
Σ ϕ, where

ρk+m(xi) = (ηk,mΥ )I(ρk(xi)). ♦

We start by showing that satisfaction of quantifier free formulas is preserved
from EkΥ to EωΥ. It is shown to be preserved from EωΥ to EkΥ in order to deal
with negation.

Lemma 5.7 Let ϕ be a quantifier free formula with free variables x1, . . . , xn.
Then, for every assignment ρω over EωΥ(I), natural number ki such that µρω(xi)

is in Dki , and natural number k greater than or equal to max(k1, . . . , kn),

EωΥ(I)ρω 
Σ ϕ if and only if EkΥ(I)ρk 
Σ ϕ

where ρk is an assignment such that ρk(xi) = (ηki,k−kiΥ )I(µρω(xi)).

Proof: The proof follows by induction on ϕ.
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Base: ϕ is p(t1, . . . , tm). Observe that

[[p(t1, . . . , tn)]]E
ω
Υ(I)ρω =

pPω([[t1]]E
ω
Υ(I)ρω , . . . , [[tn]]E

ω
Υ(I)ρω) =

pPω([[[t1]]E
k′1
Υ (I)ρk

′
1 ], . . . , [[[tn]]E

k′n
Υ (I)ρk

′
n ]) =

pPk′′ ((ηk
′′
1 ,k
′′−k′′1

Υ )I(µ[d1]), . . . , (η
k′′n,k

′′−k′′n
Υ )I(µ[dn])) =

pPk((ηk
′′,k−k′′

Υ )I((η
k′′1 ,k

′′−k′′1
Υ )I(µ[d1])), . . . , (η

k′′,k−k′′
Υ )I((η

k′′n,k
′′−k′′n

Υ )I(µ[dn]))) =

pPk((ηk
′′
1 ,k−k′′1

Υ )I(µ[d1]), . . . , (η
k′′n,k−k′′n
Υ )I(µ[dn])) =

pPk((ηk
′
1,k−k′1

Υ )I((η
k′′1 ,k

′
1−k′′1

Υ )I(µ[d1])), . . . , (η
k′n,k−k′n
Υ )I((η

k′′n,k
′
n−k′′n

Υ )I(µ[dn]))) =

pPk((ηk
′
1,k−k′1

Υ )I([[t1]]E
k′1
Υ (I)ρk

′
1 ), . . . , (ηk

′
n,k−k′n

Υ )I([[tn]]E
k′n
Υ (I)ρk

′
n )) =

pPk([[t1]]E
k
Υ(I)ρk , . . . , [[tn]]E

k
Υ(I)ρk) =

[[p(t1, . . . , tn)]]E
k
Υ(I)ρk

where di = [[ti]]
E
k′i
Υ (I)ρk

′
i , using also Lemma 5.3 and Lemma 5.5. ThenEωΥ(I)ρω 
Σ

p(t1, . . . , tm) if and only if EkΥ(I)ρk 
Σ p(t1, . . . , tm);

Step:

(a) ϕ is ¬ϕ1. Let ρω be an assignment over EωΥ(I), ki a natural number
such that µρω(xi) is in Dki , and k a natural number greater than or equal to
max(k1, . . . , kn). (⇒) Assume that EωΥ(I)ρω 
Σ ¬ϕ1. Then EωΥ(I)ρω 6
Σ ϕ1

and so by induction hypothesis EkΥ(I)ρk 6
Σ ϕ1. Therefore EkΥ(I)ρk 
Σ ϕ.

The proof of the remaining cases in step follows straightforwardly and so they
are omitted. QED

Preservation of satisfaction is extended in Lemma 5.8 to formulas in ∃+
1

capitalizing on the result of Lemma 5.7 for quantifier free formulas. Observe
that it is crucial that negations can only be applied in quantifier free subformulas
of formulas in ∃+

1 .

Lemma 5.8 Let ϕ be a formula in ∃+
1 with free variables x1, . . . , xn. Then, for

every assignment ρω over EωΥ(I), natural number ki such that µρω(xi) ∈ Dki ,
and natural number k greater than or equal to max(k1, . . . , kn),

EωΥ(I)ρω 
Σ ϕ whenever EkΥ(I)ρk 
Σ ϕ

where ρk is an assignment such that ρk(xi) = (ηki,k−kiΥ )I(µρω(xi)).

Proof: The proof follows by induction on the structure of ϕ in ∃+
1 . Indeed:

(i) ϕ is a quantifier free formula. The result follows by Lemma 5.7;

(ii) ϕ is ∃xn+1ψ and ψ is in ∃1. Assume that EkΥ(I)ρk 
Σ ∃xn+1ψ and let
k ≥ max(k1, . . . , kn). Let σk be an assignment over EkΥ(I), xn+1-equivalent
to ρk with EkΥ(I)σk 
Σ ψ. Take kn+1 such that µ[σk(xn+1)] ∈ Dkn+1 . Note
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that k ≥ max(k1, . . . , kn, kn+1). Let σω be the assignment over EωΥ(I), xn+1-
equivalent to ρω with σω(xn+1) = [σk(xn+1)]. Then

σk(xi) = (ηki,k−kiΥ )I(µσω(xi))

for i = 1, . . . , n+ 1. For i 6= n+ 1, the result follows since the assignments are
xn+1-equivalents. For i = n+ 1 we have:

σk(xn+1) = (ηkn+1,k−kn+1

Υ )I(µ[σk(xn+1])) = (ηkn+1,k−kn+1

Υ )I(µσω(xn+1))

and so, by the induction hypothesis, EωΥ(I)σω 
Σ ψ;

The proof of the other cases follows straightforwardly. QED

The extension of the preservation result to formulas in ∀2 imply a strength-
ening of the sufficient conditions, as we show in Lemma 5.9. The extension to ∀+

2

brings difficulties when the formula is a disjunction of formulas in ∀2, for instance
ϕ1 and ϕ2, since in this case from the hypothesis that EkΥ(I)ρk 
Σ ϕ1∨ϕ2 for ev-
ery k ≥ max(k1, . . . , kn) we can neither conclude that Ek′Υ (I)ρk

′

Σ ϕ1 for every

k′ ≥ max(k′1, . . . , k
′
n) nor Ek′′Υ (I)ρk

′′

Σ ϕ2 for every k′′ ≥ max(k′′1 , . . . , k

′′
n).

Lemma 5.9 Let ϕ be a formula in ∀2 with free variables x1, . . . , xn. Then

EωΥ(I)ρω 
Σ ϕ if for every k ≥ max(k1, . . . , kn), EkΥ(I)ρk 
Σ ϕ

where ρω and ρk are assignments such that ρk(xi) = (ηki,k−kiΥ )I(µρω(xi)) and ki
is such that µρω(xi) ∈ Dki .

Proof: The proof follows by induction on the structure of ϕ. Indeed:

(i) ϕ is a quantifier free formula. The result follows by Lemma 5.7.

(ii) ϕ is in ∃+
1 . The result follows by Lemma 5.8.

(iii) ϕ is ∀xn+1ψ where ψ is in ∀2. Let ρω and ρk be assignments fulfill-
ing the hypothesis. Assume EkΥ(I)ρk 
Σ ϕ for every natural number k ≥
max(k1, . . . , kn). Let σω be an assignment over EωΥ(I) xn+1 equivalent to ρω.
Let k′ be a natural number greater than or equal to max(k1, . . . , kn, kn+1)
where kn+1 is such that µσω(xn+1) ∈ Dkn+1 . Moreover, let ρk′ be an assign-
ment over Ek′Υ (I) such that ρω and ρk

′ are in the conditions of the lemma.
Observe that k′ ≥ k. Let σk′ be an assignment over Ek′Υ (I) such that σk′(xi) =
(ηki,k

′−ki
Υ )I(µσω(xi)) for i = 1, . . . , n + 1. Since σω(xi) = ρω(xi) for i = 1, . . . , n

then (ηki,k
′−ki

Υ )I(µσω(xi)) = (ηki,k
′−ki

Υ )I(µρω(xi)) and so σk
′
(xi) = ρk

′
(xi) for

i = 1, . . . , n. Hence, we can conclude that σk′ is xn+1-equivalent to ρk′ . Since
Ek
′

Υ (I)ρk
′


Σ ϕ then Ek
′

Υ (I)σk
′


Σ ψ. So, using the induction hypothesis, we
conclude that EωΥ(I)σω 
Σ ψ. QED

Capitalizing on Lemma 5.9, we can now finally prove that EωΥ is indeed a
functor from Mod(Υ) to Mod(Υ) whenever Υ ⊆ ∀2. As mentioned in paragraph
immediately before Lemma 5.9, the result cannot be extended to a theory of
sentences in ∀+

2 .
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Proposition 5.10 Assuming that Υ is contained in ∀2 then EωΥ is a functor
from Mod(Υ) to Mod(Υ).

Proof: By Proposition 5.4, it enough to show that, for every I in Mod(Υ),
EωΥ(I) is a model of Υ. That is,

EωΥ(I)ρω 
Σ ϕ

for every ϕ in Υ and assignment ρω over EωΥ(I). This fact follows immediately
by Lemma 5.9 since EkΥ(I)ρk 
Σ ϕ for every ϕ in Υ because EkΥ(I) ∈ Mod(Υ)
by Lemma 5.1. QED

Let ∆ be a set of sentences in ∀2 over the same signature Σ as Υ. We say
that functor EΥ and natural transformation ηΥ induce satisfaction for ∆ if

EΥ(I)(ηΥ)I ◦ ρ 
Σ δ whenever Iρ 6
Σ δ

for every model I of Υ, assignment ρ over I and δ in ∃+
1 with ∀δ in ∆.

Proposition 5.11 Let Υ and ∆ be sets of sentences in ∀2 over the same sig-
nature Σ. Assume that EΥ and ηΥ induce satisfaction for ∆. Then, EωΥ is a
functor from Mod(Υ) to Mod(Υ ∪∆).

Proof: Due to Proposition 5.10, we only need to verify that the image by EωΥ
of a model of Υ satisfies the sentences of ∆.
Let ∀δ be a sentence in ∆. Therefore, δ is in ∃+

1 . Assume that x1, . . . , xn are the
free variables in δ. Let ρω be an assignment over EωΥ(I) and k = max(k1, . . . , kn)
where ki is such that µρω(xi) ∈ Dki . Consider an assignment ρk such that
ρk(xi) = (ηki,k−kiΥ )I(µρω(xi)). There are two cases:

(a) EkΥ(I)ρk 
Σ δ. Then EωΥ(I)ρω 
Σ δ by Lemma 5.8.

(b) EkΥ(I)ρk 6
Σ δ. Then Ek+1
Υ (I)(ηΥ)EkΥ(I) ◦ ρk 
Σ δ. Observe that k + 1 ≥

max(k1, . . . , kn) and that (ηΥ)EkΥ(I)(ρ
k(xi)) = (ηΥ)EkΥ(I)((η

ki,k−ki
Υ )I(µρω(xi))) =

(ηki,k+1−ki
Υ )I(µρω(xi)). Therefore E

ω
Υ(I)ρω 
Σ δ by Lemma 5.8. QED

Moreover, under suitable conditions, ηωΥ is a natural transformation satis-
fying the conditions of Lemma 4.4, that is, such that, given any embedding
h : I → JΥ∪∆,Υ(I ′) in Mod(Υ), there is a morphism h̄ : EωΥ(I) → I ′ in
Mod(Υ ∪∆) such that JΥ∪∆,Υ(h̄) ◦ ηωΥI = h.

We say that the functor EΥ and the natural transformation ηΥ extend to
∆ whenever for every morphism h : I → I ′ in Mod(Υ) with I ′ in Mod(Υ ∪∆)
there is a morphism h̄ : EΥ(I)→ I ′ in Mod(Υ) such that h̄ ◦ (ηΥ)I = h.

Proposition 5.12 Let Υ and ∆ be sets contained in ∀2. Assume that EΥ and
ηΥ induce satisfaction and extend to ∆. Then, given any embedding h : I →
JΥ∪∆,Υ(I ′) in Mod(Υ) there is a morphism h̄ : EωΥ(I)→ I ′ in Mod(Υ∪∆) such
that JΥ∪∆,Υ(h̄) ◦ ηωΥI = h.
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Proof: Observe that, under the hypothesis, there is a morphism h̄k : EkΥ(I)→
I ′ such that h̄k ◦ (ηkΥ)I = h for each natural number k, and that h̄0 is h. So
h̄k ◦ (ηk

′,k−k′
Υ )I = h̄k

′ .

Let h : I → I ′ in Mod(Υ) with I ′ in Mod(Υ ∪∆). Consider h̄ω : EωΥ(I) → I ′

such that h̄ω([d]) = h̄k(µ[d]) where k is such that µ[d] is in Dk.
(1) h̄ω is well defined. Let d′ ∈ [d]. In fact:

h̄ω([d]) = h̄k(µ[d])
= h̄k(µ[d′])
= h̄ω([d′]).

(2) h̄ω is injective.
Assume that h̄ω([d1]) = h̄ω([d2]). Then h̄k(µ[d1]) = h̄k(µ[d2]), hence µ[d1] = µ[d2]

and so [d1] = [d2].
(3) h̄ω is an embedding from EωΥ(I) to I ′. By (2) and taking into account that:

h̄ω(fFω([d1], . . . , [dn])) = h̄ω([fFk((ηk1,k−k1

Υ )I(µ[d1]), . . . , (η
kn,k−kn
Υ )I(µ[dn]))])

= h̄k`(µ
[fFk ((η

k1,k−k1
Υ )I(µ[d1]),...,(η

kn,k−kn
Υ )I(µ[dn]))]

)

= h̄k((ηk`,k−k`Υ )I(µ[fFk ((η
k1,k−k1
Υ )I(µ[d1]),...,(η

kn,k−kn
Υ )I(µ[dn]))]

))

= h̄k(fFk((ηk1,k−k1

Υ )I(µ[d1]), . . . , (η
kn,k−kn
Υ )I(µ[dn])))

= fF′(h̄k((ηk1,k−k1

Υ )I(µ[d1])), . . . , h̄k((η
kn,k−kn
Υ )I(µ[dn]))))

= fF′(h̄k1(µ[d1]), . . . , h̄kn(µ[dn]))

= fF′(h̄ω([d1]), . . . , h̄ω([dn])).

and similarly for the predicate symbols.
(4) h̄ω ◦ (ηωΥ)I = h.

h̄ω((ηωΥ)I(d)) = h̄ω([d])
= h̄0(µ[d])
= h(d)

as we wanted to show. QED

Putting all these conditions together and using Lemma 4.4 it is possible
to provide sufficient conditions for quantifier elimination. At the end of the
section we apply those sufficient conditions in order to prove that the theory of
algebraically closed fields enjoys quantifier elimination.

Theorem 5.13 Let Θ be a theory and Υ a set such that Θ∀ ⊆ Υ ⊆ Θ. Assume
that:

• Θ ⊆ ∀2;

• Θ is ∃-adequate;

• EΥ and ηΥ induce satisfaction for and extend to Θ \Υ;
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• the inclusion functor JΥ,Θ∀ has a left adjoint EΘ∀,Υ.

Then Θ has quantifier elimination.

Proof:
Let η be the unit of the adjunction between Mod(Θ∀) and Mod(Υ) by the func-
tors JΥ,Θ∀ and EΘ∀,Υ, and consider the natural transformation JΥ,Θ∀(ηωΥ) ◦ η =
{(JΥ,Θ∀(ηωΥ) ◦ η)I : I → JΥ,Θ∀(JΘ,Υ(EωΥ(EΘ∀,Υ(I))))}I∈Mod(Θ∀) from idMod(Θ∀)

to (JΥ,Θ∀ ◦JΘ,Υ)◦(EωΥ◦EΘ∀,Υ) such that (JΥ,Θ∀(ηωΥ)◦η)I = JΥ,Θ∀(ηωΥE
Θ∀,Υ(I))◦

ηI .

Let h : I → (JΥ,Θ∀ ◦JΘ,Υ)(I ′) be an embedding in Mod(Θ∀). Since EΘ∀,Υ is left
adjoint to JΥ,Θ∀ then there is an embedding ¯̄h : EΘ∀,Υ(I)→ JΘ,Υ(I ′) in Mod(Υ)
such that JΥ,Θ∀(

¯̄h) ◦ ηI = h. Moreover, by Proposition 5.12 and the hypothesis,
there is h̄ : EωΥ(EΘ∀,Υ(I))→ I ′ in Mod(Θ) such that JΘ,Υ(h̄) ◦ ηωΥE

Θ∀,Υ(I) = ¯̄h.

Hence JΥ,Θ∀(JΘ,Υ(h̄)) ◦ JΥ,Θ∀(ηωΥE
Θ∀,Υ(I)) ◦ ηI = h.

So, using the fact that Θ is an ∃-adequate theory, by Lemma 4.4, we conclude
that Θ has quantifier elimination. QED

When the “extension" condition on the functor EΥ and natural transfor-
mation ηΥ is strengthen by imposing a uniqueness requirement it is possible
to characterize quantifier elimination through an adjunction between Mod(Θ∀)
and Mod(Θ), capitalizing on Theorem 4.5.

We say that EΥ and natural transformation ηΥ universally extend to ∆
whenever for every morphism h : I → I ′ in Mod(Υ) with I ′ is in Mod(Υ ∪∆)
there is a unique morphism h̄ : EΥ(I)→ I ′ in Mod(Υ) such that h̄ ◦ (ηΥ)I = h.

Proposition 5.14 Let Υ and ∆ be sets contained in ∀2. Assume that EΥ and
ηΥ induce satisfaction and universally extend to ∆. Then EωΥ is left adjoint of
JΥ∪∆,Υ with ηωΥ as the unit.

Proof:
We only show the uniqueness requirement of the adjunction since the proofs of
the other conditions are immediately obtained by the proof of Proposition 5.12.
Let g : EωΥ(I)→ I ′ be an embedding such that g ◦ (ηωΥ)I = h. Let gk : EkΥ(I)→
I ′ be such that gk(d) = g([d]). We show first that gk is an embedding and
gk ◦ (ηkΥ)I = h.

(a) gk is injective.
Assume that gk(d1) = gk(d2). Then g([d1]) = g([d2]), hence [d1] = [d2] and so,
since d1, d2 ∈ Dk, d1 = d2.

(b) gk is an embedding. By (a) and taking into account that:

gk(fFk(d1, . . . , dn)) =
g([fFk(d1, . . . , dn)]) =

g([fFk((ηk
′
1,k−k′1

Υ )I(µ[d1]), . . . , (η
k′n,k−k′n
Υ )I(µ[dn]))]) =

g([fFk((ηk
′,k−k′

Υ )I((η
k′1,k

′−k′1
Υ )I(µ[d1])), . . . , (η

k′,k−k′
Υ )I((η

k′n,k
′−k′n

Υ )I(µ[dn])))]) =
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g([(ηk
′,k−k′

Υ )I(fFk′ ((ηk
′
1,k
′−k′1

Υ )I(µ[d1]), . . . , (η
k′n,k

′−k′n
Υ )I(µ[dn])))]) =

g([fFk′ ((ηk
′
1,k
′−k′1

Υ )I(µ[d1]), . . . , (η
k′n,k

′−k′n
Υ )I(µ[dn]))]) =

g(fFω([d1], . . . , [dn])) =

fF′(g([d1]), . . . , g([dn])) =

fF′(gk(d1), . . . , gk(dn))

and similarly for predicate symbols.

(c) gk ◦ (ηkΥ)I = h.

gk((ηkΥ)I(d)) = = g([(ηkΥ)I(d)])
= g([d])
= g((ηωΥ)I(d))
= h(d).

Hence gk = h̄k. Finally, we conclude that g is h̄ω:

h̄ω([d]) = h̄k(µ[d])
= gk(µ[d])
= g([µ[d]])
= g([d]).

Hence ηωΥ is the unit of the adjunction. QED

So, if the inclusion functor JΥ,Θ∀ has a left adjoint EΘ∀,Υ then EωΥ ◦ EΘ∀,Υ

is left adjoint to JΥ,Θ∀ ◦ JΘ,Υ, since the composition of left adjoints is a left
adjoint. Hence, if additionally Θ is an ∃-adequate theory, by Theorem 4.5, it is
possible to conclude that Θ has quantifier elimination. We have just proved the
following theorem, Theorem 5.15.

Theorem 5.15 Let Θ be a theory and Υ a set such that Θ∀ ⊆ Υ ⊆ Θ. Assume
that:

• Θ ⊆ ∀2;

• Θ is ∃-adequate;

• EΥ and ηΥ induce satisfaction for and universally extend to Θ \Υ;

• the inclusion functor JΥ,Θ∀ has a left adjoint EΘ∀,Υ.

Then Θ has quantifier elimination. ♦

Algebraically closed fields

An algebraically closed field extending a field is herein obtained by applying
ω-times a certain construction originally proposed by Emil Artin, see [3, 22].
So, for algebraically closed fields, Υ is Θf and EΥ is the functor that associates
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with each field an algebraic extension of it such that every polynomial in one
variable of degree at least one with coefficients in the field, has a root in that
algebraic extension.

Recall the theory Θacf of algebraically closed fields presented in Section 3.
Observe that each model of Θ∀acf is an integral domain, since

Θacf �Σf ∀x1∀x2 (((¬(x1
∼= 0)) ∧ (¬(x2

∼= 0)))⇒ (¬(x1 × x2) ∼= 0)).

The functor EΘ∀acf,Θacf
is defined by composition as follows:

Mod(Θ∀acf)
FF→ Mod(Θf)

EωΘf,Θacf→︸ ︷︷ ︸
E

Θ∀acf,Θacf

Mod(Θacf)

where functor FF associates to each integral domain in Mod(Θ∀acf) its field of
fractions and functor EωΘf,Θacf

associates to each field an algebraically closure
field extending it, obtained by the Artin construction.

The functor FF is identical to oFF except for the conditions for the order,
see Proposition 4.11. So the proof of Proposition 5.16 and of Proposition 5.17
are omitted since they follow almost identically the corresponding proofs for
the functor oFF, that is, the proof of the Proposition 4.11 and of the Proposi-
tion 4.12, respectively.

Proposition 5.16 FF is a functor from Mod(Θ∀acf) to Mod(Θf).

Given a model I of Θ∀acf the interpretation structure FF0(I) is called the
field of fractions or the field of quotients induced by the integral domain I.
Observe that Mod(Θf) ⊆ Mod(Θ∀acf) since every field is an integral domain. Let
JΘf,Θ

∀
acf

: Mod(Θf)→ Mod(Θ∀acf) be the inclusion functor.

Proposition 5.17 Functor FF is left adjoint of the inclusion functor JΘf,Θ
∀
acf
.

Now that we concluded that there is an adjunction between Mod(Θ∀acf) and
Mod(Θf) having the inclusion functor as the right adjoint, we concentrate on
EωΘf,Θacf

. For that we follow the work presented in the beginning of this section.
In this case Υ is the theory Θf and the base functor EΘf,Θacf is the composition
of the functors PR and QF such that:

Mod(Θf)
PR→ pRg QF→ Mod(Θf).

where pRg is a category of polynomial rings, PR is a functor that associates
to each field a polynomial ring and QF is a functor that associates to each
polynomial ring a field generated by the quotient with a specific maximal field.
First, we need some preliminary notions.

Given a set V , let M(V ) be the free monoid over V . A polynomial over I in
Mod(Θf) and a set V is a map q : M(V ) → I with non zero values only for a
finite number of elements of M(V ). In general when defining a polynomial we
only indicate the non zero values. We may use M(v) for M({v}). A polynomial
q is said to be constant whenever q(m) = 0F for every m ∈M(V ) different from
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ε. A polynomial q over a singleton set V and a field I in Mod(Θf) is said to be
monic if q(m) = 1F and q(m′) = 0F for every m′ such that |m′| > |m|.

Let I[V ] be the set of all polynomials over V and a field I in Mod(Θf). The
tuple

(I[V ],+I[V ],×I[V ], 0I[V ], 1I[V ])

where

• q1 +I[V ] q2 = q such that q(m) = q1(m) +F q2(m);

• q1 ×I[V ] q2 = q such that q(m) =
∑
m1,m2

m=m1m2

q1(m1)×F q2(m2);

• 0I[V ] is such that 0I[V ](m) = 0F;

• 1I[V ] is such that 1I[V ](ε) = 1F and 1I[V ](m) = 0F otherwise;

is a ring called the polynomial ring over V and I. Let V be a singleton set.
Given I in Mod(Θf) and a map µ : V → D, we define the map

evµ : I[V ]→ D

as follows:
evµ(q) =

∑
m∈M(V )

µ∗(m)×F q(m),

where µ∗ is the obvious extension of µ to sequences where the concatenation is
replaced by product in I. For simplification we may omit ×F when considering
evµ. Observe that evµ is a ring homomorphism from I[V ] to I.

Given a polynomial q over V and I, we denote by var(q) the set of elements
of V in the sequences in {m ∈ M(V ) : q(m) 6= 0F}. Observe that this set is
finite.

Lemma 5.18 Let q be a polynomial over V and I, µ1 : V → D and µ2 : V → D
maps such that µ1(v) = µ2(v) for every v in var(q). Then

evµ1(q) = evµ2(q).

♦

The proof of this lemma is omitted since it follows straightforwardly by definition
of evµ.

According to Lemma 5.18 it is enough to consider a map µ : var(q) → D
when evaluating a polynomial q. A map µ : var(q)→ D is a root of a polynomial
q if evµ(q) = 0F. It is common to consider that the root of a polynomial is the
values given by µ when applied to var(q).

It is possible to embed a field in an algebraically closed field. Most of the
proofs of this fact are non constructive and involve Zorn’s lemma. Herein, we
were inspired by the construction proposed by Emil Artin [3] for getting an
algebraic closure of a field. We start by setting up a category of polynomial
rings.
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Let pRg be the category whose objects are polynomial rings of the form I[VI ]
for each I in Mod(Θf) where

VI = {vq : q ∈ I[x]+}

and I[x]+ is the set of all non-constant polynomials in I[x]. For each element
d ∈ I, let pId be the constant polynomial in I[VI ] such that pId(ε) = d and
pId(m) = 0F for m 6= ε, and pIvq the polynomial in I[VI ] such that pIvq(vq) = 1F

and pIvq(m) = 0F whenever m 6= vq. Let PI be the set {pId : d ∈ D} and PVI the
set {pIvq : vq ∈ VI}.

A morphism in pRg from I1[VI1 ] to I2[VI2 ] is a map from I1[VI1 ] to I2[VI2 ]
induced by an embedding h : I1 → I2 in Mod(Θf), denoted by

ĥ

such that

ĥ(q) = λm2 .

{
(h ◦ q)(vq11 . . . vq1n) if m2 = vh◦q11 . . . vh◦q1n
0F2 otherwise.

The composition in pRg of morphisms ĥ1 : I1[VI1 ] → I2[VI2 ] and ĥ2 :
I2[VI2 ]→ I3[VI3 ], denoted by ĥ2 ◦ ĥ1 , is the morphism ĥ2 ◦ h1.

The identity morphism in pRg of an object I[VI ], denoted by idI[VI ] is the
morphism îdI .

Observe that ĥ(pI1vq1 ) = pI2vh◦q1
and ĥ(pI1d1

) = pI2h(d1). As expected, pRg consti-
tutes a category.

Proposition 5.19 pRg is a category.

The proof of Proposition 5.19 is omitted since it follows by a not so compli-
cated case analysis from the definition of pRg.

Proposition 5.20 Any morphism in pRg is a ring homomorphism.

Proof:
We only show that ĥ : I1[VI1 ]→ I2[VI2 ] satisfies the homomorphism condition for
+I1[VI1 ], that is, ĥ(q1 +I1[VI1 ] q

′
1) = ĥ(q1)+I2[VI2 ] ĥ(q′1), since the other conditions

follow similarly. Let m2 be in M(VI2). Consider two cases:
(a) m2 is vh◦q11 . . . vh◦q1n . Then:

ĥ(q1 +I1[VI1 ] q
′
1)(m2) = (h ◦ (q1 +I1[VI1 ] q

′
1))(vq11 . . . vq1n)

= h((q1 +I1[VI1 ] q
′
1)(vq11 . . . vq1n))

= h(q1(vq11 . . . vq1n) +F1 q′1(vq11 . . . vq1n))
= h(q1(vq11 . . . vq1n)) +F2 h(q′1(vq11 . . . vq1n))
= (h ◦ q1)(vq11 . . . vq1n) +F2 (h ◦ q′1)(vq11 . . . vq1n)

= ĥ(q1)(vh◦q11 . . . vh◦q1n) +F2 ĥ(q′1)(vh◦q11 . . . vh◦q1n)

= (ĥ(q1) +I2[VI2 ] ĥ(q′1))(m2)
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(b) m2 is not of the form vh◦q11 . . . vh◦q1n . Then:

ĥ(q1 +I1[VI1 ] q
′
1)(m2) = 0F2

= 0F2 +F2 0F2

= ĥ(q1)(m2) +F2 ĥ(q′1)(m2)

= (ĥ(q1) +I2[VI2 ] ĥ(q′1))(m2)

as we wanted to show. QED

We are now ready to define a functor from the category Mod(Θf) to the
category pRg of polynomial rings described above. We omit the proof that it is
indeed a functor since it follows straightforwardly.

Proposition 5.21 The pair

((PR)0, (PR)1)

such that:

• (PR)0(I) = I[VI ];

• (PR)1(h) = ĥ;

is a functor from Mod(Θf) to pRg.

Our objective now is to associate with a polynomial ring I[VI ], as defined
above, an element of Mod(Θf), that is a field, such that the polynomials in PVI
are roots of the corresponding polynomials in the image field.

Given a polynomial q in I[x]+ denote by qxvq the polynomial in I[VI ] obtained
from q by replacing x by vq, that is, such that qxvq(v

n
q ) = q(xn) for every natural

number n and qxvq(m) = 0F when m is not of the form vnq for some natural
number n.

Let JVI be a maximal ideal of I[VI ] containing the ideal generated by the
set of polynomials qxvq for q in I[x]+ which can be shown to be proper.

Observe that, given an embedding h : I1 → I2 in Mod(Θf) and a polynomial
q1 in I1[x]+, the polynomial h ◦ q1 is in I2[x]+, and the polynomial ĥ(q1

x
vq1

) is
(h◦ q1)xvh◦q1 and so is in the generators of the ideal that is encompassed by JVI2 .
So, we assume without loss of generality that

ĥ(JVI1 ) ⊆ JVI2
which is important when defining the functor QF from pRg to Mod(Θf) in
Proposition 5.23. Furthermore if the image by ĥ of a polynomial is in JVI2 then
that polynomial is in JVI1 , see Lemma 5.22.

Lemma 5.22 Given an embedding h : I1 → I2 in Mod(Θf) and a polynomial
q1 in I1[x]+,

if ĥ(q1) is in JV2
then q1 is in JV1

.

Moreover, p0F is the only constant polynomial in JVI , for any model I of Θf.
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Proof:
(1) If ĥ(q1) is in JV2

then q1 is in JV1
. Suppose by contradiction that ĥ(q1) ∈

JV2
and q1 /∈ JV1

. Then JVI1 + I1[VI1 ] × q1 is an ideal properly including
JVI1 . Therefore, since JVI1 is maximal, we can conclude that JVI1 + I1[VI1 ] ×
q1 = I1[VI1 ]. In particular, 1I1[VI1 ] = q′′ +I1[VI1 ] q

′ ×I1[VI1 ] q1 where q′′ ∈ JVI1
and q′ ∈ I1[VI1 ]. Hence 1I2[VI2 ] = ĥ(1I2[VI2 ]) = ĥ(q′′ +I1[VI1 ] q

′ ×I1[VI1 ] q1) =

ĥ(q′′) +I2[VI2 ] ĥ(q′) ×I2[VI2 ] ĥ(q1) ∈ JVI2 which can not happen since JVI2 is
maximal.

(2) p0F is the only constant polynomial in JVI . Suppose by contradiction that
pd ∈ JVI and d 6= 0F. Then p1F = pd ×I[VI ] pd−1 ∈ JVI and so JVI would not be
proper, which contradicts the fact that JVI is maximal. QED

We can now present the functor QF from pRg to Mod(Θf) that, when com-
posed with PR, will constitute the counterpart, in terms of our study of quan-
tifier elimination for algebraically closed fields, of the functor EΥ considered in
the general study of quantifier elimination presented in the beginning of this
section.

Proposition 5.23 The pair

((QF)0, (QF)1)

such that:

• (QF)0(I[VI ]) = II[VI ]/JVI
where II[VI ]/JVI

= (I[VI ]/JVI , ·F∼ , ·P∼) is such
that:

– [q1] +F∼ [q2] = [q1 +I[VI ] q2];

– −F∼ [q] = [−I[VI ]q];

– [q1]×F∼ [q2] = [q1 ×I[VI ] q2];

– 0F∼ = [0I[VI ]];

– 1F∼ = [1I[VI ]];

• (QF)1(ĥ : I1[VI1 ]→ I2[VI2 ])([q1]) = [ĥ(q1)];

is a functor from pRg to Mod(Θf).

Proof:
(1) QF(I[VI ]) is a field. We only show some of the conditions since the others
follow similarly:
(a) 0F∼ 6= 1F∼ . It is enough to note that 1I[VI ] /∈ 0F∼ . Suppose, by contradiction,
that 1I[VI ] ∈ 0F∼ . Then 1I[VI ] +I[VI ] (−I[VI ]0I[VI ]) = 1I[VI ] +I[VI ] 0I[VI ] = 1I[VI ] ∈
JVI . Hence q ∈ JVI for every q ∈ I[VI ], which contradicts the fact that JVI is
proper.
(b) For each q ∈ I[VI ] such that [q] 6= 0F∼ there is [q′] such that [q]×F∼ [q′] = 1F∼ .
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Let q ∈ I[VI ] be such that [q] 6= 0F∼ . Observe that

JVI +I[VI ] I[VI ]×I[VI ] q

is an ideal properly including JVI . Therefore, since JVI is maximal, we can
conclude that JVI +I[VI ] I[VI ] ×I[VI ] q = I[VI ]. In particular, 1I[VI ] = q′′ +I[VI ]

q′ ×I[VI ] q where q′′ ∈ JVI and q′ ∈ I[VI ]. Therefore 1F∼ = [q′′] +F∼ [q′] ×F∼ [q]
and so, since [q′′] = 0F∼ we conclude that there is a multiplicative inverse for
[q].

(2) QF(ĥ) is well-defined for every morphism ĥ : I1[VI1 ] → I2[VI2 ] in pRg.
It is enough to show that if q1 +I1[VI1 ] (−I1[VI1 ]q2) ∈ JVI1 then ĥ(q1) +I2[VI2 ]

(−I2[VI2 ]ĥ(q2)) ∈ JVI2 . Assuming that

q1 +I1[VI1 ] (−I1[VI1 ]q2) ∈ JVI1

then
ĥ(q1 +I1[VI1 ] (−I1[VI1 ]q2)) ∈ JVI2

since we are assuming that ĥ(JVI1 ) ⊆ JVI2 as justified in the paragraph immedi-
ately before this proposition. So the result follows since ĥ is an homomorphism;

(3) QF(ĥ) is injective for every morphism ĥ : I1[VI1 ]→ I2[VI2 ] in pRg. Assum-
ing that QF(ĥ)([q1]) = QF(ĥ)([q2]), then [ĥ(q1)] = [ĥ(q2)] and so ĥ(q1) +I2[VI2 ]

(−I2[VI2 ]ĥ(q2)) ∈ JVI2 . Therefore ĥ(q1 +I1[VI1 ] (−I1[VI1 ]q2)) ∈ JVI2 , and so by
Lemma 5.22, q1 +I1[VI1 ] (−I1[VI1 ]q2) ∈ JVI1 as we wanted to show.

(4) QF(ĥ) is an embedding for every morphism ĥ : I1[VI1 ]→ I2[VI2 ] in pRg. By
item (3) and taking into account that:

QF(ĥ)([q1] +F∼1 [q2]) = QF(ĥ)([q1 +I1[VI1 ] q2])

= [ĥ(q1 +I1[VI1 ] q2)]

= [ĥ(q1) +I2[VI2 ] ĥ(q2)]

= [ĥ(q1)] +F∼2 [ĥ(q2)]

= QF(ĥ)([q1]) +F∼2 QF(ĥ)([q2]))

and similarly for the other homomorphic conditions. QED

We now consider a natural transformation from idMod(Θf) to QF ◦ PR that
together with the functor QF ◦PR, induce satisfaction for Θacf \Θf, see Propo-
sition 5.26, and extend to Θacf \Θf, see Proposition 5.27.

Proposition 5.24 The family of maps

{ηI : I → II[VI ]/JVI
}I∈Mod(Θf )

such that ηI(d) = [pId] is a natural transformation from idMod(Θf) to QF ◦ PR.
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Proof:
(1) ηI is injective for each I in Mod(Θf ). Let d1 and d2 be distinct elements
of D and suppose by contradiction that pId1

+I[VI ] (−I[VI ]p
I
d2

) ∈ JVI . Since
pId1

+I[VI ] (−I[VI ]p
I
d2

) is the constant polynomial pI
d1+F(−Fd2)

then by Lemma 5.22
d1 +F (−Fd2) = 0F and so d1 = d2 which contradicts the initial assumption that
d1 and d2 are distincts.
(2) ηI is an embedding for each model I of Θf. By (1) and taking into account
that:

QF(ĥ)([q1] +F∼1 [q2]) = QF(ĥ)([q1 +I1[VI1 ] q2])

= [ĥ(q1 +I1[VI1 ] q2)]

= [ĥ(q1) +I2[VI2 ] ĥ(q2)]

= [ĥ(q1)] +F∼2 [ĥ(q2)]

= QF(ĥ)([q1]) +F∼2 QF(ĥ)([q2]))

and similarly for the other homomorphic conditions.
(3) (QF ◦ PR)(h) ◦ ηI1 = ηI2 ◦ h for every embedding h : I1 → I2 in Mod(Θf).
In fact

((QF ◦ PR)(h) ◦ ηI1)(d1) = (QF(PR(h))([pd1 ])

= (QF(ĥ))([pd1 ])

= [ĥ(pd1)]
= [ph(d1)]
= ηI2(h(d1))
= (ηI2 ◦ h)(d1)

as we wanted to show. QED

Observe that every non-constant polynomial of II[VI ]/JVI
[x] with coefficients

from I has at least a root in II[VI ]/JVI
. Indeed, in Proposition 5.25, we show that

given a non-constant polynomial q in I[x], the polynomial ηI ◦ q in II[VI ]/JVI
[x]

has at least the element [pI[VI ]
vq ] as a root in II[VI ]/JVI

.

Proposition 5.25 Given a model I of Θf and a non-constant polynomial q in
I[x], the map µ : {x} → II[VI ]/JVI

such that µ(x) = [pI[VI ]
vq ] is a root of ηI ◦ q in

PR(QF(I)), that is, in II[VI ]/JVI
.

Proof: Indeed:

evµ(ηI ◦ q) =
∑

m∈M(x)

µ∗(m)×F∼ ηI(q(m))

=
∑

m∈M(x)

[pI[VI ]
vq ]|m| ×F∼ [pI[VI ]

q(m)]

= [
∑

m∈M(x)

(pI[VI ]
vq )|m| ×I[VI ] p

I[VI ]
q(m)]

= [qxvq ]
= 0F∼
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as we wanted to show. QED

We now show that QF ◦ PR and η induce satisfaction for Θacf \ Θf and so,
using Proposition 5.11, that (QF ◦ PR)ω is a functor from Θf to Θacf.

Proposition 5.26 The functor QF ◦ PR and the natural transformation η in-
duce satisfaction for Θacf \Θf.

Proof: Let I be a model of Θf, ρ an assignment over I and δ a formula in ∃+
1

such that ∀δ is in Θacf \Θf. Then δ is of the form ∃y (yn+x1y
n−1 + · · ·+xn ∼= 0)

for n > 0. Observe that x1, . . . , xn are the free variables of δ. Let n be a natural
number greater than 0. Assume that Iρ 6
Σf ∃y (yn+x1y

n−1 +· · ·+xn ∼= 0). Let
q : M({x})→ I be the polynomial such that q(xi) = ρ(xn−i) for i = 1, . . . , n−1,
q(xn) = 1F and q(xj) = 0F for j > n. Then, by Proposition 5.25, [pI[VI ]

vq ] is a
root of ηI ◦ q in PR(QF(I)), that is, in II[VI ]/JVI

. Consider an assignment ρ′

over PR(QF(I)), y-equivalent to ηI ◦ ρ, such that ρ′(y) = [pI[VI ]
vq ]. Since

ev
λy.[p

I[VI ]
vq ]

(ηI ◦ q) = [[yn + x1y
n−1 + · · ·+ xn]]PR(QF(I))ρ′

then PR(QF(I))ρ′ 
Σf y
n + x1y

n−1 + · · ·+ xn ∼= 0 and so PR(QF(I))ηI ◦ ρ 
Σf

∃y(yn + x1y
n−1 + · · ·+ xn ∼= 0) as we wanted to show. QED

Similarly we show that QF ◦ PR and η also extend to Θacf \Θf and so they
satisfy the conditions of Proposition 5.12.

Proposition 5.27 The functor QF ◦ PR and the natural transformation η ex-
tend to Θacf \Θf.

Proof: Let h : I → I ′ be an embedding in Mod(Θf) with I ′ in Mod(Θacf).
Observe that there are no proper algebraic extensions of I ′ since it is an alge-
braically closed field, so ηI′ is an isomorphism from I ′ to PR(QF(I ′)). Consider
the map

η−1
I′ ◦ PR(QF(h))

from PR(QF(I)) to I ′. Then

(η−1
I′ ◦ PR(QF(h))) ◦ ηI = η−1

I′ ◦ (PR(QF(h)) ◦ ηI)
= η−1

I′ ◦ (ηI′ ◦ h)
= h

as we wanted to show. QED

Hence we can now conclude that Θacf has quantifier elimination by Theo-
rem 5.13 since Θacf is contained in ∀2, Θacf is ∃-adequate by Proposition 3.8
and since, by Proposition 5.26 and Proposition 5.27, the functor QF ◦ PR and
the natural transformation η induce satisfaction for and extend to Θacf \ Θf,
respectively. So, we have just proved the following theorem, Theorem 5.28.

Theorem 5.28 The theory Θacf has quantifier elimination.
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6 Concluding remarks

We introduce a new (categorial) perspective on model theoretic quantifier elim-
ination. A sufficient condition is proved which states that quantifier elimination
holds in a theory Θ whenever there is a close relationship between the category
of models of Θ and the category of Θ∀ as well as reflection of satisfaction for
existential formulas. A systematic way for proving quantifier elimination is de-
vised. We illustrated the results obtained by applying them to some first-order
theories.

We believe that the sufficient condition can be used in a wide range of
situations in order to prove that a certain theory has quantifier elimination
capitalizing on the generality of the approach. Moreover, it seems to avoid
some intricacies that can be found in some proofs of quantifier elimination.

We intend to explore the techniques presented herein to establish results
about the decidability of a theory Θ that comes as a combination of two de-
cidable theories Θ1 and Θ2. Assuming that quantifier elimination was proved
in Θ1 and Θ2 using our sufficient condition, we want to investigate whether or
not the sufficient conditions also hold for Θ, capitalizing and adapting some of
the work in [36, 37] on how to combine logics. A lot of research [44] has been
under way about preservation of decidability when combining theories since the
work of [29, 39]. Most of the methods are either syntactic or algorithmic, and
not algebraic/categorial as we intend to pursue, based on the results obtained
herein.
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