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Abstract

The product of matrix logics, possibly with additional interaction
axioms, is shown to preserve a slightly relaxed notion of Craig inter-
polation. The result is established symbolically, capitalizing on the
complete axiomatization of the product of matrix logics provided by
their meet-combination. Along the way preservation of the metatheo-
rem of deduction is also proved. The computation of the interpolant in
the resulting logic is proved to be polynomially reducible to the com-
putation of the interpolants in the two given logics. Illustrations are
provided for classical, intuitionistic and modal propositional logics.
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1 Introduction

After the seminal paper [5] by Craig, interpolation has been investigated in
many logics and variants, with applications in definability and automated
reasoning. More recently, Craig interpolation has been applied in modular
specification [2] and model checking [16, 12, 17] of computer applications.

The property of Craig interpolation has been established by model-
theoretic means, namely in [11, 6], and using proof-theoretic techniques, as
in the original paper [5] and in [3]. Some negative examples are also reported
in the literature, namely concerning modal and relevant logics in [19, 21].
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In the field of combination of logics, the preservation of the Craig interpo-
lation property has been established for fusion [13] and, providing that there
is a suitable bridge between the component logics, for fibring [4], model-
theoretically and proof-theoretically, respectively. Some negative results are
also reported in the literature, namely concerning the product of Kripke
semantics in [15].

Herein, we investigate if Craig interpolation is preserved by the product
of two logics endowed with matrix semantics, capitalizing on its axiomati-
zation provided by their meet-combination, a new truly conservative way
of combining matrix logics proposed and shown to preserve soundness and
completeness in [20]. Furthermore, we also study preservation of interpola-
tion in the presence of additional interaction axioms with connectives from
both logics.

The product of logics endowed with matrix semantics is relevant for
expressing properties of the two logics at the same time. For instance,
assuming that we have a logic for reasoning about time and a logic for
reasoning about space we may want to express properties involving time
and space. On the other hand, the meet-combination of two connectives
captures the common properties of both.

In the product logic one finds combined propositional symbols that are
not independent of each other. The presence of such propositional symbols
requires a natural relaxation of the interpolation property. For instance if

γ ` ϕ

and the combined propositional symbol dq1q2e occurs in γ but not in ϕ and
q2 occurs in ϕ, we allow the interpolant to use q2.

After a brief summary of meet-combination of logics and its main proper-
ties in Section 2, the proposed variant of Craig interpolation is presented in
Section 3. The enrichment of the meet-combination with interaction axioms
is also introduced in Section 2. Therein we also provide a sufficient condition
for the preservation of the metatheorem of deduction that will be needed for
proving preservation of interpolation in the presence of interaction.

The preservation of the interpolation property by the product of matrix
logics assumes that the two given logics have the identity connective, in
addition to verum and falsum, as explained at the end of Section 2. Clearly,
this assumption is not restrictive because, if missing, adding identity changes
nothing of import.

After some technical lemmas, the main preservation result is construc-
tively established by proof-theoretic means in Section 4, taking advantage of
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the axiomatization of the product of matrix logics provided by their meet-
combination. As a corollary, we also establish a couple of weaker results
on the preservation of interpolation in the presence of interaction axioms.
Examples are delayed until Section 5.

In Section 6, an algorithm for computing the interpolant in the product
logic is extracted from the preservation proof. Its worst-case complexity is
established and it is shown that the computation of the interpolant in the
resulting logic has only a polynomial penalty over the computation in the
two given logics.

2 Meet-combination of logics

For the convenience of the reader we provide here a brief review of [20]. By
a matrix logic over a given set Q of propositional symbols we mean a triple1

L = (Σ,∆,M)

where:

• The signature Σ is a family {Σn}n∈N with each Σn being a set of n-ary
language constructors2 and such that

Q ⊆ Σ0.

Formulas are built as usual with the constructors and the propositional
or schema variables in Ξ = {ξk | k ∈ N}. We use L and L(Ξ) for
denoting the set of concrete formulas3 and the set of all formulas,
respectively. If a formula contains schema variables we may emphasize
this fact by saying that it is a schema formula. Schema formulas are
useful for writing schema inference rules so that in a combined logic
they can be instantiated with formulas from outside the original logic.

• The Hilbert calculus ∆ is a set of finitary rules of the form

α1 . . . αm
β

1Taking a logic as a triple allows to deal with logics where the calculus and the semantics
were developed independently of each other. For instance, in the case of a modal logic
endowed with a matrix semantics M induced by its Kripke semantics.

2We use the term constructor to refer to any constant, like tt, connective, like ∧, and
operator, like �.

3Formulas without schema variables.
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where formulas α1, . . . , αm are said to be the premises of the rule and
formula β is said to be its conclusion. A rule without premises is said
to be axiomatic and its conclusion is said to be an axiom. Derivability
and derivation sequences are defined as usual for Hilbert calculi. We
write

Γ ` ϕ

for stating that there is a derivation sequence of formula ϕ from set
Γ of hypotheses. When ∅ ` ϕ we say that ϕ is a theorem and write
simply ` ϕ.

• The matrix semantics4 M is a non empty class of matrices over Σ.
Recall that each such matrix M is a pair (A, D) where A is an algebra
over Σ and D is a non-empty subset of its carrier set A. Denotation,
satisfaction, entailment and validity are defined as usual for matrix
semantics. Namely, we write

Γ � ϕ

for stating that, for each matrix M = (A, D) and assignment ρ : Ξ→
A, if [[γ]]Mρ ∈ D for every γ ∈ Γ, then [[ϕ]]Mρ is also a distinguished
value.

We need to work with logics fulfilling some additional assumptions. By a
suitable logic we mean a logic such that (i) there is a concrete formula, that
we call verum and denote by tt, which is a theorem, (ii) there is a concrete
formula, that we call falsum and denote by ff, from which all formulas are
derived, and (iii) for each n ≥ 1, there is a formula φ(n), with schema
variables ξ1, . . . , ξn, which is a theorem.5

In the context of a suitable logic, for each n ≥ 1, we introduce the n-ary
connective tt(n) as follows:

tt(n)(ϕ1, . . . , ϕn) =abbv. φ
(n)|ξ1,...,ξnϕ1,...,ϕn

4Matrix semantics was introduced by Tarski (although implicit in previous works of
 Lukasiewicz, Bernays and Post among others) and has the advantage of providing a uni-
form general semantics for a wide variety of logics namely intuitionistic and modal logics
as well as many-valued logics and some paraconsistent logics.

5For instance, in the context of classical and intuitionistic logics we can take

(ξ1 ⊃ ξ1) ∧ . . . ∧ (ξn ⊃ ξn)

as φ(n).
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where φ(n)|ξ1,...,ξnϕ1,...,ϕn is the formula obtained from φ(n) by the uniform and si-
multaneous substitution of ϕ1, . . . , ϕn for ξ1, . . . , ξn, respectively. Moreover,
we may write tt(0) for tt.

Given a suitable logic L = (Σ,∆,M) over Q, we assume without loss
of generality that Σ0 \Q contains the constructors tt, ff and, in general, Σn

contains tt(n) for each n ∈ N+, as introduced above.
Given two suitable logics L1 = (Σ1,∆1,M1) and L2 = (Σ2,∆2,M2)

over Q1 and Q2, respectively, with Σ1 = {Σ1n}n∈N and Σ2 = {Σ2n}n∈N,
their meet-combination is the logic

dL1L2e = (Σd12e,∆d12e,Md12e)

over

Qd12e = {dq1tt2e |q1 ∈ Q1} ∪ {dtt1q2e |q2 ∈ Q2} ∪ {dq1q2e |q1 ∈ Q1, q2 ∈ Q2}

where Σd12e, ∆d12e and Md12e are as follows. In the sequel, we denote by

tt
(n)
k the n-ary constructor in Σkn for k = 1, 2.

The signature Σd12e is such that, for each n ∈ N,

Σd12en = {dc1c2e | c1 ∈ Σ1n, c2 ∈ Σ2n}.

The constructor dc1c2e is said to be the meet-combination of c1 and c2. As
expected, we use Ld12e and Ld12e(Ξ) for denoting the set of concrete formulas
and the set of all formulas over Σd12e, respectively. Observe that we look at
signature Σd12e as an enrichment of Σ1 via the embedding

η1 : c1 7→ dc1tt
(n)
2 e for each c1 ∈ Σ1n.

Similarly, for Σ2 we use the embedding η2 : c2 7→ dtt(n)
1 c2e for each c2 ∈ Σ2n.

For the sake of lightness of notation, in the context of Σd12e, from now on,
we may write

c1 for dc1tt
(n)
2 e when c1 ∈ Σ1n

and c2 for dtt(n)
1 c2e when c2 ∈ Σ2n. We refer to these constructors as the in-

herited constructors and refer to the other constructors in Σd12e as the proper
combined constructors. In this vein, for k = 1, 2, we look at Qk as a subset
of Qd12e, at Lk as a subset of Ld12e and at Lk(Ξ) as a subset of Ld12e(Ξ).
Given a formula ϕ over Σd12e and k ∈ {1, 2}, we denote by

ϕ|k
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the formula obtained from ϕ by replacing every occurrence of each combined
constructor (proper and inherited) by its k-th component. Such a formula
is called the projection of ϕ to k.

The calculus ∆d12e is composed of the rules inherited from ∆1 (via the
implicit embedding η1) and the rules inherited from ∆2 (via the implicit
embedding η2), plus the rules imposing that each combined connective enjoys
the common properties of its components and the rules for propagating
falsum. More precisely, ∆d12e contains the following rules:

• for k = 1, 2, the inherited rules from ∆k:

– every non-liberal rule (that is, a rule where the conclusion is not
a schema variable) in ∆k;

– every tagging of every liberal rule r of the form

α1 . . . αm
ξ

in ∆k, that is, for each c ∈ Σkn and n ∈ N, the rule rc of the form

α1|ξβc . . . αm|ξβc
βc

where βc = c(ξj+1, . . . , ξj+n) with j being the maximum of the
indexes of the schema variables occurring in r;

• the lifting rule (in short LFT)

ϕ|1 ϕ|2
ϕ

,

for each formula ϕ ∈ Ld12e(Ξ);

• the co-lifting rule (in short cLFT)

ϕ

ϕ|k
,

for each formula ϕ ∈ Ld12e(Ξ) and k = 1, 2;

• the falsum propagation rules (in short FX) of the form

ff1

ff2
and

ff2

ff1
.
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At first sight one might be tempted to include in ∆d12e every rule in
∆1 ∪∆2. For instance, if modus ponens is a rule in ∆1 one would expect to
find in ∆d12e the rule

ξ1 (ξ1 ⊃1 ξ2)

ξ2
.

However, as discussed in [20], this rule is not sound. Instead, we tag such
a liberal rule, including in ∆d12e, for each c ∈ Σ1n and n ∈ N, the c-tagged
modus ponens rule

ξ1 (ξ1 ⊃1 c(ξ3, . . . , ξ2+n))

c(ξ3, . . . , ξ2+n)
.

The lifting rule is motivated by the idea that dc1c2e inherits the common
properties of c1 and c2. The co-lifting rule is motivated by the idea that
dc1c2e should enjoy only the common properties of c1 and c2.

Observe that although we may write, for example, ⊃1 for d⊃1tt
(2)
2 e, the

lifting and co-lifting rules also apply to such inherited constructors. For
example, in the calculus of the meet-combination,

¬1(ξ1 ⊃1 ξ2) ¬2(ξ1tt
(2)
2 ξ2)

d¬1 ¬2e(ξ1 ⊃1 ξ2)

is an instance of LFT.
The semantics Md12e is the class of product matrices

{M1 ×M2 |M1 ∈M1 and M2 ∈M2}

over Σd12e such that each

M1 ×M2 = (A1 × A2, D1 ×D2)

where

A1 ×A2 = (A1 ×A2, {dc1c2e : (A1 ×A2)n → A1 ×A2 | dc1c2e ∈ Σd12en}n∈N)

with

dc1c2e((a1, b1), . . . , (an, bn)) = (c1(a1, . . . , an), c2(b1, . . . , bn)).

Observe that the meet-combination dL1L2e of two given suitable, sound
and complete matrix logics L1 and L2 provides an axiomatization of the
product of their matrix semantics since it preserves soundness and com-
pleteness, as shown in [20].
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It should also be stressed that we were able to define the meet-combination
of two given logics only when they are suitable. In fact, the verum is needed
for setting up the combined connectives and the falsum is needed in the
calculus.

For this reason, from now on, when discussing the combination of L1

and L2, we assume that L1 and L2 are given suitable logics over Q1 and Q2,
respectively. As shown in [20], their combination dL1L2e is a suitable logic
over Qd12e.

In some cases we may want to impose some interaction between connec-
tives of the two logics. Interaction is stated by axioms.

Given logics L1 and L2 and a set Ax of interaction axioms in Ld12e(Ξ),
we denote by

dL1L2eAx = (Σd12e,∆d12e+Ax,Md12e+Ax)

the logic obtained by enriching dL1L2e with Ax as follows:

• ∆d12e+Ax = ∆d12e ∪Ax;

• Md12e+Ax = {M1 ×M2 : M1 ×M2 ∈Md12e and M1 ×M2 
d12e Ax}.

Moreover we write Γ `d12e+Ax ϕ whenever there is a derivation sequence of
ϕ from Γ in dL1L2eAx.

For instance, given the meet-combination of two modal logics L1 and L2,
assume that Ax includes the following interaction axiom:

(�1ξ) d⊃1⊃2e(�2ξ)

stating that necessitation �1 in logic L1 implies necessitation �2 in logic L2.
Hence, if logic L2 has axiom 4 (�2 ξ) ⊃2 (�2 �2 ξ) then one should expect
to be able to obtain that

`d12e+Ax (�1ξ) d⊃1⊃2e(�2�2ξ).

Until the end of this section, we recall the following two results (the
proofs can be seen in [20]) and prove some additional technical lemmas
that are needed later on. Namely we prove a sufficient condition for the
preservation by meet-combination of the metatheorem of deduction.

Proposition 2.1 For each k = 1, 2, let Γ ∪ {ϕ} be a set of formulas in Lk
such that Γ `k ϕ. Then, Γ `d12e ϕ.

Proposition 2.2 For each k = 1, 2 and ϕ ∈ Ld12e, ffk `d12e ϕ.
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Proposition 2.1 means that dL1L2e is an extension of each of the given
two logics with respect to concrete formulas. Proposition 2.2 states that the
falsum of each of the given logics is also a falsum in dL1L2e. It is worth
mentioning, albeit not used in this paper, that dL1L2e is a conservative
extension of the component logics and that if the latter are both sound and
complete, then so is the former (see [20]).

The following result establishes a relationship between substitution in
the combined logic and substitution in each of the component logics.

Proposition 2.3 For each k = 1, 2 let σ : Ξ → Ld12e and σk : Ξ → Lk be
substitutions such that σk(ξ) = σ(ξ)|k. Then

σk(ψ) = σ(ψ)|k for every ψ ∈ Lk.

Proof: The proof follows by a straightforward induction on ψ. QED

The following useful result relates derivability in the combined logic with
derivability in each component logic.

Proposition 2.4 Let Γ∪{ϕ} ⊆ Ld12e be such that Γ `d12e ϕ with a deriva-
tion sequence not using the FX rules. Then

Γ|k `k ϕ|k for k = 1, 2.

Proof: Let ψ1 . . . ψn be a derivation sequence in dL1L2e of ϕ from Γ not
using the FX rule. We prove the result by induction on n:

(1) ϕ ∈ Γ. In this case, it is straightforward to obtain the thesis.

(2) ϕ is an instance of an axiom α in dL1L2e with substitution σ : Ξ→ Ld12e.
Suppose without loss of generality that α is inherited from α1 in L1. Then:

(i) k = 1. If α1 is a schema variable then `1 ϕ|1 immediately. Otherwise,
take σ1(ξ) = σ(ξ)|1 for every ξ ∈ Ξ. Then, ϕ|1 = σ(α1)|1 = σ1(α1), by
Proposition 2.3. Hence, ϕ|1 is an instance of α1, that is α, by σ1.

(ii) k = 2. Since the main constructor of ϕ is from Σ1 then the main con-

structor of ϕ|2 is tt
(n)
2 for some n. The result follows straightforwardly.

(3) ϕ is obtained from ψi1 . . . ψim using an inherited rule r = ({α1, . . . , αm}, β)
with substitution σ : Ξ→ Ld12e. Then, Γ `d12e ψij for j = 1, . . . ,m and so,
by the induction hypothesis

Γ|1 `1 ψij |1 and Γ|2 `2 ψij |2
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for j = 1, . . . ,m. Suppose without loss of generality that r is inherited from
rule r1 = ({α′

1, . . . , α
′
m}, β′) of L1. Then:

(i) k = 1. If r1 is liberal then let σ′ : Ξ→ L1(Ξ) be a substitution such that
σ′(β′) = β and σ′(ξ) = ξ for every ξ 6= β′, otherwise let σ′ be the identity.
Observe that αj = σ′(α′

j) for j = 1, . . . ,m and β = σ′(β′). Take σ1(ξ) =
σ(ξ)|1 for every ξ ∈ Ξ. Then, ψij |1 = σ(αj)|1 = σ1(αj) = σ1(σ′(α′

j)) =
(σ1 ◦ σ′)(α′

j) for j = 1, . . . ,m, by Proposition 2.3. Then, by rule r1,

Γ|1 `1 (σ1 ◦ σ′)(β′).

The result follows since (σ1 ◦ σ′)(β′) = σ1(β) = σ(β)|1 = ϕ|1, by Proposi-
tion 2.3.

(ii) k = 2. Since the main constructor of ϕ is from Σ1 then the main con-

structor of ϕ|2 is tt
(n)
2 for some n. The result follows straightforwardly.

(4) ϕ is obtained from ϕ|1 and ϕ|2 by rule LFT. Then, by the induction
hypothesis,

Γ|1 `1 (ϕ|1)|1 and Γ|2 `2 (ϕ|1)|2
and

Γ|1 `1 (ϕ|2)|1 and Γ|2 `2 (ϕ|2)|2.

The result follows since (ϕ|k)|k = ϕ|k for k = 1, 2.

(5) ϕ is ψ|1 using rule cLFT. Then, by the induction hypothesis,

Γ|1 `1 ψ|1 and Γ|2 `2 ψ|2

and, so:

(i) k = 1. Clearly, Γ|1 `1 ϕ|1 since ϕ|1 is (ψ|1)|1, that is, ψ|1.

(ii) k = 2. The result follows since the main constructor of ϕ is from L1.

(6) ϕ is ψ|2 using rule cLFT. The proof is similar to case (5). QED

We now investigate sufficient conditions for the preservation of the metathe-
orem of deduction. The results we get will be used to prove preservation
of interpolation in the presence of interaction (see Theorem 4.5). For this
purpose we start by introducing the following notion. A calculus ∆ is said
to be a calculus with implication ⊃ when ⊃ ∈ Σ2 and the following holds:

• metatheorem of deduction (in short MTD) with respect to ⊃:

if Γ, η ` ϕ then Γ ` η ⊃ ϕ;

10



• modus ponens (in short MP) with respect to ⊃:

if Γ ` η and Γ ` η ⊃ ϕ then Γ ` ϕ.

Observe that imposing MP as above is equivalent to stating the following:

if Γ ` η ⊃ ϕ then Γ, η ` ϕ.

In the proof of the following result we use the notion of a formula de-
pending on an hypothesis in a derivation.

Given a derivation ψ1 . . . ψn of ϕ from Γ ∪ {η}, we say that ψi depends
on η in this derivation if either ψi is η or ψi is obtained using a rule with at
least one of the premises depending on η.

Notwithstanding the fact that the metatheorem of deduction may have
been proved in the original logics in a standard way (for example, using
Frege’s syllogism, the simplification axiom and modus ponens, as in [8]),
the proof of the metatheorem of deduction in their meet combination will
always be more complicated since there are new rules (e.g. the LFT and
the cLFT). Moreover, the following preservation result is also applicable to
logics with other rules besides modus ponens.

Theorem 2.5 (Preservation of metatheorem of deduction)
Assume that L1 and L2 have MP and MTD with respect to ⊃1 and ⊃2,
respectively, and let Γ ∪ {η, ϕ} ⊆ Ld12e. If

Γ, η `d12e ϕ

with a derivation sequence not using the FX rules, then

Γ `d12e η d⊃1⊃2eϕ

with a derivation sequence not using the FX rules.

Proof: Let ψ1 . . . ψn be a derivation sequence for Γ, η `d12e ϕ not using FX
rules. We consider two cases:

(1) ϕ does not depend on η. Then Γ `d12e ϕ. Observe that

ϕ|k, η|k `k ϕ|k, for k = 1, 2.

Hence, by MTD for Lk,

ϕ|k `k η|k ⊃k ϕ|k, for k = 1, 2
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and so, by Proposition 2.1,

ϕ|k `d12e η|k ⊃k ϕ|k, for k = 1, 2.

Thus, by cLFT and transitivity,

ϕ `d12e η|k ⊃k ϕ|k, for k = 1, 2

and, by LFT
ϕ `d12e η d⊃1⊃2eϕ.

The thesis follows by transitivity.

(2) ϕ is either η (the proof follows straightforwardly) or is the conclusion of
an instance of a rule r, other than FX, with a non empty set of premises
and where at least a premise depends on η.

(a) Either r ∈ ∆k is a non-liberal rule or r is the tagging of a liberal rule
in ∆k. We assume without loss of generality that k = 1 and that r has m
premises.

Then, Γ, η `d12e ϕj where ϕj is a premise of the instance of rule r for
j = 1, . . . ,m. Then, by the induction hypothesis,

Γ `d12e η d⊃1⊃2eϕj

with a derivation sequence not using the FX rules for j = 1, . . . ,m. Then,
by Proposition 2.4,

Γ|1 `1 η|1 ⊃1 ϕj |1
for j = 1, . . . ,m. Note that

η|1 ⊃1 ϕ1|1, . . . , η|1 ⊃1 ϕm|1, η|1 `1 ϕ|1

and so by MTD for L1

η|1 ⊃1 ϕ1|1, . . . , η|1 ⊃1 ϕm|1 `1 η|1 ⊃1 ϕ|1.

Thus, by transitivity,
Γ|1 `1 η|1 ⊃1 ϕ|1.

On the other hand,
Γ|2, η|2 `2 ϕ|2

since the head of ϕ|2 is a verum connective and so by the MTD over L2

Γ|2 `2 η|2 ⊃2 ϕ|2.
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Therefore, by Proposition 2.1 and monotonicity,

Γ|1,Γ|2 `d12e η|1 ⊃1 ϕ|1 and Γ|1,Γ|2 `d12e η|2 ⊃2 ϕ|2.

Thus, by cLFT and transitivity,

Γ `d12e η|1 ⊃1 ϕ|1 and Γ `d12e η|2 ⊃2 ϕ|2.

Finally, using LFT, the thesis follows.

(b) r is LFT. Then, Γ, η `d12e ϕ|j , for j = 1, 2 and so, by the induction
hypothesis, Γ `d12e η d⊃1⊃2eϕ|j , for j = 1, 2. Hence, by cLFT and transi-
tivity,

Γ `d12e η|1 ⊃1 ϕ|1 and Γ `d12e η|2 ⊃2 ϕ|2
since ϕ|1|1 is ϕ|1 and ϕ|2|2 is ϕ|2. The result follows by LFT.

(c) r is cLFT. Then, Γ, η `d12e ψ and ϕ is ψ|k. Assume without loss of
generality, that k = 1. Hence, by the induction hypothesis,

Γ `d12e η d⊃1⊃2eψ.

We consider two cases.

(i) ϕ is not in Ξ. By cLFT

Γ `d12e η|1 ⊃1 ψ|1

and so
Γ `d12e η|1 ⊃1 (ψ|1)|1.

On the other hand,
η|2 `2 (ψ|1)|2

since the conclusion is a verum formula. Hence, by MTD for L2,

`2 η|2 ⊃2 (ψ|1)|2.

Therefore, by Proposition 2.1 and monotonicity,

Γ `d12e η|2 ⊃2 (ψ|1)|2.

Finally, by LFT, we get the result.

(ii) ϕ is in Ξ. The thesis follows immediately by the induction hypothesis
since ψ|1 is ψ. QED
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Note that metatheorem of deduction is also preserved in dL1L2eAx for
any set Ax of interaction axioms but we shall not need this result in the
sequel. Modus ponens is also preserved under similar conditions as we now
discuss.

Theorem 2.6 (Preservation of modus ponens)
Assume that L1 and L2 have MP with respect to ⊃1 and ⊃2, respectively,
and let Γ ∪ {η, ϕ} ⊆ Ld12e. If

Γ `d12e η d⊃1⊃2eϕ

with a derivation sequence not using the FX rules, then

Γ, η `d12e ϕ

with a derivation sequence not using the FX rules.

Proof: Assume that Γ `d12e η d⊃1⊃2eϕ with a derivation sequence not
using the FX rules. Hence, by Proposition 2.4,

Γ|1 `1 η|1 ⊃1 ϕ|1 and Γ|2 `2 η|2 ⊃2 ϕ|2.

Then, by MP for L1 and L2,

Γ|1, η|1 `1 ϕ|1 and Γ|2, η|2 `2 ϕ|2.

The result follows by Proposition 2.1, cLFT and LFT. QED

We observe that modus ponens is also preserved in dL1L2eAx for any set
Ax of interaction axioms but we shall not need this result in the sequel.

In order to establish the preservation of interpolation, we need in addi-
tion to consider logics endowed with identity. The identity constructor plays
an important role when transforming an interpolant in a component logic to
an interpolant in the combined logic, as made clear in the proof of the main
theorem of Section 4 and illustrated in one of the examples of Section 5.

More concretely, we say that a given logic L = (Σ,∆,M) is endowed
with identity if it contains a unary constructor, say id, in the signature such
that:

• its denotation is the identity map idM : b 7→ b in every matrix M in
M;

• ϕ ` ϕ′ and ϕ′ ` ϕ where ϕ′ is a formula obtained from ϕ by removing
0 or more applications of each id.
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In the sequel, for such a logic with identity, we denote by

ψ-id

the formula obtained from the formula ψ by removing every application of
id. The following result becomes handy in Section 4:

Proposition 2.7 Let Γ ∪ {ϕ} be a set of formulas in a logic with identity.
Then,

Γ ` ϕ iff Γ-id ` ϕ-id.

Proof: The result follows by a straightforward induction on the length of
the derivation sequence. QED

It is possible to introduce id as an abbreviation in most logics. Otherwise,
it is feasible to enrich the signature, the calculus and the matrix semantics
in order to make it available, while preserving soundness, completeness and
Craig interpolation.

3 A relaxed notion of Craig interpolation

For the sake of generality, we address turnstile interpolation, instead of the
more common theoremhood interpolation using implication, since it may
be the case that the logics at hand do not have implication (observe that
implication is not required for preservation of interpolation when there is no
interaction). Let L = (Σ,∆,M) be a logic over Q and

symb : L→ ℘Q

be such that symb(ψ) is the set of propositional symbols occurring in ψ.
Recall that the “standard” turnstile notion of Craig interpolation (see [6])

is as follows. Logic L is said to enjoy the Craig interpolation property if, for
every Γ ∪ {ϕ} ⊆ L with Γ ` ϕ,

there is Θ ⊆ L such that

(1) symb(Θ) ⊆ symb(Γ) ∩ symb(ϕ)
(2) Γ ` θ for each θ ∈ Θ and Θ ` ϕ

whenever symb(Γ) ∩ symb(ϕ) 6= ∅,
otherwise either Γ ` ff or ` ϕ.

When symb(Γ) ∩ symb(ϕ) 6= ∅, such a Θ is said to be an interpolant for
Γ ` ϕ.
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As explained in Section 1, we need to relax this notion in order to be
able to address the existence of pairs of propositional symbols in meet-
combinations. To this end, it is convenient to introduce the following relation
between propositional symbols of the combined logic.

Given dL1L2e over Qd12e, let v be the componentship relation defined as
follows:

• cv c for every c ∈ Qd12e;

• ck v dc1c2e for every ck, dc1c2e ∈ Qd12e and k = 1, 2.

Furthermore, let
symbv

d12e : Ld12e → ℘Qd12e

be such that

symbv
d12e(ψ) = {c ∈ Qd12e : there is c′ ∈ symbd12e(ψ) such that cv c′}.

The meet-combination dL1L2e is said to enjoy the relaxed Craig inter-
polation property if, for every Γ ∪ {ϕ} ⊆ Ld12e with Γ `d12e ϕ,

there is Θ ⊆ Ld12e such that

(1) symbv
d12e(Θ) ⊆ symbv

d12e(Γ) ∩ symbv
d12e(ϕ)

(2) Γ `d12e θ for each θ ∈ Θ and Θ `d12e ϕ

whenever symbv
d12e(Γ) ∩ symbv

d12e(ϕ) 6= ∅,
otherwise either Γ `d12e ff or `d12e ϕ.

When symbv
d12e(Γ)∩ symbv

d12e(ϕ) 6= ∅, such a Θ is said to be a relaxed inter-
polant for Γ `d12e ϕ.

The definition of relaxed Craig interpolation is easily extended for meet-
combination of logics with interaction. More precisely the definition is the
same except that we consider `d12e+Ax instead of `d12e, for a given set of
interaction axioms Ax.

Observe that, in the presence of pairs of propositional symbols, it is only
natural that their components should also be allowed in the interpolant.

Note also that the relaxed notion of interpolation collapses into the stan-
dard one if the second condition of the componentship relation is deleted.
To this end, one needs to extend the relaxed notion of interpolation to any
logic, by confusing each q with the pair dqqe.

16



4 Preservation of interpolation

From now on we assume that L1 and L2 are suitable matrix logics with
identity over Q1 and Q2, respectively.

In the sequel we denote by τ1 : Ld12e → Ld12e the map such that

τ1(ψ) =

{
(did1tt

(1)
2 eψ) if ψ ∈ Σd12e0

ψ otherwise,

and define τ2 similarly. Observe that, if α is an atom of Ld12e, then:

τ1(α) = (did1tt
(1)
2 eα)

while
τ2(α) = (dtt(1)

1 id2eα).

The non-atomic formulas are not affected.
Furthermore, for each k = 1, 2, by a right inverse of the k-th projection

or simply a right k-inverse we mean a map

fk : Qk → Qd12e

such that fk(q)|k = q for each q ∈ Qk. Such a right k-inverse is canonically
extended to Lk as expected: for each θk ∈ Lk, fk(θk) is the formula obtained
by replacing in θk each propositional symbol ck ∈ Qk by fk(ck).

Towards the envisaged preservation result, we establish the following
technical lemmas where id and the maps defined above play an important
role.

Proposition 4.1 For each k = 1, 2, let θk ∈ Lk and fk be a right k-inverse.
Then,

τk(fk(θk))|k `d12e θk and θk `d12e τk(fk(θk))|k.

Proof: Without loss of generality, we assume that k = 1. Consider two
cases.
(1) f1(θ1) ∈ Σd12e0. Hence

τ1(f1(θ1)) = (did1tt
(1)
2 e f1(θ1)).

Then
τ1(f1(θ1))|1 = (did1tt

(1)
2 e f1(θ1))|1 = (id1θ1).
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Thus τ1(f1(θ1))|1 `d12e θ1 and θ1 `d12e τ1(f1(θ1))|1 by Proposition 2.1.

(2) f1(θ1) /∈ Σd12e0. Then, τ1(f1(θ1)) = f1(θ1). Since it is easy to show that

τ1(f1(θ1))|1 = θ1,

the result follows immediately. QED

Proposition 4.2 For each k = 1, 2, let θk ∈ Lk and fk be a right k-inverse.
Then,

`d12e τk(fk(θk))|k
where 1 = 2 and 2 = 1.

Proof: Assume without loss of generality that k = 1. We consider two
cases.
(1) f1(θ1) ∈ Σd12e0. Hence

τ1(f1(θ1)) = (did1tt
(1)
2 e f1(θ1)).

Then
τ1(f1(θ1))|2 = (did1tt

(1)
2 e f1(θ1))|2 = tt

(1)
2 (f1(θ1)|2).

The result follows since `d12e tt
(1)
2 (f1(θ1)|2).

(2) f1(θ1) /∈ Σd12e0. Then, τ1(f1(θ1)) = f1(θ1). Observing that the main
constructor of θ1 is in Σ1, then the result follows since the main constructor

of τ1(f1(θ1))|2 is tt
(n)
2 for some n. QED

Proposition 4.3 Let Γ ∪ {ϕ} ⊆ Ld12e. Then,

symb1(Γ|1) ∩ symb1(ϕ|1) 6= ∅ or symb2(Γ|2) ∩ symb2(ϕ|2) 6= ∅

iff

symbv
d12e(Γ) ∩ symbv

d12e(ϕ) 6= ∅.

Proof: Assume with no loss of generality that c1 ∈ symb1(Γ|1)∩symb1(ϕ|1).
Then, dc1c2e ∈ symb1(Γ) and dc1c

′
2e ∈ symb1(ϕ) for some c2, c

′
2 in Σ2 of arity

0. Hence, c1 ∈ symbv
d12e(Γ) ∩ symbv

d12e(ϕ).

Conversely, assume that symbv
d12e(Γ)∩symbv

d12e(ϕ) 6= ∅ and let c ∈ symbv
d12e(Γ)∩

symbv
d12e(ϕ). Then, we can consider the following cases:

(a) c = dc1c2e where c1, c2 are propositional symbols. Then, ck ∈ symbk(Γ|k)∩
symbk(ϕ|k) for k = 1, 2.
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(b) c = dc1tt
(0)
2 e. Then, either dc1c2e or dc1tt

(0)
2 e occurs in Γ and either dc1c

′
2e

or dc1tt
(0)
2 e occurs in ϕ. Hence, c1 occurs in Γ|1 and c1 occurs in ϕ|1. Then,

c1 ∈ symb1(Γ|1) ∩ symb1(ϕ|1).

(c) c = dtt(0)
1 c2e. Similar to case (b). QED

With the results above at hand, we are ready to establish the key result
concerning the interpolation property in meet-combinations.

Theorem 4.4 (Preservation of interpolation)
Let L1 and L2 be suitable matrix logics with identity and enjoying the
Craig interpolation property. Then, their meet-combination dL1L2e enjoys
the relaxed Craig interpolation property.

Proof: Let L1 and L2 be logics over sets Q1 and Q2 of propositional sym-
bols, respectively, enjoying Craig interpolation, and Γ∪{ϕ} ⊆ Ld12e. Assume
that Γ `d12e ϕ. We need to consider two scenarios:

(A) symbv
d12e(Γ) ∩ symbv

d12e(ϕ) = ∅:
Then, symbk(Γ|k) ∩ symbk(ϕ|k) = ∅ for k = 1, 2. Hence, for each k = 1, 2,
either Γ|k `k ffk or `k ϕ|k. Thus, either Γ `d12e dff1ff2e or `d12e ϕ. Indeed:

(1) If `1 ϕ|1 and `2 ϕ|2, then, by Proposition 2.1, `d12e ϕ|k for k = 1, 2. So,
by LFT, we have `d12e ϕ.

(2) Otherwise, Γ|1 `1 ff1 or Γ|2 `2 ff2. Assume, without loss of generality,
that Γ|1 `1 ff1. Observe that by cLFT, Γ `d12e Γ|1 and, by Proposition 2.1,
Γ|1 `d12e ff1. Thus, Γ `d12e ff1 and so, by Proposition 2.2, Γ `d12e dff1ff2e.

(B) symbv
d12e(Γ) ∩ symbv

d12e(ϕ) 6= ∅:

Assume that d is a derivation sequence of ϕ from Γ. We consider two cases:

(1) d uses an FX rule. Thus, Γ `d12e ff1. Then, {ff1} is an interpolant for
Γ `d12e ϕ. Indeed:

(i) symbv
d12e({ff1}) = ∅ ⊆ symbv

d12e(Γ) ∩ symbv
d12e(ϕ). (ii) Γ `d12e ff1 and

(iii) ff1 `d12e ϕ using Proposition 2.2.

(2) d does not use FX rules. Then,

Γ|1 `1 ϕ|1 and Γ|2 `2 ϕ|2

by Proposition 2.4. Moreover, by Proposition 4.3,

symb1(Γ|1) ∩ symb1(ϕ|1) 6= ∅ or symb2(Γ|2) ∩ symb2(ϕ|2) 6= ∅.
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Before proceeding, observe that there is a right 1-inverse f1 such that, for
each c1 ∈ symb1(Γ|1) ∩ symb1(ϕ|1):

• f1(c1) ∈ symbv
d12e(Γ) ∩ symbv

d12e(ϕ);

• if there is c′2 6= tt2 with dc1c
′
2e ∈ symbv

d12e(Γ) ∩ symbv
d12e(ϕ) then

f1(c1)|2 6= tt2.

Similarly, there is a right 2-inverse f2 such that, for each c2 ∈ symb2(Γ|2) ∩
symb2(ϕ|2):

• f2(c2) ∈ symbv
d12e(Γ) ∩ symbv

d12e(ϕ);

• if there is c′1 6= tt1 with dc′1c2e ∈ symbv
d12e(Γ) ∩ symbv

d12e(ϕ) then

f2(c2)|1 6= tt1.

We consider two subcases:

(a) Both symb1(Γ|1)∩symb1(ϕ|1) and symb2(Γ|2)∩symb2(ϕ|2) are non empty.
Then, for each k = 1, 2, there is Θk ⊆ Lk such that

(†) symbk(Θk) ⊆ symbk(Γ|k) ∩ symbk(ϕ|k);

(‡) Γ|k `k θk for each θk ∈ Θk, and Θk `k ϕ|k.

Take f1 and f2 fulfilling the conditions above and let

Θ = τ1(f1(Θ1)) ∪ τ2(f2(Θ2)).

Then, Θ is an interpolant for Γ `d12e ϕ. Indeed:

(i) symbv
d12e(Θ) ⊆ symbv

d12e(Γ) ∩ symbv
d12e(ϕ).

Let c ∈ symbv
d12e(Θ). Assume that c ∈ symbv

d12e(τ1(f1(Θ1))). Then,

c ∈ symbv
d12e(f1(Θ1)).

Thus, c = f1(c1) and, so, c ∈ symbv
d12e(Γ) ∩ symbv

d12e(ϕ). The other case
follows similarly.

(ii) Γ `d12e θ for each θ ∈ Θ. Assume, without loss of generality, that
θ ∈ τ1(f1(Θ1)). Let θ = τ1(f1(θ1)) where f1(θ1) is obtained from θ1 ∈ Θ1 by
replacing each propositional symbol c1 by f1(c1). Observe that Γ `d12e Γ|1
by cLFT. Hence, by (‡),

Γ `d12e θ1.
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Therefore, by Proposition 4.1,

Γ `d12e θ|1.

On the other hand, `d12e θ|2 by Proposition 4.2. Thus, the result follows by
LFT.

(iii) Θ `d12e ϕ. Assume, without loss of generality, that the main constructor
of ϕ is in Σ1. Observe, by cLFT, that

Θ `d12e Θ|1.

Hence, by Proposition 4.1
Θ `d12e Θ1

and so, by (‡), Θ `d12e ϕ|1. On the other hand, Θ `d12e ϕ|2 since the main

constructor of ϕ|2 is tt
(n)
2 for some n. The result follows by LFT.

(b) Otherwise, without loss of generality, let symb1(Γ|1) ∩ symb1(ϕ|1) 6= ∅
and symb2(Γ|2) ∩ symb2(ϕ|2) = ∅. Then, there is Θ1 ⊆ L1 such that

(††) symb1(Θ1) ⊆ symb1(Γ|1) ∩ symb1(ϕ|1);

(‡‡) Γ|1 `1 θ1 for each θ1 ∈ Θ1, and Θ1 `1 ϕ|1.

In this situation, f1 as used in (a) does not help since f1(Θ1) = Θ1. Accord-
ingly, let

Θ = τ1(Θ1).

Then, Θ is an interpolant for Γ `d12e ϕ. Indeed:

(i) symbv
d12e(Θ) ⊆ symbv

d12e(Γ) ∩ symbv
d12e(ϕ).

Let c ∈ symbv
d12e(Θ). Since Θ1 ⊆ L1 then,

symbv
d12e(Θ) = symbv

d12e(Θ1) = symb1(Θ1)

and, therefore, c = dc1tt
(0)
2 e = c1. Since symb2(Γ|2) ∩ symb2(ϕ|2) = ∅ and

c ∈ symb1(Γ|1) ∩ symb1(ϕ|1) we can consider two cases:

• either dc1c2e or c1 occurs in Γ, dc1c2e does not occur in ϕ and c1 occurs
in ϕ.

• either dc1c2e or c1 occurs in ϕ, dc1c2e does not occur in Γ and c1 occurs
in Γ.
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Then, in both cases, c1 ∈ symbv
d12e(Γ) ∩ symbv

d12e(ϕ).

(ii) Γ `d12e θ for each θ ∈ Θ. Let θ = τ1(θ1). Observe that Γ `d12e Γ|1 by
cLFT. So, by (‡‡), Γ `d12e θ1 and, thus, by Proposition 4.1,

Γ `d12e θ|1.

Moreover, since f1(θ1) = θ1, by Proposition 4.2, `d12e θ|2 and, so,

Γ `d12e θ|2.

Therefore, the result follows by LFT.

(iii) Θ `d12e ϕ. Observe, by cLFT, that Θ `d12e Θ|1. Hence, by Proposi-
tion 4.1, Θ `d12e Θ1 and, so, by (‡‡),

Θ `d12e ϕ|1.

Moreover, Γ|2 `d12e ϕ|2 by Propositions 2.4 and 2.1. So, `2 ϕ|2 because L2

enjoys the Craig interpolation property, symb2(Γ|2) ∩ symb2(ϕ|2) = ∅ and
Γ|2 6`2 ff2. Hence, by Proposition 2.1 `d12e ϕ|2 and, so,

Θ `d12e ϕ|2.

The result follows by LFT. QED

Therefore, if L1 and L2 are suitable matrix logics with identity, with
componentship relation coinciding with the diagonal and enjoying the re-
laxed Craig interpolation property, then, their meet-combination dL1L2e
also enjoys the relaxed Craig interpolation property.

Furthermore, as an immediate corollary of Theorem 4.4, we obtain: given
two axiomatized suitable matrix logics with identity and enjoying the Craig
interpolation property, their product enjoys the relaxed Craig interpolation
property.

Observe also that these results are easily extended to the meet-combination
and product of n matrix logics. Therefore, one can use them for establishing
the relaxed Craig interpolation property of the combination of combinations
of logics by flattening.

Finally, note that the relaxed interpolant obtained in the proof of The-
orem 4.4 coincides with the usual notion of interpolant when

(symbd12e(Γ) ∩ symbd12e(ϕ))v = symbv
d12e(Γ) ∩ symbv

d12e(ϕ).

Indeed in this case, if Γ `d12e ϕ and

symbd12e(Γ) ∩ symbd12e(ϕ) 6= ∅
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then
symbd12e(Θ) ⊆ symbd12e(Γ) ∩ symbd12e(ϕ)

where Θ is the interpolant obtained following the proof of the theorem.
We now investigate preservation of interpolation in the presence of in-

teraction axioms. We start by defining two relevant notions. Given a set
Γ ∪ {ϕ,ψ} ⊆ Ld12e, the formula ψ is separable for Γ and ϕ whenever:

(SH) either symbv
d12e(ψ) ⊆ (Qd12e\symbv

d12e(Γ))∪(symbv
d12e(Γ)∩symbv

d12e(ϕ));

(SC) or symbv
d12e(ψ) ⊆ (Qd12e \ symbv

d12e(ϕ)) ∪ (symbv
d12e(Γ) ∩ symbv

d12e(ϕ)).

Moreover, the set Ψ ⊆ Ld12e is separable for Γ and ϕ whenever:

• each ψ ∈ Ψ is separable for Γ and ϕ;

• given ψ′, ψ′′ ∈ Ψ such that ψ′ satisfies (SC) and ψ′′ satisfies (SH) then
symbv

d12e(ψ
′) ∩ symbv

d12e(ψ
′′) ⊆ symbv

d12e(Γ) ∩ symbv
d12e(ϕ).

Theorem 4.5 (Preservation of interpolation with interaction)
Let L1 and L2 be suitable matrix logics with identity and enjoying the
Craig interpolation property, the MTD and the MP with respect to ⊃1 and
⊃2, respectively. Let Ax a set of interaction axioms. Assume that d is a
derivation sequence for

Γ `d12e+Ax ϕ

where the set of instances of axioms in Ax used in d is separable for Γ and
ϕ. Then, Γ `d12e+Ax ϕ has a relaxed Craig interpolant.

Proof: We consider two cases.

(A) symbv
d12e(Γ) ∩ symbv

d12e(ϕ) = ∅.
Then, symbk(Γ|k) ∩ symbk(ϕ|k) = ∅ for k = 1, 2. Hence, for each k = 1, 2,
either Γ|k `k ffk or `k ϕ|k. Therefore, either Γ `d12e+Ax dff1ff2e or `d12e+Ax

ϕ since either Γ `d12e dff1ff2e or `d12e ϕ with a proof similar to case (A) in
the proof of Theorem 4.4.

(B) symbv
d12e(Γ) ∩ symbv

d12e(ϕ) 6= ∅.
(1) d uses an FX rule. Then, {ff1} is an interpolant for Γ `d12e+Ax ϕ.
Indeed:

(i) symbv
d12e({ff1}) = ∅ ⊆ symbv

d12e(Γ) ∩ symbv
d12e(ϕ); (ii) Γ `d12e+Ax ff1 and

(iii) {ff1} `d12e+Ax ϕ.

(2) No FX rules were used in d. Let Ψ′ = {ψ′
1, . . . , ψ

′
n′} be the set of instances
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of axioms in Ax occurring in d satisfying (SC) and Ψ′′ = {ψ′′
1 , . . . , ψ

′′
n′′} be

the set of instances of axioms in Ax occurring in d satisfying (SH). Then

Γ, ψ′
1, . . . , ψ

′
n′ , ψ′′

1 , . . . , ψ
′′
n′′ `d12e ϕ.

Hence, using m′′-times the MTD, see Theorem 2.5,

(†) Γ, ψ′
1, . . . , ψ

′
n′ `d12e ψ

′′
1 d⊃1⊃2e(. . . (ψ′′

n′′ d⊃1⊃2eϕ) . . . ).

By Theorem 4.4, let Θ be the interpolant for (†). Then

Γ `d12e+Ax Θ

and
Θ `d12e+Ax ϕ

since
Θ, ψ′′

1 , . . . , ψ
′′
n′′ `d12e ϕ

using n′′-times the MP (see Theorem 2.6). It remains to show symbv
d12e(Θ) ⊆

symbv
d12e(Γ) ∩ symbv

d12e(ϕ). Indeed,

• symbv
d12e(Θ) ⊆ (symbv

d12e(Γ)∪symbv
d12e(Ψ

′))∩(symbv
d12e(ϕ)∪symbv

d12e(Ψ
′′));

• symbv
d12e(Ψ

′) ∩ symbv
d12e(ϕ) ⊆ symbv

d12e(Γ) ∩ symbv
d12e(ϕ);

• symbv
d12e(Γ) ∩ symbv

d12e(Ψ
′′) ⊆ symbv

d12e(Γ) ∩ symbv
d12e(ϕ);

• symbv
d12e(Ψ

′) ∩ symbv
d12e(Ψ

′′) ⊆ symbv
d12e(Γ) ∩ symbv

d12e(ϕ).

So Θ is also a relaxed Craig interpolant for Γ `d12e+Ax ϕ. QED

We now present an example of non preservation of interpolation in the
presence of interaction when the conditions of Theorem 4.5 are not fullfilled.
Let CPL be classical propositional logic and dCPLCPLe the meet combination
of CPL with CPL. Assume that Ax is a singleton with the axiom

dttp1e d⊃⊃e dp2tte .

Then
(∗) dttp1e `d12e+Ax dp2tte

and there is no relaxed Craig interpolant for the obvious derivation sequence
of (*) since
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• symbv
d12e(dttp1e) ∩ symbv

d12e(dp2tte) = ∅;

• dttp1e 6`d12e+Ax ff;

• 6`d12e+Ax dp2tte.

Observe that Theorem 4.5 is not applicable since dttp1e d⊃⊃e dp2tte is not
separable for dttp1e and dp2tte.

As an immediate consequence of Theorem 4.5 we get the following result
that guarantees the existence of interpolant independently of the derivation
sequence at hand when the additional axioms introduce interaction in a very
restricted way.

Corollary 4.6
Let L1 and L2 be suitable matrix logics with identity and enjoying the Craig
interpolation property, the MTD and the MP with respect to ⊃1 and ⊃2,
respectively. Let dc1c2e be a propositional symbol of dL1L2e and Ax a set of
interaction axioms each with no schema variables and with no propositional
symbols besides dc1c2e. Then, dL1L2eAx has relaxed Craig interpolation.

5 Worked examples

Taking advantage of the constructive nature of the proofs of Theorem 4.4
and Theorem 4.5, we proceed to illustrate the computation of interpolants
in three representative scenarios, one of them with interaction.

Matrix product of classical and intuitionistic logics

We start by considering the classical propositional logic CPL = (ΣC,∆C,MC)
over the set {qCj : j ∈ N} of propositional symbols and the intuitionistic
propositional logic IPL = (ΣI,∆I,MI) over the set {qIj : j ∈ N} of proposi-
tional symbols, as defined in [20]. Clearly, these two logics are both suitable
and with identity (idCϕ defined as ttC⊃Cϕ and idIϕ as ttI⊃Iϕ). Accordingly,

• ΣC0 = {qCj : j ∈ N} ∪ {ttC, ffC};

ΣC1 = {¬C, idC, tt
(1)
C };

ΣC2 = {⊃C,∧C,∨C, tt
(2)
C };

ΣCn = {tt(n)
C } for n ≥ 3.

25



• ΣI0 = {qIj : j ∈ N} ∪ {ttI, ff I};

ΣI1 = {¬I, idI, tt
(1)
I };

ΣI2 = {⊃I,∧I,∨I, tt
(2)
I };

ΣIn = {tt(n)
I } for n ≥ 3.

Let CIPL be dCPL IPLe. Observe that, by Theorem 4.4, CIPL has the
relaxed Craig interpolation since:

• CPL and IPL enjoy theoremhood Craig interpolation (see [11]);

• and, so, CPL and IPL enjoy (turnstile) Craig interpolation, since they
have the metatheorems of deduction and conjunction.

In the sequel, we denote by ¬CI, ∧CI and ∨CI the meet-combined con-
structors d¬C ¬Ie, d∧C∧Ie and d∨C∨Ie, respectively. Moreover, we denote by
qCIj the meet-combined constructor dqCjqIje for j ∈ N.

We now illustrate the interpolant construction for

(†) qCI1 ∧CI (¬CI qCI2) `CI (¬C ¬C ¬CI qCI2) ∨CI qCI3.

following the proof of Theorem 4.4. Observe that there is a derivation se-
quence for (†) not using the FX rules. Then, following that proof we observe
that:

(a) symbv
CI(qCI1∧CI(¬CI qCI2))∩symbv

CI((¬C ¬C ¬CI qCI2)∨CIqCI3) = {qC2, qI2, qCI2}.

(b) symbC(qC1 ∧C (¬C qC2)) ∩ symbC((¬C ¬C ¬C qC2) ∨C qC3) = {qC2}.

(c) symbI(qI1 ∧I (¬I qI2)) ∩ symbI((tt
(1)
I (tt

(1)
I (¬I(qI2)))) ∨I qI3) = {qI2}.

(d) qC1 ∧C (¬C qC2) `C (¬C ¬C ¬C qC2) ∨C qC3.

(e) qI1 ∧I (¬I qI2) ` (tt
(1)
I (tt

(1)
I (¬I(qI2)))) ∨I qI3.

(f) ΘC = {¬C qC2} is an interpolant for (d).

(g) ΘI = {¬I qI2} is an interpolant for (e).

(h) ΘCI = {¬C qCI2,¬I qCI2} is an interpolant for (†). Indeed:

(h1) qCI1 ∧CI (¬CI qCI2) `CI ΘCI since

1 qCI1 ∧CI (¬CI qCI2) HYP
2 qC1 ∧C (¬C qC2) cLFT 1
3 ¬C qC2 TAUT 2

4 tt
(1)
I (qI2) tt

(1)
I

5 ¬C qCI2 LFT 3, 4
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and similarly for ¬I qCI2.

(h2) ΘCI `CI (¬C ¬C ¬CI qCI2) ∨CI qCI3 since

1 ¬C qCI2 HYP
2 ¬I qCI2 HYP
3 ¬C qC2 cLFT 1
4 (¬C ¬C ¬C qC2) ∨C qC3 TAUT 3

5 tt
(1)
I (tt

(1)
I (¬I qI2)) tt

(1)
I

6 (tt
(1)
I (tt

(1)
I (¬I qI2))) ∨I qI3 TAUT 5

7 (¬C ¬C ¬CI qCI2) ∨CI qCI3 LFT 4, 6

(h3) symbv
CI(ΘCI) ⊆ symbv

CI(qCI1 ∧CI (¬CI qCI2)) ∩ symbv
CI((¬C ¬C ¬CI qCI2) ∨CI

qCI3). Immediate since symbv
CI(ΘCI) = {qC2, qI2, qCI2}.

Matrix product of modal logics

Consider the S4 modal logic MSPL = (ΣS,∆S,MS) over the set {qSj : j ∈
N} of propositional symbols, as defined in [20]. Let INTL = (ΣL,∆L,ML)
over the set {qLj : j ∈ N} of propositional symbols be the propositional
interpretability logic presented in [1]. Clearly, these logics are both suitable
and with identity (introduced as in CPL). Accordingly:

• ΣS0 = {qSj : j ∈ N} ∪ {ttS, ffS};

ΣS1 = {¬S,�S, idS, tt
(1)
S };

ΣS2 = {⊃S,∧S,∨S, tt
(2)
S };

ΣSn = {tt(n)
S } for n ≥ 3.

• ΣL0 = {qLj : j ∈ N} ∪ {ttL, ffL};

ΣL1 = {¬L,�L, idL, tt
(1)
L };

ΣL2 = {⊃L,∧L,∨L, .L, tt
(2)
L };

ΣLn = {tt(n)
L } for n ≥ 3

Let SL be dMSPL INTLe. Then, by Theorem 4.4, SL has the relaxed
Craig interpolation since:

• MSPL has theoremhood Craig interpolation (see [10, 7]).

• MSPL enjoys (turnstile) Craig interpolation. Indeed assume that ϕ `MSPL

ψ and symbS(ϕ)∩ symbS(ψ) 6= ∅. Then, by the metatheorem of deduc-
tion,

`MSPL (�S ϕ)⊃S ψ.
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Using the theoremhood Craig interpolation, there is a formula θ such
that symbS(θ) ⊆ symbS(�S ϕ)∩symbS(ψ), `MSPL (�S ϕ)⊃θ and `MSPL

θ ⊃S ψ. We now prove that θ is also the interpolant for ϕ `MSPL ψ.
Indeed:
(a) ϕ `MSPL θ. A derivation sequence is easily built using necessitation
and tautological reasoning;
(b) θ `MSPL ϕ by MP;
(c) symbS(θ) ⊆ symbS(ϕ) ∩ symbS(ψ) since symbS(ϕ) = symbS(�S ϕ).

• INTL enjoys (turnstile) Craig interpolation (see [1]).

In the sequel, we denote by ¬SL, �SL, ∧SL and ∨SL the meet-combined
constructors d¬S ¬Le, d�S�Le, d∧S∧Le and d∨S∨Le, respectively. Moreover,
we denote by qSLj the meet-combined constructor dqSjqLje for j ∈ N.

We now illustrate the interpolant construction for

(+) qSL1 ∧SL (�S qSL2) `SL qSL1 d∧S∨Le qSL2.

This case will illustrate the role of the identity constructor. A derivation
sequence for (+) is as follows:

1 qSL1 ∧SL (�S qSL2) HYP
2 qS1 ∧S (�S qS2) cLFT 1
3 qS1 TAUTS 2
4 �S qS2 TAUTS 2
5 (�S qS2)⊃S qS2 TS

6 qS2 MPS 4, 5
7 qS1 ∧S qS2 TAUTS 3, 6

8 qL1 ∧L tt
(1)
L (qL2) cLFT 1

9 qL1 TAUTL 8
10 qL1 ∨L qL2 TAUTL 9
11 qSL1 d∧S∨Le qSL2 LFT 7, 10.

Then, following the proof of Theorem 4.4, we have:

(a) symbv
SL(qSL1 ∧SL (�S qSL2)) ∩ symbv

SL(qSL1 d∧S∨Le qSL2) =
{qSL1, qSL2, qS1, qL1, qS2, qL2}.

(b) symbS(qS1 ∧S (�S qS2)) ∩ symbS(qS1 ∧S qS2) = {qS1, qS2}.

(c) symbL(qL1 ∧L tt
(1)
L (qL2)) ∩ symbL(qL1 ∨L qL2) = {qL1, qL2}.

(d) qS1 ∧S (�S qS2) `L qS1 ∧S qS2.
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(e) qL1 ∧L tt
(1)
L (qL2) `S qL1 ∨L qL2.

(f) ΘS = {qS1, qS2} is an interpolant for (d).

(g) ΘL = {qL1} is an interpolant for (e).

(h) ΘSL = {didStt
(1)
L e(qSL1), didStt

(1)
L e(qSL2), dtt(1)

S idLe(qSL1)} is an interpolant
for (+). Indeed:

(h1) qSL1 ∧SL (�S qSL2) `SL ΘSL.

(h2) ΘSL `SL qSL1 d∧S∨Le qSL2.

(h3) symbv
SL(ΘSL) ⊆ symbv

SL(qSL1 ∧SL (�S qSL2)) ∩ symbv
SL(qSL1 d∧S∨Le qSL2).

We now illustrate the interpolant construction for

(‡) ((�L qSL1)⊃L qSL1) ∧SL (�S�S(qSL1 ∧S qL2))

`SL (�SL qSL1) ∧SL ((�SL qSL2)⊃SL (�SL�SL qSL2)).

For a better understanding we build a derivation sequence for (‡) in two
parts. Let d1 be the derivation sequence

1 ((�L qL1)⊃L qL1) ∧L (tt
(1)
L (tt

(1)
L (tt

(2)
L (qL1, qL2)))) HYP

2 (�L qL1)⊃L qL1 TAUTL 1
3 �L((�L qL1)⊃L qL1) NECL 2
4 �L qL1 LöbL + MPL 3
5 (�L qL2)⊃L (�L�L qL2) 4L
6 (�L qL1) ∧L ((�L qL2)⊃L (�L�L qL2)) TAUTL 4, 5

and d2 the derivation sequence

1 (tt
(2)
S (tt

(1)
S (qS1), qS1)) ∧S (�S�S(qS1 ∧S tt

(0)
S )) HYP

2 �S�S(qS1 ∧S tt
(0)
S ) TAUTS 1

3 �S(qS1 ∧S tt
(0)
S ) TS + MPS 2

4 (�S qS1) ∧S (�S tt
(0)
S ) KS + MPS 3

5 �S qS1 TAUTS 4
6 (�S qS2)⊃S (�S�S qS2) 4S
7 (�S qS1) ∧S ((�S qS2)⊃S (�S�S qS2)) TAUTS 5, 6

Hence, a derivation sequence for (‡) is as follows:

1 ((�L qSL1)⊃L qSL1) ∧SL (�S�S(qSL1 ∧S qL2)) HYP
2 . . . 6 d1

7 . . . 13 d2

14 (�SL qSL1) ∧SL ((�SL qSL2)⊃SL (�SL�SL qSL2)) LFT 6, 13
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where the justification of steps 2 and 7 is cLFT 1. Again, we follow the
construction of the interpolant in the proof of Theorem 4.4:

(a) symbv
SL(((�L qSL1)⊃L qSL1) ∧SL (�S�S(qSL1 ∧S qL2)))

∩ symbv
SL(�SL qSL1) ∧SL ((�SL qSL2)⊃SL (�SL�SL qSL2))

= {qS1, qL1, qSL1, qL2};

(b) symbL(((�L qL1)⊃L qL1) ∧L (tt
(1)
L (tt

(1)
L (tt

(2)
L (qL1, qL2)))))

∩ symbL((�L qL1) ∧L ((�L qL2)⊃L (�L�L qL2))) = {qL1, qL2};

(c) symbS((tt
(2)
S (tt

(1)
S (qS1), qS1)) ∧S (�S�S(qS1 ∧S tt

(0)
S )))

∩ symbS((�S qS1) ∧S ((�S qS2)⊃S (�S�S qS2))) = {qS1};

(d) ((�L qL1)⊃L qL1) ∧L (tt
(1)
L (tt

(1)
L (tt

(2)
L (qL1, qL2))))

`L (�L qL1) ∧L ((�L qL2)⊃L (�L�L qL2)) (see d1 above);

(e) (tt
(2)
S (tt

(1)
S (qS1), qS1)) ∧S (�S�S(qS1 ∧S tt

(0)
S ))

`S (�S qS1) ∧S ((�S qS2)⊃S (�S�S qS2)) (see d2 above);

(f) ΘL = {(�L qL1) ∧L ((�L qL2)⊃L (�L�L qL2))} is an interpolant for (d);

(g) ΘS = {�S qS1} is an interpolant for (e);

(h) ΘSL = {(�L qSL1)∧L ((�L qL2)⊃L (�L�L qL2)),�S qSL1} is an interpolant
for (‡). Inded:

(h1) ((�L qSL1)⊃L qSL1) ∧SL (�S�S(qSL1 ∧S qL2)) `SL ΘSL;

(h2) ΘSL `SL (�SL qSL1) ∧SL ((�SL qSL2)⊃SL (�SL�SL qSL2));

(h3) symbv
SL(ΘSL) ⊆ symbv

SL((�L qSL1)⊃L qSL1) ∧SL (�S�S(qSL1 ∧S qL2))

∩ symbv
SL(�SL qSL1) ∧SL ((�SL qSL2)⊃SL (�SL�SL qSL2)).

We now exemplify a case where there are no common propositional sym-
bols between the formulas obtained by projection of the hypothesis and the
formula obtained by projection of the conclusion to one of the component
logics of the combination. Consider the following assertion:

(∗) �SL qSL1 `SL (�S�S qS1) ∨SL qL3.

30



A derivation sequence for (*) is as follows:

1 �SL qSL1 HYP
2 �S qS1 cLFT 1
3 (�S qS1)⊃S (�S�S qS1) 4S
4 �S�S qS1 MPS 2, 3

5 (�S�S qS1) ∨S tt
(0)
S TAUTS 4

6 tt
(1)
L (tt

(1)
L (tt

(0)
L )) ttL

7 (tt
(1)
L (tt

(1)
L (tt

(0)
L ))) ∨L qL3 TAUTL 6

8 (�S�S qS1) ∨SL qL3 LFT 5, 7.

Then, following the construction of the interpolant in the proof of Theo-
rem 4.4:

(a) symbv
SL(�SL qSL1) ∩ symbv

SL((�S�S qS1) ∨SL qL3) = {qS1};

(b) symbS(�S qS1) ∩ symbS((�S�S qS1) ∨S tt
(0)
S ) = {qS1}.

(c) symbL(�L qL1) ∩ symbL((tt
(1)
L (tt

(1)
L (tt

(0)
L ))) ∨L qL3) = ∅.

(d) �S qS1 `S (�S�S qS1) ∨S tt
(0)
S .

(e) ΘS = {�S�S qS1} is an interpolant for (d).

(f) τS(ΘS) = {�S�S qS1}.

(g) ΘSL = {�S�S qS1} is an interpolant for (∗). Indeed:

(g1) �SL qSL1 `SL ΘSL.

(g2) ΘSL `SL (�S�S qS1) ∨SL qL3.

(g3) symbv
SL(ΘSL) ⊆ symbv

SL(�SL qSL1) ∩ symbv
SL((�S�S qS1) ∨SL qL3).

Matrix product of modal logics with interaction

Consider the K4 modal logic M4PL = (Σ4,∆4,M4) over the set {q4j : j ∈ N}
of propositional symbols and the T modal logic MTPL = (ΣT,∆T,MT) over
the set {qTj : j ∈ N} of propositional symbols. Clearly, these logics are both
suitable and with identity (introduced as in CPL). Accordingly:

• Σ40 = {q4j : j ∈ N} ∪ {tt4, ff4};

Σ41 = {¬4,�4, id4, tt
(1)
4 };

Σ42 = {⊃4,∧4,∨4, tt(2)
4 };

Σ4n = {tt(n)
4 } for n ≥ 3.
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• ΣT0 = {qTj : j ∈ N} ∪ {ttT, ffT};

ΣT1 = {¬T,�T, idT, tt
(1)
T };

ΣT2 = {⊃T,∧T,∨T, tt
(2)
T };

ΣTn = {tt(n)
T } for n ≥ 3.

We assume that both logics are endowed with deductive systems for local
derivability (necessitation only applies to theorems). Observe that both
M4PL and MTPL enjoy modus ponens and the metatheorems of deduction
with respect to ⊃4 and ⊃T, respectively.

Let 4TL be dM4PL MTPLe. Then, by Theorem 4.4, 4TL has the re-
laxed Craig interpolation (with respect to local derivability) since M4PL
and MTPL have (turnstile) Craig interpolation (with respect to local deriv-
ability) because they have theoremhood Craig interpolation (see [7]).

In the sequel, we denote by ¬4TL, �4TL, ⊃4TL, ∧4TL and ∨4TL the meet-
combined constructors d¬4 ¬Te, d�4�Te, d⊃4⊃Te, d∧4∧Te and d∨4∨Te, re-
spectively. Moreover, for j ∈ N, we denote by q4TLj the meet-combined
constructor dq4jqTje.

Let Ax be the singleton set composed by the axiom:

�4(ξ1 ∧4 ξ2)⊃4TL �4TL(ξ1 ∨4TL ξ3)

We now illustrate the interpolant construction for

(∗) (�4 q4TL1) ∧4TL q4TL2 `4TL+Ax �4TL(q4TL1 ∨4TL q4TL3).

based on the following derivation sequence:

1 (�4 q4TL1) ∧4TL q4TL2 HYP
2 (�4 q41) ∧4 q42 cLFT 1
3 �4 q41 TAUT4 2
4 �4(q41 ∧4 q41) M4PL 3
5 (�4(q4TL1 ∧4 q4TL1))⊃4TL �4TL(q4TL1 ∨4TL q4TL3) Ax
6 (�4(q41 ∧4 q41))⊃4 �4(q41 ∨4 q43) cLFT 5
7 �4(q41 ∨4 q43) MP4 4, 6

8 (tt
(1)
T (tt

(2)
T (qT1, qT1)))⊃T �T(qT1 ∨T qT3) cLFT 5

9 tt
(1)
T (tt

(2)
T (qT1, qT1)) ttT

10 �T(qT1 ∨T qT3) MPT 8, 9
11 �4TL(q4TL1 ∨4TL q4TL3) LFT 7, 10.

Then, following the construction of the interpolant in the proof of Theo-
rem 4.5:
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(a) symbv
4TL((�4 q4TL1) ∧4TL q4TL2) ∩ symbv

4TL(�4TL(q4TL1 ∨4TL q4TL3))
= {q4TL1, q41, qL1}.
(b) (�4(q4TL1 ∧4 q4TL1)) ⊃4TL �4TL(q4TL1 ∨4TL q4TL3) is the instance of Ax
used in the derivation sequence.

(c) symbv
4TL((�4(q4TL1 ∧4 q4TL1))⊃4TL �4TL(q4TL1 ∨4TL q4TL3)) =

{q4TL1, q41, qL1, q4TL3, q43, qL3} ⊆ symbv
4TL(�4TL(q4TL1 ∨4TL q4TL3)).

(d1) (�4 q41) ∧4 q42 `4
((�4(q41 ∧4 q41))⊃4 �4(q41 ∨4 q43))⊃4 (�4(q41 ∨4 q43)).

(d2) (tt
(1)
T (qT1)) ∧T qT2 `T

((tt
(1)
T (tt

(2)
T (qT1, qT1)))⊃T �T(qT1 ∨T qT3))⊃T (�T(qT1 ∨T qT3)).

(e1) Θ4 = {�4 q41} is an interpolant for (d1).

(e2) ΘT = {tt(1)
T (qT1)} is an interpolant for (d2).

(f) Θ4TL = {�4 q4TL1, tt
(1)
T (q4TL1)} is an interpolant for (∗).

6 Interpolation algorithm and its complexity

Let L1 and L2 be suitable logics with Craig interpolation and identity. The
objective is to extract, from the proof of Theorem 4.4, an algorithm for
computing interpolants in dL1L2e. We assume that an algorithm for finding
interpolants in each of the component logics is available.

The envisaged interpolation algorithm for dL1L2e is required to produce
an interpolant only for any given derivation sequence of ϕ from Γ fulfilling
the following requirements:

• Γ is finite and consistent;

• symbv
d12e(Γ) ∩ symbv

d12e(ϕ) 6= ∅.

More concretely, for each k = 1, 2, let IAlgLk
be an algorithm for Lk

that, given a finite set of formulas Γk and a formula ϕk such that Γk `k ϕk
and symbk(Γk) ∩ symbk(ϕk) 6= ∅, returns an interpolant Θk.

Consider the algorithm IAlgdL1L2e presented in Figure 1 where the aux-
iliary algorithms, possibly extended as expected to finite sets of formulas,
are as follows:

• symbk receives a formula in Lk and returns the set of propositional
symbols in Qk occurring in the given formula, for k = 1, 2;
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• symbv
d12e receives a formula in Ld12e and returns the set of propositional

symbols in Qd12e occurring in the given formula together with their
component propositional symbols;

• · |k receives a formula in Ld12e and returns a formula in Lk with the
same structure where each constructor dc1c2e is replaced by ck, for
k = 1, 2;

• τ1 receives a formula ψ in Ld12e and returns the same formula if it is
not a 0-ary constructor, otherwise τ1 returns

did1tt
(1)
2 eψ

(similarly for τ2);

• f1 receives a finite set of formulas Θ contained in L1, a finite set Γ and
a formula ϕ both in Ld12e and returns a finite set of formulas Θ′ in Ld12e
such that each θ′ ∈ Θ′ is obtained from a formula θ ∈ Θ by replacing
each propositional symbol c1 by dc1c2e in symbv

d12e(Γ) ∩ symbv
d12e(ϕ)

such that if there is
c′2 6= tt

(0)
2

with dc1c
′
2e in symbv

d12e(Γ) ∩ symbv
d12e(ϕ) then

c2 6= tt
(0)
2

(similarly for f2).

Observe that the algorithm IAlgdL1L2e in Figure 1 follows closely the
steps in the proof of Theorem 4.4 and so its correctness comes directly from
that proof.

We now analyze the time complexity in the worst case of algorithm
IAlgdL1L2e, that is, the time complexity class of the running time of IAlgdL1L2e
in the worst case. In the sequel, we denote by RT(A) the running time of
algorithm A (which is a function of the total length of the arguments of A).
Furthermore, as usual, we denote by Pol the class of all polynomials on a
single variable.

We start by investigating the time complexity of the auxiliary algorithms.
We assume an appropriate representation of formulas (using, for example, a
prefix notation). Then

• RT(symb1), RT(symb2) and RT(symbv
d12e) are in Pol;
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IAlgdL1L2e(Γ, ϕ):

if symbv
d12e(Γ) ∩ symbv

d12e(ϕ) = ∅ then

return
“Hypotheses and conclusion do not share propositional symbols”

fi;

Γ1 = Γ|1; ϕ1 = ϕ|1;

Γ2 = Γ|2; ϕ2 = ϕ|2;

if symb2(Γ2) ∩ symb2(ϕ2) = ∅ then

Θ1 = IAlgL1
(Γ1, ϕ1);

return τ1(Θ1)

fi;

if symb1(Γ1) ∩ symb1(ϕ1) = ∅ then

Θ2 = IAlgL2
(Γ2, ϕ2);

return τ2(Θ2)

fi;

Θ1 = IAlgL1
(Γ1, ϕ1); Θ′

1 = f1(Θ1,Γ, ϕ);

Θ2 = IAlgL2
(Γ2, ϕ2); Θ′

2 = f2(Θ2,Γ, ϕ);

return τ1(Θ′
1) ∪ τ2(Θ′

2)

Figure 1: Interpolation algorithm IAlgdL1L2e.

• RT(· |1) and RT(· |2) are in Pol;

• RT(τ1) and RT(τ2) are in Pol;

• RT(f1) and RT(f2) are in Pol.

We denote by Ck the time complexity class of RT(IAlgLk
) for k = 1, 2.

Note that the worst case of the running time of algorithm IAlgdL1L2e for

arguments Γ and ϕ is when symbv
d12e(Γ)∩ symbv

d12e(ϕ) 6= ∅ and symbk(Γ|k)∩
symbk(ϕ|k) 6= ∅ for k = 1, 2. Hence, modulo the cost of basic effective
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operations (like assignments to variables), we have

RT(IAlgdL1L2e)(|Γ|+ |ϕ|) ≤ RT(symbv
d12e)(|Γ|) + RT(symbv

d12e)(|ϕ|)+

RT(· |1)(|Γ|) + RT(· |1)(|ϕ|)+

RT(· |2)(|Γ|) + RT(· |2)(|ϕ|)+

RT(symb1)(RT(· |1)(|Γ|))+

RT(symb1)(RT(· |1)(|ϕ|))+

RT(symb2)(RT(· |2)(|Γ|))+

RT(symb2)(RT(· |2)(|ϕ|))+

n1 + n2 +m1 +m2+

RT(τ1)(m1) + RT(τ2)(m2)

where, for k = 1, 2,

• nk = RT(IAlgLk
)(RT(· |k)(|Γ|) + RT(· |k)(|ϕ|));

• mk = RT(fk)(nk + |Γ|+ |ϕ|).

Since RT(· |k) and RT(fk) are in Pol, if Pol ⊆ Ck for k = 1, 2 then{
RT(IAlgLk

) ◦ RT(· |k) ∈ Ck;

RT(fk) ◦ RT(IAlgLk
) ∈ Ck.

So, we have the following result:

Theorem 6.1 (Complexity of the interpolation algorithm)
For each k = 1, 2, assume that Lk is a suitable matrix logic with identity and
enjoying the Craig Interpolation property. Furthermore, for each k = 1, 2,
assume that IAlgLk

is an algorithm, with time complexity Ck ⊇ Pol, for
computing interpolants within Lk. Then, the time complexity of IAlgdL1L2e
is max(C1, C2).

Observe that, barring specially designed logics, the time complexity of
the interpolation algorithm is expected to be greater than polynomial. In-
deed, it was proved in [18] that for classical propositional logic the exis-
tence of a polynomial-time interpolation algorithm implies that P = NP or
NP 6= CoNP.
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7 Outlook

Capitalizing on the axiomatization of the product of two matrix logics
provided by their meet-combination, we were able to establish by proof-
theoretic means that such a product preserves a variant of the Craig inter-
polation property. The proposed variant seems to be quite natural within
the relevant setting of product of signatures. We also prove weaker results
for the preservation of interpolation in the presence of interaction axioms,
taking advantage of the preservation of the metatheorem of deduction by
meet-combination.

The computation of the interpolant in the product of two matrix logics
was shown to have only a polynomial penalty over the computation in the
two given logics.

Concerning further work, it seems worthwhile to investigate the preser-
vation of alternative interpolation notions, like extension interpolation [6]
and Maehara interpolation [14]. Moreover, we intend to investigate preser-
vation of interpolation from a semantic point of view motivated by the recent
results and techniques in [9].

In another front, it seems promising to apply the algorithm proposed
in this paper for computing the interpolant to the field of model checking
when dealing with logics that can be obtained as products of simpler matrix
logics.
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