André Nuno Carvalho Souto

Individual Information Measures:
Applications to Computational

Complexity

[MPORTO

F FACULDADE DE CIENCIAS
UNIVERSIDADE DO PORTO

Departamento de Ciéncia de Computadores da
Faculdade de Ciéncias da Universidade do Porto






André Nuno Carvalho Souto

Individual Information Measures:
Applications to Computational

Complexity

[ PORTO

'F FACULDADE DE CIENCIAS
UNIVERSIDADE DO PORTO

Dissertation submitted to the Faculdade de Ciéncias da Universidade do Porto

in partial fulfillment of the requirements for the degree of Doutor em Ciéncia de Computadores

Thesis advisor:

Prof. Doutor Luis Filipe Antunes

External Promotion Commission:
Prof. Dr. L. Fortnow and
Prof. Dr. H.M. Buhrman

Departamento de Ciéncia de Computadores da
Faculdade de Ciéncias da Universidade do Porto
2010






To my Guardian






Acknowledgments

I am very grateful to several people and organizations.

For the financial support I thank the National Science Foundation: Fundagao para a
Ciéncia e Tecnologia (FCT), that made this dissertation and all my research possible by
financing me directly with a PhD scholarship (SFRH/BD/28419/2006) and through the
projects KCrypt (POSC/EIA/60819/2004) and CSI*? (PTDC/EIA-CCO/099951/2008).
I am also grateful to LIACC-Laboratorio de Inteligéncia Artificial e Ciéncia de Com-
putadores and Instituto de Telecomunicagoes, the two research laboratories where I had
worked during my PhD for receiving me and giving me the best conditions for research.

Foremost, I would like to thank my advisor Professor Luis Filipe Antunes for all the
support. He is font of inspiration and great scientific problems that allow me to grow as
a scientist and researcher. You have been a good mentor. It has been a great pleasure
working with you, not only for everything you had taught me scientifically but specially
for friendship and great advices that you gave me. It means a lot to me having a great
advisor that always stands there for me.

I would like to thank everyone that I ever met at DCC — Departamento de Ciéncia
de Computadores da Faculdade de Ciéncias da Universidade do Porto, but specially the
fellows which I shared office with: Alexandre, Besik, Bruno, Clatudio, David, Hugo, Jorge,
Marco, Nuno. I owe a huge and very special thank to dear friend Andreia for being
in the next desktop always able to listen all my (crazy!) ideas, arguments and daily
routines. I am also grateful to Professor Armando Matos for helpful discussions, his
valuable knowledge, good mood and the revising this thesis.

I thank Professor Fernando Jorge Moreira, my Master thesis advisor, for permanent
support and for weekly meetings for nonstandard ways of Birkhof’s Theorem. It is great
to see the “world” under a nonstandard vision!

All my scientific research have been obtained in collaborative efforts. I must thank all
my coauthors, Luis Antunes, Joao Bernardes, Lance Fortnow, Armando Matos, Alexandre
Pinto, Cristina Santos, Andreia Teixeira and Paul Vitanyi, for their help and permission

to use the results published in this dissertation.



From January to May 2007 I worked with Professor Harry Buhrman at CWI - Centrum
voor Wiskunde en Informatica. I thank to all ISN4 members for receiving me and I
specially thank to Harry and Ronald de Wolf for the hospitality and great advices. It has
been a great pleasure meeting these great scientists. Thank you for teaching me Quantum
Computation and letting me work on Quantum Mastermind. I learned a lot during this
time and the (scientific!) advises that I got there are the most valuable lesson I took for
my research career.

In February 2010, I joined Sophie Laplante at the University Paris Sud XI for a short
visit. I thank her for the hospitality, sympathy and for the collaboration. The trip to
Paris was very fruitful and allowed me to share new ideas in some problems we were
working on. Hopefully we get it to the end.

In June 2010, I visited Professor Lance Fortnow at Northwestern University for few
weeks. I would like to thank him for the hospitality, the great concert at Ravinia and
specially for the brilliant ideas he shared. It was a great pleasure to work with someone
like you. Your knowledge and wisdom are far more advanced which means that I learned
a lot in those conversations we had. Complexity is sometimes complex to reach, but it
definitely worth to give it a try!

I can not forget my family and friends. I thank to my mother, father, brother, Manuela,
godfather, Fatima, uncles and cousins, Fernanda and Fernando Magalhaes, Sameiro and
Carlos Lima, Rui, Mafalda, Ricardo, Lena and kids and Ana Moura for all the support
and for believing in me. Specially to my mother and my father and godfather that were
always there to listen and support in those days that did not go that well. I love you all.
(Especialmente a minha mae, pai e padrinho que sempre estiveram presentes para ouvir,
aconcelhar e apoiar naqueles dias que correram menos bem. Gosto muito de voceés.)

This doctoral thesis, is the first of its kind in the family and for that reason is indeed
dedicated to them.

Finally, I would like to thank my lovely girlfriend for all kindness, comprehension,
friendship and love. Lara, I am blessed to have someone like you right by my side. You
are the one that is always there listening, supporting me in the most difficult times and
making me believe that is possible to do this. Your friendship, support and belief made
me stronger and a better person. My love for you is pure and means everything to me.
Our “math” is very simple, “pure”, special, complete and it never ends. I love you so

much...



Abstract

Kolmogorov complexity is a classical measure of information for individual objects — as
the length of the shortest description of it — and it can be used to characterize many
properties of computational complexity classes. In this dissertation, we explore this line

of research in three fundamental ways:

1. In the first, we use Kolmogorov complexity to (re)define the notion of sophistication

for infinite sequences.

2. In the second, we use Kolmogorov complexity, more precisely computational depth,
to describe some SAT formulas for which we can find assignments probabilistically

in polynomial time.

3. In the last one, we use a sublinear time bounded version of Kolmogorov complexity
to describe classes of languages that have Complexity Cores, i.e., sets of hardest

instances.

Random strings convey maximal information since they have higher Kolmogorov complex-
ity. However, it is very unlikely that these strings have “useful” or meaningful information,
as, in general, they are usually considered to be the result of noise. There are two known
approaches to quantify the subjective notion of meaningful information: Sophistication
and Computational Depth.

The Sophistication is usually based on the Kolmogorov structure function and essen-
tially measures the regularity present in the string. In this dissertation we revisit this
notion for infinite sequences, giving a meaningful definition of this measure and proving
some relationships with classical notions of dimension (Hausdorff and Packing).

Computational Depth is based on the difference between the time bounded Kol-
mogorov complexity and its unbounded version and, as a consequence, it measures the
effort required to produce the object from a short description. We studied the connection
between computational depth and sophistication for infinite sequences proving that they

are of different kind.



In recent years, much effort has been done to explore computational depth as a measure
in computational complexity. We continue this sequel proving that if a Boolean formula
has a satisfying assignment of computational depth d, then we can probabilistically find
an assignment for that formula in time exponential in d. Regarding the converse question
we show that under a standard hardness assumption the converse also holds and that
under the unlikely, but open case, that BPP = FewP = EXP, one can find formulas
that have a single solution of high computational depth which can be found quickly using
a probabilistic algorithm. Using similar techniques we show that one can not increase
the depth of a string efficiently and if BPP = EXP we show examples where one can
produce a string of high depth from a string of very low depth.

In the last part of this dissertation we study the connection between computational
depth and complexity cores. Informally, a polynomial complexity core of a language A is
the kernel of hard instances, i.e., given some polynomial time algorithm it only decides a
finite number of theses instances.

It is known that any recursive set that is not in P has an infinite polynomial complexity
core and that if each algorithm for a language has a non-sparse set of “hard” inputs, then,
in fact, the language has a non-sparse proper polynomial complexity core. In order to
establish a connection between computational depth of the characteristic sequences of
languages and the existence of (proper) complexity cores we study the computational
depth of sets in the classes P, EXP, FULL-P/log and P/poly. We give a character-
ization of the recursive sets not in P and thus admitting a polynomial complexity core
and also prove that if a recursive set is not in P/poly then the depth of its characteristic
sequence is high almost everywhere. We also prove that any Turing machine deciding a
proper complexity core of exponential density can not recognize the language in average

polynomial time when a time bounded version of the universal distribution is considered.



Resumo

A complexidade de Kolmogorov é uma medida classica de informagao para objectos indi-
viduais e pode ser usada para caracterizar muitas propriedades de clases de complexidade
computacional. Nesta dissertacao, exploramos esta linha de investigacao de trés formas

fundamentais:

1. Na primeira, usamos a complexidade de Kolmogorov para redefinir a nocao de

sofisticacao para sequéncias infinitas.

2. Na segunda, usamos a complexidade de Kolmogorov, mais precisamente, a pro-
fundidade computacional para descrever algumas férmulas de SAT para as quais

podemos encontrar atribuigoes em tempo probabilistico polinomial.

3. Na dtltima, usamos a versao limitada por tempo sublinear da complexidade de
Kolmogorov para descrever classes de linguagens que admitem Complexity Cores,

i.e., conjuntos de instancias dificies.

Os objectos aleatorios contém informagao maxima uma vez que tém complexidade de
Kolmogorov maxima. Contudo, é muito improvavel que estes objectos contenham in-
formacao 1til ou com significado uma vez que estes sao considerados como sendo ruido.
Existem duas aproximacoes conhecidas para quantificar a nocao subjectiva de informacao
util: sofisticacao e profundidade computacional.

A primeira é usualmente baseada na funcao de estrutura de Kolmogorov e essencial-
mente mede as regularidades presentes num objecto. Nesta dissertacao revisitamos esta
nogao para sequéncias infinitas, dando uma definicao desta medida e provando algumas
relagbes com nogoes classicas de dimensao (Dimensao de Hausdortf e Packing).

A dltima medida é baseada na diferenga entre a versao limitada pelo tempo da
complexidade de Kolmogorov e a sua versao ilimitada e, como consequéncia, esta mede
o esforco necessario para produzir o objecto partindo de uma sua descricado minima.
Estudamos a relacao entre profundidade computacional e sofisticacao para sequéncias

infinitas provando que sao de natureza diferente.



Nos tltimos anos, tem sido feito um grande esforco para explorar a profundidade
computacional como uma medida para a complexidade computacional. Continuamos esta
linha de investigacao provando que se uma formula, que tem uma atribuicao satisfazivel
de profundidade computacional d, entao podemos probabilisticamente encontrar uma
atribuicao que torna essa formula verdadeira em tempo exponencial em d. No que diz
respeito a implicacao contraria, mostramos que sob assunc¢oes computacionais standard
esta verifica-se e também que sob o caso improvavel, mas ainda em aberto, em que
BPP = FewP = EXP, podemos encontrar férmulas que tém uma unica solucao com
alta profundidade computacional que pode ser encontrada usando um algoritmo proba-
bilistico eficiente. Usando técnicas semelhantes mostramos que nao podemos incrementar
a profundidade computacional eficientemente e no caso de BPP = EXP apresentamos
exemplos em que podemos produzir objectos de alta profundidade computacional partindo
de um com baixa profundidade computacional.

Na tultima parte desta dissertacao estudamos a relacao entre profundidade computa-
cional e complexity cores. Informalmente, um complexity core polinomial de uma lin-
guagem A ¢é o nicleo de instancias dificeis, ou seja, instancias que, excepto um nimero
finito, nao podem ser decididas por um qualquer algoritmo em tempo polinomial.

E sabido que qualquer conjunto recursivo que nao esteja em P admite um complex-
ity core polinomial infinito e que se qualquer algoritmo para essa linguagem tem um
conjunto de inputs “dificeis” que nao é esparso entao, de facto, a linguagem admite
um complezity core polinomial proprio, também ele nao esparso. Para estabelecer a
relacao entre a profundidade computacional da sequéncia caracteristica das linguagens
e a existéncia de complexity cores (préprios) estudamos a profundidade computacional
de conjuntos que estdo nas classes de complexidade como P, EXP, FULL-P/log e
P /poly. Establecemos uma caracterizacao de conjuntos recursivos que nao estao em P
e portanto que admitem um complexity core polinomial e provamos que se um conjunto
recursivo nao estd em P/poly entao a profundidade computacional da sua sequéncia
caracteristica é quase sempre alta. Provamos também que qualquer méquina de Turing
que decide um complexity core de densidade exponencial nao pode reconhecer a linguagem
em tempo polinomial em média, quando consideramos uma versao limitada pelo tempo

da distribuicao universal.



Contents

Acknowledgments

Abstract

Resumo

1 Introduction

2 Preliminaries

3

2.1
2.2

2.3

3.1

Notation and computational model . . . . . . . .. ... ... ... ....
Turing machines and computational complexity . . . . . . ... ... ...
2.2.1 Computational complexity . . . . . . . ... ... ... ... .. ..

Kolmogorov complexity . . . . . . . . . . .. ...

2.3.1 Symmetry of information . . . . . .. ..o
2.3.2  Prefix-free Kolmogorov complexity . . . .. . ... ... ... ...
2.3.3 Semi-measure based on Kolmogorov complexity . . .. ... .. ..
2.3.4 Time bounded Kolmogorov complexity . . . . . .. ... .. .. ..
2.3.5 Computational depth . . . . . . ... .. ... ... ... ... ..
Information measures for infinite sequences
Motivation . . . . . . . ...
Preliminaries . . . . . . . . .

3.2

3.3
3.4
3.5

3.2.1 Sophistication . . . . .. ...
3.2.2 Hausdorff and Packing dimension . . . . . . ... ... ... ....
3.2.3 Topological results . . . . .. .. .. o o
The existence of highly sophisticated sequences . . . . . . ... ... ...
Computational depth for sequences . . . . . . .. ... ... ... ... ..

Sophistication vs depth of sequences . . . . . .. ... .. ... ...

11

15

21
21
22
25
28
30
31
33
34
35



4 Low depth witnesses of SAT
4.1 Motivation . . . . . . . L
4.2 Preliminaries . . . . . . . ...
4.2.1 Pseudorandom generators . . . . . .. ... ... ...
4.3 Finding low-depth witnesses . . . . . . . . . . .. .. ... ...
4.4 Depth can not increase rapidly . . . . . . . . .. ...
4.5 Properties of conditional depth . . . . . . . .. ... L0

5 Complexity cores
5.1 Motivation . . . . . . ...
5.2 Preliminaries . . . . . . . ...
5.2.1 Complexity Cores . . . . . . . . ..
5.2.2  Average Case Complexity . . . . . . ... ... .. ... .. ....
5.2.3 The class FULL-P/log and the class P/poly . . .. .. ... ..
5.3 Kolmogorov complexity and complexity cores . . . . .. .. ... ... ..

5.4 Complexity cores and average case complexity . . . . . . ... .. .. ...
6 Conclusions and future work

A Other work

55
99
o6
56
58
60
65

69
70
70
70
72
74
75
81

85

99



Chapter 1
Introduction

“What is randomness?” This question has been capturing the attention of part of the
scientific community for long time. There are a few ways to define randomness. One
ancestor idea to rigorously define randomness was inspired by intuitions from gambling.
In practice, flipping coins is a random game exactly because one can not come up with a
gambling strategy for predicting if we will get head or tail in the next through. In this
dissertation we explore randomness using Kolmogorov complexity. The intuition for this
approach is that a random object has no easily discernible patterns or structures which
we could take advantage of to obtain a shorter description than just giving the object
itself.

Solomonoff [Sol64], Kolmogorov [Kol65] and Chaitin [Cha66] independently defined
complexity of an individual object. This measure is of different kind when compared with
computational complexity. Instead of looking to the evolution of the computational effort
necessary to decide larger and larger instances of a problem, turns its attention to the
description of individual objects, using the length of the shortest program describing the
object.

Lets compare the string “00000000000000000000” with the string of same length
“10010011001001111000”.  Which of them is more complex? The first can be easily
described by a sequence of “20 zeros” while the second does not have a simple pattern,
or structure, that could be exploited to give a shorter description than just print it out
bit by bit. So, intuitively the second string seems to be more “random” than the first
one, although both of them have the same probability to be generated if we toss a fair
coin. It is easy to see that a randomly generated string has, with high probability, high
Kolmogorov complexity and thus it contains lots of information (see Theorem 2.3.13).

This information may not be meaningful or useful from a computational point of view,



16

as it is usually considered to be noise.

In the literature we can find two different approaches to define useful information:
measuring the amount of planing necessary to construct the object (static resources) or
measuring the computational effort (dynamic resources), usually time, required to produce
the object.

The former was proposed by Koppel [Kop87, Kop95, KA91] and is based on Kol-
mogorov’s structure function (see for example [VV03]) which divides the smallest program
in two parts: one part accounting for the useful regularity (i.e., the amount of planning
used to describe the string) and another accounting for the remaining accidental infor-
mation present in the object (i.e., the information necessary to distinguish that object
among the objects sharing the same regularities). Kolmogorov suggested that the useful
information, i.e., the first part of the description, is a representation of a finite set in which
the object is a typical element, so that the two-part description is as small as the shortest
one-part description. Gacs, Tromp and Vitédnyi [GTVO01]| generalized this approach to
computable probability mass functions. Koppel [Kop87, Kop95, KA91], using monotonic
Kolmogorov complexity, expressed the useful information as a recursive function and
called the resulting measure sophistication. The regularity turns out to be the length of
the total program p; and the accidental information, i.e. information that is consider not
to have structure, is expressed as the length of the data used by p to produce the string
or sequence. However, as Koppel observed, not all infinite sequences are describable and
thus, the notion of sophistication, is not properly defined. Later, Antunes and Fortnow
[AF09a] revisited the notion of sophistication for finite strings and proposed an alternative
definition based on total programs. They proved the existence of strings with maximum
sophistication. In this dissertation we revisit this notion of sophistication for infinite
sequences, giving a meaningful definition of this measure and proving some relationships
with classical notions of dimension, namely with constructive Hausdorff and constructive
Packing dimension (see for example [LutOOb, May02, Lut03]).

The latter approach was introduced by Bennett [Ben88] that called the effort required
to produce the object, logical depth. The intuition behind the definition of this concept
is that a computationally deep string should take a lot of effort to be recovered from
its shortest description while incompressible strings are trivially constructible from their
shortest description, and therefore computationally shallow. After some attempts, Ben-
nett [Ben88] formally defined the s-significant logical depth of an object x as the time
required by a standard universal Turing machine to generate x by a program p that can

not itself be obtained from a program that is s or more bits shorter than p. Thus, an



CHAPTER 1. INTRODUCTION 17

object is logically deep if it takes a lot of time to be generated from any short description.
Latter Antunes et al. [AFvMVO06] introduced the notion of computational depth, for
finite strings, as the difference between the time bounded and the traditional unrestricted
Kolmogorov complexity. We have seen a number of results about computational depth
such as a generalization of sparse and random sets [AFvMVO06], a characterization of
worst-case running time of problems that run quickly on average over all polynomial time
samplable distributions [AF09b]. We study the connection between computational depth
and sophistication for infinite sequences proving that they are of different kind.

In order to show the applicability of computational depth we study its relationship
with the satisfiability problem. In this problem we are given a boolean formula and are
asked if there exists an attribution to the variables that turns the formula true. Cook
[CooT1] proved that this problem is NP complete i.e., if we can come up with an efficient
algorithm to satisfiability then we can efficiently solve any other NP problem. We study
the possibility of having a probabilistic efficient algorithm that produces a satisfying
assignment, proving that if a formula has an attribution of depth d then we can use a
probabilistic algorithm running in exponential time in d to find another true assignment
for that formula.

As another application of computational depth we studied a relationship with com-
plexity cores. Heuristically, a polynomial complexity core of a language A is the kernel of
hard instances, i.e., the instances whose membership in A is hard to decide in polynomial
time. Rather than being hard for just a machine, a complexity core is the set of instances
that, any machine, can only decide a finite number of its instances. The definition of
polynomial complexity core is due to Lynch [Lyn75], who showed that any recursive set
not in P has an infinite polynomial complexity core. Later, Orponen and Schoning [OS84]
showed that, if each algorithm for a language has a non-sparse set of “hard” inputs, then
the language has a non-sparse proper polynomial complexity core. Much work has been
done using complexity cores. For example, in [JL92] the authors showed that exponential
space complete sets have small complexity cores and in [Mun99], the author establishes
a connection between complexity cores and instance complexity, a complexity measure
derived from Kolmogorov complexity and proved that NP-hard sets must have super-
polynomially dense hard instances, unless P = NP.

The connection between computational depth of languages and the existence of com-
plexity cores is achieved by quantifying the computational depth of sets in the computa-
tional classes P, EXP = DTIME(2P°Y™) FULL-P/log and P/poly. First, we give

a characterization of recursive sets not in P and thus admitting a polynomial complexity



18

core based on computational depth. Then, we prove that if a recursive set is not in
P /poly then the depth of its characteristic sequence is high infinitely often.

The complexity of a problem is usually measured in terms of the worst case behavior
of algorithms. Several algorithms with a worst-case bad performance have a good perfor-
mance in practice, since instances requiring a large running time rarely occur. This duality
was studied by Levin [Lev86], who introduced the theory of average case complexity, giving
a formal definition of Average Polynomial Time for a language L and a distribution p.
Some languages may remain hard in the worst case but can be solved efficiently in average
polynomial time for all reasonable distributions. We show that a Turing machine deciding
a proper complexity core of exponential density can not recognize the language in average

polynomial time when a time bounded version of the universal distribution is used.

Thesis Overview

The rest of this dissertation is organized as follows:

e In Chapter 2 we introduce the basic concepts, terminology and notation necessary

for the rest of this work.

e In Chapther 3 we (re)define sophistication for infinite sequences and establish a
connection with constructive Hausdorff and Packing dimension and with variants of
computational depth. We also show that sophistication and computational depth

are measures of different kind.

e In Chapter 4 we explore computational depth as a tool for finding true assignments
for formulas in SAT. In particular, we show how probabilistically find an assignment
of a Boolean formula that has a satisfying assignment of low computational depth.
We also study if the converse holds and show that this is the case under reasonable
hardness assumptions. Using similar ideas we show that one can not significantly
increase the depth of a string in polynomial time. Once again if BPP = EXP we
show examples where one can produce a string of high depth from a string of low
depth. Finally, we explore the question as to whether a triangle inequality holds for

conditional computational depth.

e In Chapter 5 we study the relationship between complexity cores of a language
and the computational depth of the characteristic sequence of the language based

on Kolmogorov complexity. Motivated by the results of Chapter 4 we study the



CHAPTER 1. INTRODUCTION 19

possibility of characterizing the set of hard instances for a probabilistic polynomial
time algorithm of SAT using computational depth. This turns out not to be possi-
ble. Although, we prove that a recursive set A has a complexity core (respectively,
proper complexity core) if for all constants ¢ (respectively, all polynomial p(n)),
the computational depth of the characteristic sequence of A up to length n is
larger than ¢ (respectively larger than p(n)) infinitely often. We also explore the
connection with average case complexity. In particular, we show that if a language
has a complexity core of exponential density, then it can not be accepted in average
polynomial time, when the strings are distributed according to a time bounded

version of the universal distribution.



20




Chapter 2
Preliminaries

We introduce the terminology, notation and basic concepts from computational com-
plexity, Kolmogorov complexity as well as its main properties. For a deeper study

on these themes we suggest the reading of the following books and surveys:

e Computational complexity: [Pap85], [Sip97], [AB09], [BDGI5];

e Kolmogorov complexity: [LV0S8], [Gdc93];

The contents of this chapter is based on several sources, including [Ant02], [Lap97],
[For89], [Pin07], [Pap85], [Sip97], [AB09], [BDGI5], [LVOS], [GicI3], [Gol01],
[Vad99] and a few Wikipedia and Wofgang pages.

2.1 Notation and computational model

In this dissertation we use the binary alphabet £ = {0, 1}, where 0 and 1 are called symbols
or bits. A string, or a finite word, is a finite “combination” of bits and usually is denoted
by small letters, like x, y, z. The set of all strings is represented by X*; the empty word

in denoted by €. A standard enumeration of the elements of * is
(e,0),(0,1),(1,2),(00,3), (01,4),(10,5), (11,6), (000, 7), ...

This method of enumerating all strings, first ordering by increasing length and then, when
two strings have the same length, ordering by lexical order, is called lexicographic-length
conditional ordering.

Given a string x € X*, we define [x|, the length of x, as the number of bits composing

x. We denote the set of all strings of length n by X™.



22 2.2 Turing machines and computational complexity

Given x € 2™ and y € L™, the concatenation xy of x and y, is defined as the string
of Z™™ with the bits of x followed by the bits of y.

Definition 2.1.1. We say that a string x s a prefix of the string y if there is a string z
such that y = xz.

Given a string x € £", x; and X[,y denote, respectively, the it" bit and the prefix of
length m of x.

Sometimes, it is useful to encode the strings by a self-delimiting code. Their utility
is due to the fact that it determines the end of code word. One way to construct X, the
self-delimiting code of x, is by considering X := 1"0x. Notice that |x| = 2|x| + 1.

A language over X is a subset of £* and is denoted by capital letters like: A, L...

A sequence is a infinite “combination” of bits and they are represented by small Greek

letters, e.g., «, B, w.

Definition 2.1.2. The characteristic sequence of a language L is a sequence defined by
XL = X1X2X3..., where Xi = 1 if and only if the i™ string in the lexicographic-length

conditional ordering is in L.

2.2 Turing machines and computational complexity

As a basic model of computation, we use the Turing machine, proposed by Alan Turing
in 1937 [Tur37].

In Alan Turing’s own words:

“The idea behind digital computers may be explained by saying that these
machines are intended to carry out any operations which could be done by a
human computer. The human computer is supposed to be following fixed rules;
he has no authority to deviate from them in any detail. We may suppose that
these rules are supplied in a book, which is altered whenever he is put on to
a new job. He has also an unlimited supply of paper on which he does his

calculations.”

Formally, a Turing machine can be defined in the following way:

Definition 2.2.1 (Deterministic Turing machine). A deterministic Turing machine is a

tuple (Q, X, T30, qoy qa, qr), where:



CHAPTER 2. PRELIMINARIES 23

Q s the set of finite states.

e ) is the input alphabet.

I" is the tape alphabet.

0:Q xT — Q xT x{L,R} is a partial function called transition function, where
L and R indicates the movement of the head. If at some point the function is not

defined the machine stops.

qo € Q s the initial state.

da € Q is the accepting state.

gr € Q s the rejecting state.

In the literature one can find different definitions of Turing machines, specially with
more than one accepting state and rejecting state, with more than one tape (with a
working tape, with an auxiliary tape), but these computational models are all equivalent.
Another formulation of Turing machine considers a finite state control with an input tape
and work tape (see Figure 2.2) and a read/write head for each of them. The finite control
is the set of states (including the initial and accepting state), a transition function & and
the tapes’ heads. Each head is located over one of the cells of its tape and can be moved
right or left accordingly to 8. The transition function & take the values under the head
of the input and work tape, the current state and describes whether to move the head
right or left, specify a possible change in contents of the work tape cell under the head
and switches to a new state.

Before the Turing machine starts its computation, an input string x is placed on the
input tape, one symbol in each cell. The tapes’ heads are positioned on the first cell of
each tape. The Turing machine accepts if it reaches the accepting state.

It is possible to define other variants of the Turing machine model where, for example
non-determinism (where the transition function § is multivalued) and randomness are

allowed. Those models of computation are equivalent to the Turing machine model.

Definition 2.2.2. A Turing machine accepts a language L if it accepts, as input strings,
exactly those strings that are in L. We denote by L(M) the language accepted by the

Turing machine M.



24 2.2 Turing machines and computational complexity

Input Tape

Finite
Control

i

Work Tape

Figure 2.1: A Turing Machine.

A Turing machine runs in time t if for all input x, the number of times that the
transition function is applied when the machine is initialized with x on the input tape,
does not exceed t([x|). We will be denoting the running time of a Turing machine M on
the input x by timep(x). It is an important question in Computer Science, known as the
“P = NP” question, whether a non-deterministic Turing machine can be simulated by a

deterministic Turing machine using polynomial number of extra steps.

Definition 2.2.3. Let f : £* — X* be a partial function and consider t : N — N. A
Turing machine M computes f in time t if for every input x € £*, the machine M when
initialized with the input x, halts accepting x outputting f(x) in t(|x|) steps.

Moreover, a Turing machine M computes a partial function f if on every input M
produces f(x). In this case we say that f is partial recursive. In particular, if f is a total

function we say that f is recursive or computable.
The last definition allows us to define recursive and recursively enumerable sets.

Definition 2.2.4. A set A is called recursive if the function xa is computable and is

called recursively enumerable if the semi-characteristic function

1 if xeA
S —
Ax) {T it x¢gA

is a partial recursive, where Sa(x) =T means undefined.

One of the most well known example of a set that is recursively enumerable but not

recursive is the so called Halting Problem.

Definition 2.2.5 (Halting Problem). Given the description of a Turing machine M and

an input x, determine if M will halt on x.



CHAPTER 2. PRELIMINARIES 25

It is possible to enumerate effectively all Turing machines Ty, T, .... This enumeration
determines an effective enumeration of partial recursive function ¢q, s, ... where ¢; is
the function computed by T; for all i.

A Turing machine that can receive a codification of a pair of an encoding of any Turing
machine T and an input x to T, and is able to simulate T on x is called a Universal Turing

machine.

2.2.1 Computational complexity

One of the pioneer results in computational complexity, due to Hartmanis and Stearns
[HS65] shows that if more time is allowed to a Turing machine then it can decide more
languages. Once the model of computation is fixed we can group together languages that
can be solved using similar amount of resources. Usually, a complexity class is defined
by a model of computation and a resource bound for that model of computation.

When studying the computational complexity of a problem we are interested to know
how the resources needed increase as the input size grows. The resources that are
commonly studied are time and space. In the most part of this dissertation we will
be interested in the assimptotic behavior of the growth rate of resources up to constant

factors. So, we will be using the following notation:

Definition 2.2.6 (The Oh-notation). Let f,g : N — [0,00) be two functions. We say
that:

o f € O(g) if there is a constant ¢ > 0 such that f(n) < c-g(n), for almost alln € N.
o f € Q(g) if there is a constant ¢ > 0 such that f(n) > c-g(n), for almost alln € N.
o fcO(g) if and only if f € O(g) and f € Q(g).

o f € o(g) if for any constant ¢ > 0 and for sufficiently large n € N, f(n) <c-g(n).
o f € w(g) if for any constant ¢ > 0 and for sufficiently large n € N, f(n) > c-g(n).

Some of the most used bounds are: O(1) called constant, O(logn) called logarithmic,
nCM called polynomial, 2" called sub-exponential and 2"°"" called exponential.
In this work all resource bounds t considered are time constructible, i.e., there is a

Turing machine whose running time is exactly t(n) on every input of size n.

Definition 2.2.7. Let t : N — N be a constructible time bound. The class DTIME(t] is

the set of languages that are accepted by some Turing machine running in time O(t(n)).



26 2.2 Turing machines and computational complexity

As examples of deterministic time complexity classes we have:

1. P= U DTIMEMY], the class of languages accepted in polynomial time;
keN

2. EXP = U DTIME[Z“k], the class of languages accepted in exponential time;
keN

3. E= U DTIME[2"], the class of languages accepted in linear exponential time;

keN

As mentioned previously we can allow the Turing machine to make guesses, by defining
the transition function as 8 : Q x I' = P(Q x I'), i.e., at each state the transition for a
next state is not deterministic and, in fact, can be chosen between several alternatives.
We say that the non-deterministic Turing machine M accepts an input string x if there
is a choice of transitions that cause M to enter into an accepting state.

If no resource restrictions are considered then deterministic Turing machines decide ex-
actly the same languages that non-deterministic Turing machines do. In other words, the
models of computation are equivalent. When polynomial time constrains are considered
then it is unknown if the two models are equivalent.

Consider a time constructible function t. We define the class NDTIME(t) similarly
to DTIME(t) using non-deterministic Turing machines instead of using deterministic
ones. Thus, the classes NP, NEXP and NE are the non-deterministic versions of P,
EXP and E respectively.

The most important open problem in Computer Science is the question whether P =
NP. By the way that theses classes were defined it is clear that P C NP but it is unknown
an efficient way (even lower than exponential time) of simulating a non-deterministic
Turing machine in the deterministic model, where efficient means with a polynomial

number of extra steps.

Definition 2.2.8 (Polynomial time many-to-one reduction). Let f : £* — L* be a function
computable in polynomial time. The function f reduces a language L; to a language L,

when x € Ly if and only if f(x) € L;.

This type of reductions is also known as Karp reductions. There are other kinds of
reductions as for example, Turing reductions®, truth table reductions, but in this work we

will be using only Karp reductions.

LA is Turing reducible or Cook reducible to B (A <t B) if there is a Turing machine with oracle access

to B that computes XA .-



CHAPTER 2. PRELIMINARIES 27

Definition 2.2.9 (NP-complete problems). A language L is called NP-complete if L is
in NP and for all languages L' € NP there is a polynomial time many-to-one reduction
f from L' to L.

Notice that if some polynomial time algorithm solves any NP-complete problem then
P = NP. The first problem shown to be NP-complete was SAT by Cook [Coo71]. SAT
is the set of boolean formulas that have at least one assignment that make the boolean

formula true.

Definition 2.2.10 (SAT). A Boolean formula ¢(Xq,...,Xn) in the conjunctive normal
form? of n wariables is satisfiable if there is a Boolean-valued truth assignment x; =
A1y .oy Xn = Qn such that d(aq, ..., an) s a true formula. The SAT problem is to decide

whether or not a given Boolean formula has a satisfying assignment.

Later, Karp [Kar72] proved that combinatorial problems like the Traveling Salesman
problem and Vertex Cover and many other are also NP-complete. In [GJ79] we can find
a large collection of NP-complete problems.

Another widely used model of computation in computational complexity is the prob-
abilistic model. In this model, contrarily to non-deterministic Turing machines, instead
of guessing the next move it is flipped a coin and then the model evolves according to the
random outcome. This model is believed to be more efficient in practice when compared
to its deterministic counterpart. Although, it is unknown if they are equivalent when time
restrictions are considered.

Formally, we define a probabilistic Turing machine by equipping it with a special read

only tape which content is the outcome of independent coin tosses of a fair coin.

Definition 2.2.11 (Probabilistic acceptance). We say that a probabilistic Turing ma-

chine M accepts a language L if for some € > 0 and for all input x we have:

1
e ifx e L, Pr(M accepts x) > 5 + ¢

1
e ifx ¢ L, Pr(M accepts x) < 7T

The class BPP is defined as the set of languages that are decidable by a probabilistic
Turing machine running in polynomial time. It is unknown whether P = BPP or NP =
BPP. Although much effort and energy has been devoted to answer these questions,

there is no significant progress in terms of collapsing or separating them.

2A Boolean formula is in the conjunctive normal form if it is a conjunction of clauses, where a clause

is a disjunction of literals, where a literal and its complement can not appear in the same clause.



28 2.3 Kolmogorov complexity

The last model that we will consider is the non-uniform model, where the Turing
machine have access to an advice string, which is a small piece of information (normally
logarithmic or polynomial in the size of the input) that the machine can use to decide
the language. The term “non-uniform” is used to express the fact that for different input
sizes the machine will have access to different advices. The definition of this model is due
to Karp and Lipton [KLS80].

Definition 2.2.12 (Non-uniform complexity classes). Let f: N — [0, 4+00) be a function.
A language L is in P/f if there is a Turing machine M and there is a sequence (Qn)nen
of advices with |a,| < f(n), such that, for all x € L™, M(an,x) = xr(x) in polynomial
time. In particular, if f is a logarithmic (respectively polynomial) function we have the

class P /log (respectively P/poly ).

Notice that if f was a exponential function then any language would be P/f since in
that case we could incorporate a table with the contents of L as advice. The most useful

and commonly studied classes are P/poly and P/log.

2.3 Kolmogorov complexity

Kolmogorov complexity is a different way of measuring complexity. Instead of analyzing
the overall progression of the resources needed to solve larger and larger instances of a
problem, it studies the resources needed for individual strings. This measure is based on
the length of the description of strings.

Consider the experiment of independently flipping a fair coin several times and con-
struct a binary string with the outcomes, by order. As it is the result of a truly random
source we would say that any string produced by this method is random. However,
we hardly expect to see strings like “000000000000000” or “110110110110110110” as
outcomes since these strings, somehow, violate our intuition that a random string does
not have regularities. Kolmogorov complexity formalizes this intuition by analyzing the
existence of any type of regularities that allow a program to describe the string in a shorter
way than just printing every bit of the string. Kolmogorov [Kol65], Solomonoff [Sol64]
and Chaitin [Cha66] independently defined the complexity of an individual object, usually
a string x, as the length of the shortest program that produces x. To avoid paradoxal
questions we must choose carefully what we mean by “program” and “description”.

Consider the effective enumeration of Turing machines Ty, Ty, - - - that induce an effec-

tive enumeration of partial recursive functions &, ¢,,--- such that T; computes ¢; for



CHAPTER 2. PRELIMINARIES 29

all 1.

Definition 2.3.1 (Conditional Kolmogorov complexity). Let ¢ be a partial recursive
function. Given any pair of strings x,y € L*, the Kolmogorov complexity of x conditional

toy with respect to ¢ 1s
G (xly) = min{fp| : d(p,y) = x}.
and Cg(xly) = oo if there is no p such that d(p,y) = x.

Notice that the Kolmogorov complexity might depend on the choice of ¢. The
invariance Theorem, stated bellow, allows us to abstract from any particular partial
computable function ¢. It shows that Kolmogorov complexity is an intrinsic property

of individual objects.

Theorem 2.3.2 (Invariance Theorem). There is a universal partial recursive function ¢
such that, for any partial recursive function ¢, there is a constant cg, depending only on

& such that, for all pairs of strings x,y € X*,
Coo (xly) < Coyl(xly) + ¢4

Notice that the existence of a universal partial recursive function does not necessarily
gives the shortest description of a string, however this invariance Theorem guaranties that
no other description method can improve infinitely many times the universal description
by more than a constant.

In the sequel of this thesis we fix once and for all a universal partial recursive function
¢o and drop the argument writing C(xJy) instead of Cy, (x[y).

The default value for y is €, the empty string. When this is the case, it is usual to
refer to the Kolmogorov complexity of x and denote it by C(x).

In the next theorem, some of the basic properties of Kolmogorov complexity are

enumerated.
Theorem 2.3.3. The Kolmogorov complezity satisfies the following properties:
1. The Kolmogorov complexity is uncomputable.

2. There is no unbounded and non-decreasing recursive function f satisfying C(x) >
f(x) for all x € X*.

3. There is a constant ¢ > 0, such that for all x € £*, C(x) < |x| + c.



30 2.3 Kolmogorov complexity

4. If £ 1s a partial computable function, then there is a constant c such that for all
x € X*, C(f(x)) < C(x) +c.

5. There is a constant ¢ such that for any string x € Z*, C(|x]) < C(x) +c.

Definition 2.3.4 (c-incompressibility). Let ¢ be a fized constant. A string x € L* is called

c-incompressible (or c-algorithmically random or c-Kolmogorov random) if C(x) > [x|—c.

Using a simple pigeon-hole argument, it is easy to see that at least one string of length
n has Kolmogorov complexity n. In fact, there are 2™ strings of length n but there are
only 2™ — 1 possible descriptions of length less than n.

A similar argument can be used to prove the following more general result:

Theorem 2.3.5. Let ¢ be a fized constant, y a string and let A be a finite set of cardinality
m. The number of strings x € A such that C(xly) > m —c is at least m(1 —27).

The existence of such strings has been proven to be very useful, specially in computa-

tional complexity, since there are numerous results based on this fact.

2.3.1 Symmetry of information

The Kolmogorov complexity has an useful property called symmetry of information. Given
a string x and a string y the amount of information that x gives about y, is the same (up
to a logarithmic term) that y gives about x. To formally state this result we first need to
define mutual information. The name “mutual information” came from its analogous on

Shannon entropy [Sha48] and is justified by the following definition and results:

Definition 2.3.6 (Mutual information). The mutual information of x abouty is

[(x:y) = Cly) — Clylx).

Since C(y) > C(ylx) + O(1) it follows that I(x :y) > O(1).
Let C(x,y) = C({x,y)), where (x,y) is a representation of the pair (x,y). To describe
(x,y) we can give a description of y, a description of x given y and a way of separating

these two items. So, if n = max{|x|, [y[}, then
C(x,y) < Cly) + Clxly) + O(logn)

Theorem 2.3.7 (Symmetry of information - Levin as suggested by [ZL70]). For every
X»U € Zn’
C(x,y) = C(y) + C(xly) + O(logn).



CHAPTER 2. PRELIMINARIES 31

Proof. We have already seen that C(x,y) < C(y) + C(xly) + O(logn). Now assume that
C(x,y) = a. If a is known, then the set:

A :{(X,>y/) : C(X/>U') < Cl}

is recursively enumerable, since we can dovetail over all programs of length at most a
and insert a pair (x’,y’) in A if and only if one of those programs stops with (x’,y’) as
output.
Consider now the set
Ay ={y" : C(x,y') < a}.

By definition, y is in A, and A, is also recursively enumerable when x and a are given.
Notice that A, has at most 29" elements. So, to describe y we can give a, x and the

index of y in Ay. Therefore,
Clylx) <log|A,|l+ O(logn) (2.3.1)

Now, let k be the only number such that 2% < |A,| < 2¥"" and consider By, the set of
all x for each there are more than 2* strings y such that C(x,y) < a. Again, by definition,
x € By and is recursively enumerable given k and a.

By has less than 24 %1 elements since A has less than 2" elements. Thus, to describe

x we only need to give a, k and the index of x in By. Thus,
C(x) <a—k+140O(logn) (2.3.2)
Hence, putting together the inequalities 2.3.1 and 2.3.2 we get:

Cx)+Clylx) <a—k+k+1+0(logn) = a+ O(logn) < C(x,y) + O(logn).

Corollary 2.3.8. Given any two strings x,y € X*,

I(x:y) =1(y : x) + O(log max{|x|, [yl}).

2.3.2 Prefix-free Kolmogorov complexity

Kolmogorov complexity as defined in the previous section does not satisfy the sub-
additivity property, i.e., it does not satisfy C(x,y) < C(x) + C(y) + ¢, for some c that

does not depend on x and y. This is not the only drawback of Kolmogorov complexity.



32 2.3 Kolmogorov complexity

We can not use this definition as a universal prior probability for each binary string as
Sollomonoff had conjectured in [Sol64]. So we need to consider another definition of
Kolmogorov complexity. Levin [Lev74] solved this problem by considering as the formal

model Turing machines in which the set of programs is a prefix-free set.

Definition 2.3.9. A set of strings A is prefix-free if there are not two strings x andy in

A such that x is a proper prefix of y.

Theorem 2.3.10 (Kraft’s Inequality [Krad9]). Let ny,ny,... be a finite or infinite se-

quence of positive integer numbers. There is a prefix-free set with this sequence as lengths

Zrmg.

One proof of this theorem relies on the fact that one can associate to each binary

of its binary code words iff

string an interval of length 27™ which can represent a prefix-free code and vice-versa.
Similarly to what happens for regular Turing machines, there is also an effective

enumeration of these Turing machines, usually called prefix-free Turing machines, and

a universal prefix-free Turing machine that can simulate the behavior of any other prefix-

free Turing machine. Consequently, we can define the prefix-free Kolmogorov complexity:

Definition 2.3.11 (Prefix-free Kolmogorov complexity [Lev74]). Let U be a fized univer-
sal Turing machine with a prefiz-free domain. For any strings x,y € L*, the prefix-free

Kolmogorov complexity of x given y is

K(xly) = rrgn{lpl : Up,y) = x}

The following theorem states some basic properties of prefix-free Kolmogorov com-

plexity.
Theorem 2.3.12. There is a constant ¢ such that for all binary strings x and vy,
o K(x,y) <K(x)+K(y)+c;
o K(x) <|x|+ 2loglx|+ c;
e K(x) =K(x,K(x))+c.
e K(xly) <K(x)+c.

With a pigeon-hole argument we can prove that there are at most 2" ¢ strings x of

length n such that K(x) <n —c. A more general result is:



CHAPTER 2. PRELIMINARIES 33

Theorem 2.3.13.
e There is a constant ¢ such that, for each n, max{K(x):|x| =n}=n+K(n) +c.

e For each fized constant c, the number of x € L™ with K(x) < n+ K(n) —c does not

exceed 2n—ctO0),

Similar to plain Kolmogorov complexity, the prefix-free Kolmogorov complexity satis-

fies the symmetry of information principle up to a logarithmic term.

Theorem 2.3.14 (Prefix-free symmetry of information). For all x,y € ",
K(x,y) = K(x) + K(ylx) + O(log K(x)).

To avoid the logarithmic term, we can replace the conditional x by (x,K(x)) or
equivalently by x*, the first shortest program in lexicographic order that produces x.
This result is attributed to Peter Gacs in [GV04]. Formally,

Theorem 2.3.15. Let x and y be two binary strings. Up to a fized additive constant,

K(x,y) = K(x) + K(ylx, K(x)) = K(x) + K(y[x")

2.3.3 Semi-measure based on Kolmogorov complexity

We can define a universal prior probability measure, based on Kolmogorov complexity.

First we need the following definitions:

Definition 2.3.16 (Probability measures). Let A be a set and let P(A) denote the
collection of all subsets of A. A function n: P(A) — [0,1] is called a probability measure

over A if it satisfies the following conditions:

o If (An)nen are mutual disjoint subsets of A, then <U An> = Z w(AL).

neN neN

The function w is called a semi-measure if it satisfies the first and the third items above
and w(A) < 1.



34 2.3 Kolmogorov complexity

Notice that, due to Kraft’s inequality, we can define a semi-measure over £* by n(x) =
27K which assigns a weight to each string accordingly to its complexity. The more
complex the string is to describe the less weight it has. This measure captures the intuition
of the Occam’s Razor principle which states that one should give more probability to
simple explanations rather than complicated ones. An important result in Kolmogorov
complexity is the existence of a semi-measure that multiplicatively dominates every other

distribution. A semi-measure satisfying this property is called universal.

Theorem 2.3.17. There is a universal enumerable discrete semi-measure which is de-

noted by m.

Proof. (Sketch) The proof consists in two steps. In the first step it is shown that the set of
all enumerable discrete semi-measures can be enumerated. This is done by enumerating
all enumerable functions and then effectively changing the enumerable functions to enu-
merable discrete semi-distributions, leaving the functions that were already discrete semi-
distributions unchanged. Let p;, ly,... be such enumeration. The second step consists
to show that v(x) = > o, a(n)w(x) with 3 o«(n) <1 and «(n) > 0 multiplicatively

dominates all w; and thus is universal. ]

Theorem 2.3.18 (Coding Theorem (see [LV08])). There are constants ¢y and c; such
that for every x,
m(x) =c; - Z 2l — - 2-K(x)

p:U(p)=x

A proof of this result can be found in [LVO08], Chapter 4, page 273.

2.3.4 Time bounded Kolmogorov complexity

The notion of Kolmogorov complexity as presented in the previous sections does not
take into account the computational effort that is necessary to produce the string from
one of its shortest descriptions. In this section, we consider resource-bounded Kolmogorov
complexity. Imposing restrictions on the time or space that the Turing machine is allowed
to use, makes the Kolmogorov complexity a computable function. In this thesis, we will
focus mainly on time bounded computations but space-bounded Kolmogorov complexity

can be defined analogously.

Definition 2.3.19 (Time bounded Kolmogorov complexity). Let U be a fized universal

prefiz-free Turing machine and t a time constructible function such that t(n) > n. Given



CHAPTER 2. PRELIMINARIES 35

two strings x and y, the t-time bounded Kolmogorov complexity of x given y us:

K (xly) = min{lpl : U(p, y) = in (x| + lyl) steps]

Imposing time bounds to prefix-free Kolmogorov complexity changes very little its
basic properties. In particular, K*(xJy) < [x|+21log(x|)+O(1). The time bounded version
of incompressibility Theorem 2.3.13 also holds. In fact, tli_glo K'(x) = K(x). However, it
is unknown if time bounded Kolmogorov complexity differs from its unbounded version
regarding symmetry of information, since it is not known if polynomial time bounded
symmetry of information holds. This is an important open question with connections
to complexity theory. Longpré and Mocas [LM93] and Longpré and Watanabe [LW95]
have examined the conjecture of symmetry of information for polynomial time bounded
Kolmogorov complexity. In particular, they proved that the conjecture is false if certain
kinds of one-way functions exist. Intuitively, a one-way function is a function that is
easy to compute, but its inverse is hard to compute. In [LR05], the authors explore the
conjecture of polynomial time symmetry of information for other types of time bounded
Kolmogorov related measures.

By analogy, we can define the t-time bounded universal semi-measure by m'(x) =
2-K'™_ The function m'(x) is computable in time t(n) - 2™ + O(1) by simulating all
programs of size up to n for t(n) steps. If p is a polynomial, mP = 2~ X" sits somewhere
between the polynomial time computable and polynomial time samplable distributions,
since it dominates every polynomial time computable distribution and is dominated by
a polynomial time samplable distribution (see [AFVO03]). Later, Antunes and Fortnow in
[AF09b] proved that if E = DTIME (2°™) does not have circuits of size 2°™ with £}
gates, i.e., if E has difficult functions for subexponential space, then for every polynomial
time samplable distribution vy, there is a polynomial p such that mP(x) > y(x)/[x|°".
The next result states that m' is universal among the distributions that have computable
cumulative mass functions, i.e., for a probability distribution P, the function P*(x) =

2_y<x P(y) is computable.

Theorem 2.3.20 ([LV08]). The distribution m* dominates any distribution which cu-

mulative mass function is t-time computable, where t'(n) =n - t(n) - log(n - t(n)).

2.3.5 Computational depth

Kolmogorov random strings are the strings that have as their shortest description the

string itself. Thus, random strings are objects containing lots of information. However,



36 2.3 Kolmogorov complexity

this information may be not very useful from a computational point of view, since, with
high probability, one can get another string as useful as the first one by flipping a fair
coin. On the other hand, strings with lots of regularities can be highly compressed and
thus, they have simple laws of construction. This simplicity may be instantly clear or
very demanding in terms of computational resources. For example, if the object is the
collection of results in a scientific book like [LV08], it has low Kolmogorov complexity
since we can derive the proofs of all theorems using only a couple of initial definitions and
inference rules. So, if we need to send the book to someone, we can use a small number
of bits when compared with the size of the entire book, but the receiver will spend a long
time reconstructing the proofs and the full book. On the other hand, we can send the
entire book. In this case, the receiver could read the book and extract all the information
easily. Thus, in both cases, we have the same information from Kolmogorov complexity
point of view, but the difference between them is the tradeoff of computational difficulty
and the number of bits communicated.

Informally, computational depth is a measure for the amount of “nonrandom” or
“useful” information contained in a string. Notice that a computational deep string
should have lots of regularities, i.e., it has low Kolmogorov complexity, but there is no
efficient procedure to determine those regularities. In fact, in the previous example, from
this point of view, the Li and Vitanyi’s book [LV08] is a deep object.

A first attempt to formalize the concept of computational depth is due to Bennett. In
[Ben88] he defined the s-significant logical depth of an object x as the time required by
the reference universal Turing machine to generate x by a program that is no more than

s bits longer than the shortest descriptions of x. Formally,

Definition 2.3.21 (Logical depth [Ben88]). The Logical Depth of a string x at a signif-

icance level s is:

s . —Ipl —s —Ipl
ldepth(x) = min ¢ t(|x]) : Y o 2Ps2e Y 2

p:Ut(p)=x p:U(p)=x
Later, Antunes, Fortnow, van Melkebeek and Vinodchandran [AFvMVO06], to simplify
this notion defined computational depth as a measure of nonrandom information in a string
based on the difference between various kinds of time bounded Kolmogorov complexity
and their unbounded counterparts. They have defined three types of computational
depths:

1. Basic computational depth: measuring the gap between time bounded Kolmogorov

complexity and traditional unrestricted Kolmogorov complexity.



CHAPTER 2. PRELIMINARIES 37

This notion captures the intuitive concept of computational depth, much better than
the technical notion of logical depth does. Note that x has large logical depth if it
has short programs that require considerable computation time. It seems natural

that computational depth has a similar property.

2. Sublinear time computational depth: gives an alternative way of defining shallow
sets by analyzing its characteristic sequence. It also gives a way of proving that if
NP is sparse or is reducible to a random set, then NP has polynomial-size circuits

and the polynomial time hierarchy collapses.

3. Distinguishing computational depth: analyses the difference between polynomial
time bounded distinguishing complexity, CD'(x), defined by the length of shortest
program p running in time t such that U'(p,z) = 1 if and only if z = x, and
polynomial time bounded Kolmogorov complexity. Fortnow and Kummer [FK96]
show that under some computational assumptions there are strings with high dis-

tinguishing computational depth.

In this thesis we are interested in basic computational depth and sublinear computa-

tional depth.

Definition 2.3.22 (Basic computational depth [AFvMVO06]). Let t be a constructible

time bound. For any string x € L*, the basic computational depth is:
depth®(x) = K'(x) — K(x).

Notice that this notion measures the effort that is necessary to reconstruct a string
from its shortest description.

A computational deep string is not easy to identify, but can be constructed by diago-
nalization in time larger than 2' for depth t. The next theorem proves that there are an

exponential number of strings with large basic computational depth.

Theorem 2.3.23. There is a constant ¢ such that for any 0 < ¢ < 1, there are at least
2" strings x of length n satisfying:

depth?" (x) > (1 — e)n — clogn.
Proof. Consider the set:

A={xeI":Ipecr™? U(p)=xin at most 2" steps}.



38 2.3 Kolmogorov complexity

By the incompressible Theorem 2.3.13, |A| < 2. Soif B=%"— A, |B| > 2™ and for
any 0 < ¢ < 1, there are more than 2°™ strings in B. Let D be the lexicographically first
2¢™ strings in B. Since D is computable and any x € D can be specified by en bits, we
have that for every x € D, K(x) < en + O(logn). We also have that for every x € D,
K?" (x) > n—1 since every program p of size at most n—2 such that U(p) outputs x must
run for at least 2" steps. It follows that for any x € D, depth® (x) > (1 —e)n —clogn

for some constant c. ]

In order to define shallow set by analyzing the characteristic sequences we need to
define K' for sublinear time bound t, i.e., when t(n) < n. This is done by allowing the
universal Turing machine U access to part of the description r of the string x and requiring

only that each bit of x be generated in the allotted time.

Definition 2.3.24 (Sublinear time bounded Kolmogorov complexity). Let t be a time
bound satisfying t(n) < n and x a string. Define sublinear time bounded Kolmogorov

complexity by
K'(x) = min{|p| + |r| : U"(p,1) outputs x; in t(|x|) steps for all 1 <1i < |x[}.
pyT

Notice that this definition with t(n) > n is essentially equivalent to the definition
2.3.19.

Definition 2.3.25 (Shallow strings). Let k be a fized constant. A string x is k-shallow
if depth™®” (x) < log*([x]).

Definition 2.3.26 (Shallow sets). A set A is shallow if there is a constant k such that

almost every initial segment of the characteristic sequence of A, is k-shallow.



Chapter 3

Information measures for infinite

sequernces

The contents of this chapter are based on the following publications:

[AS08] L. Antunes and A. Souto, Sophisticated infinite sequences, in Proceedings of
Computability in Europe 2008, Athens, Grece, 2008;

[AS10] L. Antunes and A. Souto, Information measures for infinite sequences, in
Theoretical Computer Science, Volume: 41, Issues: 26-28, pages:2602-2611,

Elsevier;

We explore the notion of sophistication defined in [AF09a] studying it for infinite
sequences. A first definition of sophistication is due to Koppel ([Kop87, Kop95]).
We show that our notion is properly defined for every sequence, and prove that
the set of sequences with sophistication equal to zero has measure 1 and that the
set of sophisticated sequences is dense. We also prove that sophistication and
computational depth of sequences are distinct complexity measures and that deep

SEqUENCES are dense.

3.1 Motivation

Random strings convey maximal information since they have almost maximum Kol-
mogorov complexity. However, it is very unlikely that these strings have “useful” or
meaningful information, as they are usually considered to be noise. Thus, how do we

formalize the notion of meaningful information?



40 3.1 Motivation

We can do it in one of the two following ways: measuring the amount of planing
necessary to construct the object (static resources) or measuring the computational effort
(dynamic resources, usually time), required to produce the object.

As we have already discussed in the introduction, the former approach is based on
the Kolmogorov structure function which divides the smallest program of a string in two
parts: one part accounting for the useful regularity which can be exploited to describe
the string and another accounting for the remaining accidental information present in the
string. In [Kop87, Kop95, KA91], Koppel expressed the useful information as a recursive
function and called the resulting measure sophistication. As a consequence, the regularity
is just the length of a total program p that, together with the accidental information, i.e.
information that is consider not to have structure, produces the string or sequence.

However, as Koppel observed, not all infinite sequences are describable and thus, the
notion of sophistication, is not properly defined. We redefine sophistication for infinite
sequence based on [AF(09a], where the authors revisited the notion of sophistication for
finite strings, introducing a new definition, and proving the existence of strings with
maximum sophistication.

The latter approach was introduced in [Ben88] who called logical depth to the effort
required to produce the object. Thus, an object is logically deep if a lot of time is needed
to recover it from any of its shortest descriptions. In the sequel, Antunes et al. [AFvMV06]
introduced the notion of computational depth for finite strings, as the difference between
the time bounded and unbounded Kolmogorov complexities.

Concerning Kolmogorov’s question (see [V'y99]) on the existence of “absolutely non-
random” or highly sophisticated objects Gacs et al. [GTV01] and Antunes and Fort-
now [AF09a] independently, proved that the answer is affirmative for strings. We address
Kolmogorov’s question for sequences. We start by redefining sophistication for sequences,
introducing the lower and upper sophistication as the liminf and lim sup, respectively, of
the ratio between the sophistication of the initial segments (as defined in [AF09a]) and
the length of that initial segments. Notice that these two notions of sophistication are
always well defined, solving one of the problems of Koppel’s definition. Using these new
definitions, we prove that the set of sequences with lower sophistication equal to 0 has
measure 1 and the set of sequences with upper sophistication equal to 1 is dense. So,
the answer to Kolmogorov’s question, regarding infinite sequences, is affirmative if we use
upper sophistication and probably negative if we use the lower sophistication. We also
prove that the set of deep infinite sequences is dense. The study of these measures for

infinite sequences may be useful as a complexity measure to detect attack behaviors in



CHAPTER 3. INFORMATION MEASURES FOR INFINITE SEQUENCES 41

network traffic as it is usually considered to be an infinite source of information.

Koppel claimed that sophistication and logical depth are equivalent information mea-
sures. For the finite case, Antunes and Fortnow [AF(09a], gave an example where the
equivalence is not valid. In this work, we give two examples of infinite sequences for

which sophistication differs from a variant of computational depth.

3.2 Preliminaries

We present some specific definitions and results that are necessary to understand the

sequel of this chapter.

3.2.1 Sophistication

The Kolmogorov structure function divides the smallest program for an object x in two
parts: one part accounting for the useful regularities to compress the string and another
for the remaining accidental information present in the object. The former is the structure
of x, i.e, it essentially describes the set of all objects that share the same structure with
x, and the latter can be considered as the index of x in that set. To formalize this notion,
Koppel [Kop87] used total functions to represent the useful information. He defined

sophistication based on (monotonic) process complexity.

Definition 3.2.1. A description of a string x is a pair (p,d) such that p is a self-

delimiting total program, and x is an initial segment of U(p,d).
Koppel also defined the complexity of x by:
H(x) = min{|p| + |d| : (p, d) is a description of x}.
Definition 3.2.2. A description (p,d) of a string x is c-minimal if |p| + |d| < H(x) + c.
Definition 3.2.3. A program p is a c-minimal program for x if:
1. for some d, the pair (p,d) is a c-minimal description of x.
2. for any c-minimal description (p’,d’) of x, we have [p| < [p’|.

Definition 3.2.4. The c-sophistication of a string x, denoted by soph.(x), is the length

of a c-minimal program for x.



42 3.2 Preliminaries

Bringing together the two previous definitions we obtain the following definition for

c-sophistication of a string x € X™:

exists d such that (p,d) is a description }

soph,(x) = min < |p|:
P {p of x and [p|+|d] < H(x) + ¢

Koppel used a similar approach for sequences. First, he defined a notion of compression

and minimal description and, then he defined sophistication.
Definition 3.2.5. A program p is called a c-compression program for a sequence o if:
1. For allm there is dy, such that (p,dy) is a c-minimal description of o).
2. dng < dy, i.e., dnq is an initial segment of d,.
Definition 3.2.6. The sophistication of a sequence « is
soph, (o) = ngn{|p| 1P 1S a c-compression program for «}.
If such p does not exist then soph () = co.

A sequence is describable if it has a compression program. Koppel in [Kop95] remarked
that not every sequence is describable and thus soph () is not properly defined. For
example, if for all c, limsup, soph. (o) = 0o, then « is not describable. In order to
avoid this problem, Koppel defined a weaker version of sophistication based on “weak”
compression programs for «, i.e., program for which the data considered for each n is not
necessarily a prefix of the next one. Antunes and Fortnow [AF(09a] revisited the notion of
sophistication and, using Kolmogorov complexity, adapted Koppel’s definition for finite

strings.

Definition 3.2.7. Let ¢ be a constant, x a string of length . and U the universal reference

Turing machine. The c-sophistication of x is

P s total and there is a string d such that }

soph,(x) = min < |p| :
phe (x) P {P U(p,d) =x and [p| + |d| < K(x) + ¢

By definition, it is always true that soph.(x) < K(x) + c. It is not known if
sophistication is a robust measure. Indeed it is unknown if slight variations on the
parameter c, especially when c is small, largely affects the value of sophistication.

In the sequel, we will need the following generalization of Theorem 2 of [AF(09a], on

the existence of highly sophisticated finite strings.



CHAPTER 3. INFORMATION MEASURES FOR INFINITE SEQUENCES 43

Theorem 3.2.8. Let x be a string of length logn and ¢ > 0 a constant. There is
y € IM8™ sych that soph,(xy) > n—10logn —c.

Proof. For all programs p such that [p| <n —10logn — c define
0if 3d : |[d| < n — |p| — ¢ such that U(p, d) diverges

max running time of U(p, d)
d:Jd|<n—4log n—|p|—c

Tp =

Consider § = maxr,. Given n and p that maximizes r, we can compute S. Consider the

following set

there exists p, d satisfying [p| <n —10logn —c, }

V=q(xyel™:
|d] <n —4logn — |p| — c such that US(p,d) = xy

and V ={xy € £": xy ¢ V}. Notice that if xy € V then K(y) < K(xy) + K(x) < |p| +
ld|+K(x) < |p|+n—4logn—|p|—c+K(x) < n—4logn—c+3logn = n—logn—c. Then,
using the incompressible Theorem 2.3.13, there must exist at least one string y € Znloen
such that xy ¢ V and thus V # (). Let z be the first string in lexicographic order in V.

Since given n, x and p that maximizes T, we can compute V, then we conclude that:

K(z) K(x) + K(p) + K(n) + K(Vn, p)

<
< 3logn+n—10logn —c+ 3logn

n—4logn—c
Assume that soph,(z) is small, i.e., soph.(z) <n—10logn —c. Then, by definition
Jp*,d" :p*is total, [p*| <n—10logn —c,[p*| + |d*| < K(z) + ¢

but then we have |d*| < K(z) + ¢ —[p*| <n—4logn — ¢ — [p*| and thus U(p*, d*) stops
and, by construction of S, it stops in time < S, i.e., z € V. But, by construction, z ¢ V,

which is a contradiction. So soph,(z) >n —10logn —c. ]

3.2.2 Hausdorff and Packing dimension

In mathematics, the notion of measure is largely used. Intuitively, a measure defined
over a set is a systematic way to assign a number to each suitable subset of a given set,
which mean to be interpreted as the size of the subset. In this sense, a measure is a
generalization of the concepts of length, area and volume. Hausdorff [Haul9] augmented
Lebesgue measure theory with a concept of dimension. This measure assigns to every

subset X of a given metric space a real number dim(X), called the Hausdorff dimension



44 3.2 Preliminaries

of X. Lutz [Lut00a, Lut00b] proved there is a gale characterization of Hausdorff dimen-
sion. This characterization gives an exact relationship between Hausdorff dimension of a
set X consisting of infinite binary sequences, and growth rates achievable by martingales
betting on the sequences in X. This gale characterization of Hausdorff dimension was a
breakthrough as it enabled the definition of effective versions of Hausdorff dimension by

imposing various computational and complexity constraints on the gales.

Definition 3.2.9. An s-supergale is a function d : £ — [0, oo that satisfies the following

condition:

d(o d(1
dlx) > ( oc); (Tx)
An s-supergale is called an s-gale if the equality holds. A gale is called a martingale if

s=1.

Definition 3.2.10. Let o be a sequence and d an s-supergale. We say that d succeeds
on « if:
lim sup d(o1.) = 0.
n
We define Sq as the set of sequences where d succeeds.
Definition 3.2.11. Let X be a set of sequences.

e G(X) is the set of all s € [0, 00[ such that there is an s-gale d for which X C Sq.

AN

e G(X) is the set of all s € [0, 00[ such that there is an s-supergale d for which X C Sq.

o Goonstr(X) is the set of all s € [0,00[ such that there is a lower semi-computable

s-supergale d for which X C Sq.
e The Hausdorff dimension of X is dimu(X) = inf G(X) = inf §(X).
e The constructive dimension of X is cdim(X) = inf Geonstr (X).

e The constructive dimension of a sequence « is dim(A) = cdim({a}).

Intuitively, a martingale d is a strategy for betting on the successive bits of a sequence

In [May02], it is shown that constructive Hausdorff dimension can be fully character-

ized in terms of Kolmogorov complexity.

Theorem 3.2.12 (Constructive Hausdorff dimension). For every sequence «,

K (1
dim(o) = lim inf w.



CHAPTER 3. INFORMATION MEASURES FOR INFINITE SEQUENCES 45

The proof of this result can be verified conjugating [May02] and [Lut00b].

Proof. The “>” inequality follows directly from the fact that the dimension can be used
to describe the sequence.
To prove the inequality “<”, let « be a sequence and s and s’ two rational numbers

K (oo
such that s > s’ > liminf (o }). The set:

neoo
B={xeX:K(x) <s'lx[}

+0(1

is recursively enumerable and for all n, B=" has at most 25 KMW+0() elements. Using

Kraft’s inequality we know that

d(x)zz(”’“*'( >y Y z(s’”(|x|—|w|)>

wixweB wweB,w<x

is a lower semi-computable s-gale and by construction, if x € B, d(w) > 26X By

assumption, there are infinitely many m for which ., € B and thus o € Sy which

Ko
implies that dim(o) < 2°. Since this result is true for every s > liminf % the
neoo

inequality follows. [

Packing dimension was introduced independently by Tricot [Tri82] and Sullivan [Sul84].
Later, Athreya et al. [AHLMOT7] proved how to characterize packing dimension in terms
of gales, a dual of the gale characterization of the Hausdorff dimension. By imposing com-
putational constrains on the gales they obtained a variety of effective strong dimensions
which are exactly duals of the effective Hausdorff dimension. In particular, the following

characterization was proved.

Theorem 3.2.13 (Constructive packing dimension). For every sequence «,

K (o1on
Dim(a) = lim sup M.

The proof of this result can be found in [AHLMO07] and is dual of the previous one.
Theorems 3.2.12 and 3.2.13 are not valid for the plain version of Kolmogorov com-

plexity.

3.2.3 Topological results

To formally present the results of the next sections, we use the standard metric in the

Cantor space X and apply the well known Baire’s result for complete metric spaces.



46 3.3 The existence of highly sophisticated sequences

Definition 3.2.14. In the Cantor set X, given «, 3 € L*°, the standard metric s:
d(e, B) = miax{zfi Do # Bl

It is well known that (X°°,d) is a complete metric space. Notice that, the less the

distance between « and [3, the bigger the initial segment common to « and f3.

Definition 3.2.15. Let (X, d) be a metric space. We say that a set A is open if, for every
x € A, there is a € > 0 such that the ball B(x,e) ={y € X : d(x,y) < €} is contained
i A. The complement of an open set is called a closed set.

A set D is called dense if for all x € X and every ¢ > 0 there isy € D such that
d(x,y) < e.

Theorem 3.2.16 (Baire’s Theorem). Let (X,d) be a complete metric space and let

(An)nen be a sequence of open dense subsets of X. Then ﬂ A, 1s dense.
neN

3.3 The existence of highly sophisticated sequences

We propose a new and simpler definition of sophistication of infinite sequences. The
definitions are based on the limits of the sophistication of the initial segments and
formalize the idea that if we analyze the sequence considering larger and larger initial
segments, then we can describe better the emerging structure of the sequence. We prove
the existence of highly sophisticated sequences, a connection with constructive Hausdorft
dimension and constructive packing dimension.

Keeping a similar flavor to the Hausdorff and Packing dimension characterizations, we

propose the following definition of sophistication for infinite sequences.

Definition 3.3.1. The lower sophistication of a sequence x € X*° is defined as:

soph, (1:n)

soph (&) = limninf

and the upper sophistication as:

- soph, (.
soph, () = lim sup soph (i)
n
Notice that the liminf and limsup of real numbers are always defined. Hence, the
lower and the upper sophistication of a sequence are well defined, solving one of the
problems of Koppel’s definition. We now prove some properties of the new measure
and establish a connection with constructive Hausdorff dimension and with constructive

packing dimension.



CHAPTER 3. INFORMATION MEASURES FOR INFINITE SEQUENCES 47

Proposition 3.3.2. For all sequence « and constant ¢ > 0, Sophc(oc) < dim(«) and
soph, () < Dim(«).

Proof.
soph, (X(:n))

n
K(‘x[]:n]) +c

soph_ () = lim%1 inf

< lim inf
(Xfrn)

n
K( 1)
n

< lim inf
n

+ lim inf <

n on
= lim inf
= dim( )

The proof that soph, () < Dim(«) is similar. ]

A sharper result for the lower sophistication is presented next. It proves the existence
of sequences for which the lower sophistication is strictly smaller than the constructive

Hausdorff dimension.

Proposition 3.3.3. For any sufficiently large constant ¢, there are sequences o« such that

sophc(oc) =0 and dim(x) = 1.

Proof. The idea of the proof is to use a sequence with high Kolmogorov complexity.
Chaitin [Cha66] and Martin-Lof [MLT71] observed that there are « such that from some

ny onwards K(apn) > n —logn —loglogn. In fact, almost all sequences o« have this

property, since ) 2~ logn—loglogn

converges. Thus,

K (&g

dim() = liminf %ﬂ
— —logl

> lim inf n —logn —loglogn

n n

=1

On the other hand, as proved in [YDDO04], the following set has measure 1:
A ={x € X for infinitely many n, K(o«q.y) =n —c}
where c is a fixed constant. So, the set
B={xeXZ*:a€ A and dim(x) =1}

has also measure 1. But, by definition of A, for any & € B, there are infinitely many n

such that soph. (o) < O(1), since the program p that prints o) when .y is given



48 3.3 The existence of highly sophisticated sequences

as data satisfies [p| + || < [pl +n = ¢ + K(xq.y), where ¢ is the constant describing

print on the universal Turing machine. So,
SOphc ( K1m] )

om"
< lim inf
n n

=0.

soph () =liminf

]

Notice that the constant ¢ of the previous proposition only needs to be larger than
the description of the program print for the universal Turing machine. From the proof

of previous Proposition we can conclude that:

Theorem 3.3.4. For some constant ¢ > 0, the set of sequences o« such that sophc(oc) =0

has measure 1.

We now show that the set of sequences with upper sophistication equal to 1 is dense.

For each natural number ny consider the following set:
Vip, ={x € Z%: (Vn > ny) soph, (xpq) <n—10logn —c}

where c is a fixed constant. V,, is the set of sequences that from its n{" bit their initial

segments are not highly sophisticated. Then we have:

1. V; C vi—H .
If @ € V; then for all n > 1, soph (o) < n—10logn —c. In particular, for all
n > i+ 1, we have that soph,(xq.y) <n—10logn —c. So, &« € Vi;;.

2. V; is non empty.
For example, the sequence such that all bits are equal to 0 has low sophistication
since it has low Kolmogorov complexity.

3. For all sufficiently large ng, Vi, # .

Considering y = € in Theorem 3.2.8, it follows that there is x € L™ that satisfies
soph,(x) > n —10logn —c. So, the sequence o« = x000... satisfies soph,(X[1.n)) >
n —10logn — c and thus o & Vy,.



CHAPTER 3. INFORMATION MEASURES FOR INFINITE SEQUENCES 49

4. All sets V,, are closed subsets of .
To prove this fact we show that Z> — V,,, are open subsets of (X, d).
If x € Z%° —V,, then there is n such that soph. (&) > n — 10logn —c. Set

e = 2™ ' Then, if d(e, ) < € it implies that for all i < n, & = Pi. So,
soph, (Bp:my) = soph,(xpm)) > n —10logn — ¢, which proves that € Z®° — V,,.

So if we prove that X°° — V,  are dense then we prove that the set of all highly

sophisticated sequences is dense in X* since

() 2% = Vo, =2% — | Va.

noeN noeN
Notice that if «x € X — U Vy, then « satisfies
noeN

n—10logn—c
- =

soph, () > lim 1.

To prove that each Z*° —V,; is dense it is sufficient to show that given ¢ > 0 and & € V;,
there is a sequence 3 € Z* — V,,, such that d(«, ) < e.
Intuitively, this fact is true since we can consider the first bits of « (to ensure that

d(«, B) < €) and construct a sophisticated string with that prefix of a reasonable size.
Proposition 3.3.5. Each set £ — V,, is dense.

Proof. Let « be an element in V,; and € > 0 a real number. We construct 3 as follows:
Let iy be the index such that 27 < /2. Set B; = o for all i < iy. With this
condition we guarantee that for all w € £*°, d(«, B w) < €.
Considering x = B4, in Theorem 3.2.8 of page 43, it follows that there is y € F2o—lo
that satisfies soph. (Bp.i,)y) > Ixy|—10[x|—c. Then the sequence 3 = B(1.,;y000... satisfies
soph, (B1zi) = 2 —10log 2 —c. So, B € L™ — V,,. O

Thus, using Theorem 3.2.16 and Proposition 3.3.5 we have:

Theorem 3.3.6. For some ¢ > 0, the set of sequences & such that soph, () =1 is dense.

3.4 Computational depth for sequences

There are several recent results about computational depth for strings, see [AF09b],
[AFPS07], [AMSV09], [Soul0]. In this section, we study the density of the set of deep

sequences and prove that, although it has measure 0, it is dense.



50 3.4 Computational depth for sequences

Definition 3.4.1. The infinite series Y 2-f™ s recursively convergent if there is a

recursive sequence (Ny)ien such that Z 27 < 2™ for all m.

n=nm
Theorem 3.4.2 (Theorem 2.5.4 in [LV08]). Let f(n) be a recursive function such that
S~ 27" s recursively convergent. If an infinite binary sequence w is Martin-Lif random,

then from some n onward, K(wpyn) > n—f(n).

The idea of the proof is to show that the sets of the form [0.wp.p, 0. 2-n) are a
sequential Marti-Lof test.
Let t be any polynomial. From the last theorem, we can show that the set of sequences

w such that K'(w.yn) > n — clogn for some n onwards has also measure 1.

Theorem 3.4.3. Let t be any fized polynomial. The set
A ={w € Z°: exists Ny such that for all n > ny, KY{wp.yn) > n —clogn}
where ¢ > 2, has measure 1.

Proof. Since all random sequences satisfies K'(wj.y/n) > n—clogn for some ny onwards,
then A contains the set of random sequences by Theorem 3.4.2. Thus, A has measure
1. O

What can we say about the complement of this set? We know that this set has measure
0, but what about its density? Adapting the arguments of Theorem 3.3.6, we show that

the set of sequences having high depth for infinitely many initial segments is dense.

Theorem 3.4.4. Let t be any polynomial. The set of sequences w such that for infinitely

many n, K {wp.gn) <n —clogn for some ¢ > 2 is dense.
Proof. For each natural number ny, consider the sets:
Ay, ={w € Z%®:Vn > ny, K (wpyn) > n —clogn}

It follows from the results above that UAno has measure 1 since it contains the set of
o
Martin-Lof random sequences.

1. % — A,,, are open sets.

Let « be a sequence in X*° — A, ;. Then, by the definition of A, thereisan > n,
such that K'(ogp.yn) <n —clogn. Set e =2™. If d(«, ) < ¢ then for all i < n,
o = PBi. In particular, it follows that K'(Bp.yn) = K*(a.gin) < n—clogn, which
implies that B ¢ Ay, i.e., B € Z®° —A,,.



CHAPTER 3. INFORMATION MEASURES FOR INFINITE SEQUENCES o1

2. 1 — A, are dense sets.

We must prove that given an o € A,,; and any 1 > ¢ > 0 thereis 3 € X*°—A,,, such
that d(o, ) < €. Set n = —loge and define B as follows: for alli < n, f; = i
and for i >n, ; =0.

It follows, by definition of n, that d(x, ) < € and it is clear that there is n/ >>>

n > ng such that K'(Bpan’) < n’/ — clogn’which implies that f € £ — A,,.

So, using Baire’s Theorem we conclude that ﬂ XA, =X — U A, is dense.
neN neN

Notice that w ¢ U A, means that for all ny there is n > ng such that K'(wyn) <
neN
n —clogn, i.e., for infinitely many n, K*(wq.yn) <n —clogn. O

So, although the complement of the set of polynomial time clog(n)-Kolmogorov-
random sequences has measure O it is dense. As a corollary, the complement of the
set of random sequences is also dense. Since deep objects are not random, this leaves
open the possibility of the existence of some deep sequences. Notice that from Theorem
3.4.2, the set of deep sequences has measure 0, but, as proved in the next result, it is
dense and so, in fact, deep sequences do exist. The density of deep sequences follows from

the following result:

Theorem 3.4.5. Let t be a fized polynomial. Giveny € L™ and 0 < & < 1, there is a
string x of length 2™ +n such thaty is a prefiz of x and depth'(x) > (1 —8)2" —c-n for

some constant C.

Proof. Consider a string x of length 2™ + n of the form x = yz. We claim that there is a
string z such that depth'(x) > (1 — &)2™ — ¢ - n for some constant c.

It is known (see Theorem 5 in [AFvMVO06]) that, for every 0 < ¢ < 1, there is a string
z of length 2" such that depth'(z) > (1 — &)2™ — ¢ - n, where c is some fixed constant.
Then, depth'(yz) > (1 —¢)2" —c - n.

depth'(yz) = K'(yz) —K(yz)

K'(z) — K(yz)

K'(z) — K(z) — K(y)
depth®(z) — K(y)
(1—¢e)2"—c-n—K(y)

(1—¢e)2"—c¢'-n

AVARAVS

(A\VARAVS

the last inequality follows from the fact that K(y) < n+ 3logn. ]



52 3.4 Computational depth for sequences

Theorem 3.4.6. Let t be a fixed polynomial. The set of sequences w such that for
infinitely many n, depth®(wp.yn) > (1 —8)n — O(logn) is dense, where 0 < & < 1 is a

fixed constant.

The proof consists again of adapting the arguments of Theorem 3.3.6 for the particular

case of computational depth measure.

Proof. For any natural number ny consider the sets:
Vo, = {w € Z%° : In > ny, depth' (apyn) > (1 —8)n — O(logn)}

If x € ﬂVno then for all ny there is n > mny such that depth'(wpyn) > (1 —8)n —
o

O(logn). So, for infinitely many n, depth*(wqymn) > (1 —8)n — O(logn).

1. V4, are open sets.

Let o be a sequence in V;,;. Then, there is an n > ny such that
depth'(ain) > (1 —8)n— O(logn)

Set ¢ =2 If d(a, ) < € then for all i < n, «; = PBi. In particular, it follows
that depth'(Bpin) = depth'(ggn) > (1 — 8)n — O(logn), which implies that
B e Vi

2. V,,, are dense sets.

Fix ¢ > 0 and o ¢ V,,,. We consider 3 such that for all i <n = —loge, ;i = oy.
This implies that, for any w € Z*, d(«x, fpyw) < €.

From Theorem 3.4.5, we can extend (3;...pn to a string x of length 2™ + n such
that depth'(x) > (1 —8)2" — O(n) = (1 — 8)|x| — O(log|x|). It then follows that
B =x000... € V,,, and d(«, ) < e.

So, using Baire’s Theorem 3.2.16, we conclude that m Vi, is dense. O]

no
Remark 3.4.7. The use of polynomial time bounds is not crucial for all the results of this
section. In fact, Theorem 5 of [AFvMV06], allows us to have a similar result considering

any time bound up to t(n) = 2™.



CHAPTER 3. INFORMATION MEASURES FOR INFINITE SEQUENCES 53

3.5 Sophistication vs depth of sequences

Koppel [Kop87| claimed that, for all infinite sequences, sophistication and logical depth
are equivalent. However, the proof uses a different definition of Bennett’s logical depth
since totality in the functions is imposed. In fact, the claimed equivalence would be an
unexpected result, as sophistication measures the program length which does not exceed
the length of the string and logical depth measures running times which can be arbitrarily
large.

In [AF09a], the authors proved that computational depth and sophistication are
distinct for finite strings, contradicting Koppel’s intuition. In this section, we reinforce
the distinctness of these two measures for infinite sequences by proving the existence of
sequences that are deep but not very sophisticated. We define packing and Hausdorft
dimensional depth instantiating the probability distribution of randomness deficiency to

be the time bounded universal distribution mt(x) = 2-K'®),

Definition 3.5.1. The packing dimensional depth of a sequence x is:

8 1. ZfKt(‘X[]:n])
depthyy;,, (o) = lim sup (ol ).

n—oo n

where d(x|u) is the randomness deficiency of x with respect to the semi-measure W which
z—K(x)

is defined by d(x|u) = {log —J .
m(x)

The difference of the two measures, sophistication and computational depth, follows

from the following theorem.

Theorem 3.5.2 (Theorem 7.1.4 in [LVO8]). Let t be a time constructible function. There

is a recursive sequence w such that K'(wpyn) > n —log(n) infinitely often.

Sketch of the Proof. The sequence w results from a diagonalization. Consider the recur-
sive function defined by g(1) =1 and g(n) = 291,

Set wy; = 0. Define wigmn_1)+1.9m) recursively as follows: simulate all prefix-free
programs of size less than g(n) — g(n — 1) for t(g(n)) steps each. Extend wp.gm_1y
to wii.gm) such that w.gm) is not the initial segment of any of the previous simulations.

The string obtained by this construction, satisfies K'(wp.qmylg(n)) > g(n)—g(n—1).
Since log(g(n)) = g(n — 1) then for infinitely many n, K'(wp.yn) > n —log(n). ]

Observe that from the fact that w is recursive we have K(wi.,|n) < logn for all n.
So, for all n, soph.(wi.,) < O(logn) and thus
O(logn)
n

sophc(wm) < soph,(w,) < lim =0.



54 3.5 Sophistication vs depth of sequences

On the other hand, for infinitely many n, depth'(w;) > n — O(logn). So,

5 win. Z_Kt(wllzn]]
depth}mm(w) = limsup (Wi )
n—oo n

log(sz(w[]:n])/zf Kt(w[]:n]))

= limsup
n—oo

n
Y K' (W) — K(wpm)
= limsup

n—oo n

depth* (W)

= limsup
n—oo

= 1

It is possible to obtain a similar result for depth defined with “liminf” but the
separation is not so strong, since we prove that the difference is not 1 but a constant

smaller than 1 that depends on the time t.

Definition 3.5.3. The Hausdorff dimensional depth of a sequence « is:

5 2~ K (i)
depth’ (a) = liminf (ot )

dim n—oo n

Theorem 3.5.4 (Theorem 7.1.3 in [LVO08]). Let t be a time constructible function and k
the index of the Turing machine that computes t. There is a recursive enumerable set A

n
such that, the characteristic sequence Xa satisfies K*(XaqnIn) > o] for all n.

Since A is recursively enumerable we know that for all n, K(xa;.) < O(logn). So,
for all n, sophc(xapy) < O(logn) and then:

O(logn) 0

soph_(x4) < lim
On the other hand, from last theorem, we know that for all n, Kt(XAH ) = sz% —logmn.

Thus,
d(Xapml2™ K (xanm))

depth;, (xa) = liminf
n—oo n

- 1 . f].Og(z_K(XAH:TL])/Z_Kt(XA[]:n]))

= lmin

n
. K'xapm) — Kxapm)
= liminf
n—oo

n
. depth*(xa[m)
= hmlnf—
n—oo

1

22k+1



Chapter 4

Low depth witnesses of SAT

The content of this chapter is based on the following publication:

[AFPS07] L. Antunes, L. Fortnow, A. Pinto and A. Souto, Low depth witnesses are easy
to find, in Proceedings of 22nd Annual of IEEE Conference on Computational
Complexity 2007, pages:46-51, San Diego, United States of America;*

We show unconditionally how to probabilistically find satisfying assignments for
formulas that have at least one assignment of logarithmic depth. The converse holds
under a standard hardness assumption though fails if BPP = FewP = EXP. We
also prove that assuming the existence of good pseudorandom generators one can

not increase the depth of a string efficiently.

4.1 Motivation

We investigate a computational depth characterization of the set of formulas in SAT that
are solved by a probabilistic algorithm and continue the study of computational depth.
Let ¢ be a Boolean formula having a satisfying assignment w of computational
depth d. We show how to probabilistically find an assignment w’, not necessarily equal
to w, in time exponential in d such that ¢(w’) = True.
We show that under a standard hardness assumption the converse also holds, manely
that, if exponential time is not infinitely often in subexponencial space, then any formula

¢ for which we can find a satisfying assignment w in probabilistic time admits a satisfying

IThis paper has been recently accepted for publication in the Computational Complexity journal



56 4.2 Preliminaries

assignment of low computational depth. On the other hand, under the unlikely, but open
case, that BPP = FewP = EXP, one can find formulas that have a single solution of
high computational depth that can be found quickly using a probabilistic algorithm. The
class FewP is the set of problems accepted by a polynomial time nondeterministic Turing
machine which has at most a fixed polynomial number of accepting paths for each input.

We also look at the question of whether one can increase computational depth of
a string efficiently. We show that under the same hardness assumption, one can not
significantly increase the depth of a string in polynomial time. Once again, if BPP =
EXP we show examples where one can produce a string of high depth from a string of
very low depth. Finally, we explore the question as to whether a triangle inequality holds

for conditional depth.

4.2 Preliminaries

4.2.1 Pseudorandom generators

Pseudorandom generators are efficiently computable functions which stretch a seed into a
long string, so that, apart from not being random in the classical sense, testing this fact
requires an unrealistic amount of time, i.e., for a random input its output looks perfectly
random for a resource-bounded machine. The existence of pseudorandom generators has
many computational complexity implications. For example, Impagliazzo, Levin and Luby,
in [ILL89], proved that their existence is equivalent to the existence of one-way functions
and thus it implies a separation of P and NP.
In this work we need some pseudorandom generators based on hard functions.

The following lemma is implicit in the work of Nisan and Wigderson [NW94].

Lemma 4.2.1 (Nisan-Wigderson [NW94]). Suppose we have a set H of functions from
% to I™, a polynomial p and a parameter n satisfying log(m) < k < p(n) with the

following properties:

1. At least 3/4 of all possible functions mapping £* to ™ are in H;

2. For some a, there is a Zﬁ(n)—machine with oracle access to a function H which on

input 1" will accept exactly when H is in H.

Then there is a function H'(x,1) with x € £* and |r| polynomial in 1, such that each

output bit is computed in polynomial time (in n) and for at least 2/3 of the possible v,
A.(x) = H'(x, 1) is in H.



CHAPTER 4. LOW DEPTH WITNESSES OF SAT o7

Proof. View a function H as a binary string of length M = m2* and the 2™ _machine
as a constant depth circuit C of size 2"°"". Nisan and Wigderson [NW94] show how to
create a pseudorandom generator G, based on the parity function, that maps a seed of
size polynomial in n to M bits that fools C. Each output bit of the generator G can be

computed in time polynominal in n. H’ is easily constructed from G. OJ

One of the most important applications of pseudorandom generators is derandomiza-
tion. This procedure has as ultimate goal to prove that P = BPP but, that conclusion
was not yet proved.

Impagliazzo and Wigderson [IW96] strengthen the work of Nisan and Wigderson
to show how to achieve full derandomization based on strong hardness assumptions.
Klivans and van Melkebeek [KvMO02] generalize Impagliazzo-Wigderson by showing that

the results hold for relativized worlds in a strong way.

Lemma 4.2.2 (Impagliazzo-Wigderson, Klivans-van Melkebeek). For any oracle A, sup-
pose that there are languages in DTIME(2°M) that for some € > 0, can not be computed
by circuits of size 2°™ with access to an oracle for A. Then there is a kK and a pseudo-
random generator g : L¥16™ — ™ computable in time polynomial in n such that for all
relativizable circuits C of size n

Pr (C*g(s))=1)— Pr (C*r)=1)=0(1).

SEZk logn rexm

We need the following hardness hypothesis for many of the derandomization results

in this work.

Hypothesis 4.2.3. There is a language L in DTIME(2°M™) that for some € > 0, L can

not be computed on infinitely many inputs lengths by circuits of size 2™ with XY gates.

Miltersen [Mil01] shows that Hypothesis 4.2.3 follows from a uniform statement of
time versus space. He proved that if DTIME(2°M™) is not contained in DSPACE(2°™)
then DTIME(2°™) contains a language that does not have circuits of size 2°™ with £}
gates or even PSPACE gates.

Lemma 4.2.4 (Miltersen). If DTIME(2°™) is not contained in DSPACE(2°™) for
infinitely many input lengths then, for every language A in PSPACE, there is some ¢ > 0
such that DTIME(2°M™) contains a language that does not have circuits of size 25™ with

access to A for infinitely many input lengths.



58 4.3 Finding low-depth witnesses

4.3 Finding low-depth witnesses

We study the relationship between the depth of a solution for a Boolean formula and the
existence of a probabilistic algorithm to find a satisfying assignment for the formula. For
this section, we assume that n represents the number of variables in the Boolean formula

considered.

Theorem 4.3.1. Let ¢ be a constant and t some polynomial. There is a probabilistic
polynomial time algorithm such that, if ¢ is a Boolean formula over m wvariables with a
satisfying assignment w of depth, (w|d) < clogn, then on input ¢ the algorithm outputs

a satisfying assignment of ¢ with probability close to one.
Proof. Let m = K(w|). Since depth*(w|d) = Kt(w|Pp) — K(w|Pp) < clogn we can write
m’ =K'(w|p) <m+clogn (4.3.1)
Now consider the following set:
A = {zl$(z) = True and K'(z) < m'}

where we have used ¢(z) to denote the value of ¢ for the assignment z. The second
condition of the definition of A says that if z € A, there is a program p such that [p| < m/’
and p generates z in time t. By construction, given ¢ and m’, A is a computable set
and w € A. From the fact that w € A, we get m = K(w|d) < K(w|p, m’) + K(m') <
log|A| + O(logn). Using Inequality 4.3.1 we can write, for some constant ¢’ depending

on t and on c:

2m 2m
> - .

Al >
Al =z c'mn ~ poly(n)

where poly(n) = ¢n¢’. The following probabilistic algorithm M produces a satisfiable
assignment for ¢:
Input: Formula ¢;

Output: z an assignment for ¢;

1. Guess m’' < n+ clogn;
2. Generate randomly a program p of length at most m’;

3. Run the universal Turing machine U with program p and the formula ¢

for t steps and let z be the output;



CHAPTER 4. LOW DEPTH WITNESSES OF SAT 59

4. If z is a satisfiable assignment accept, otherwise reject.

The probability of this algorithm generating an assignment for ¢ is at least:

n+clogn =~ 2m = 2m’ - poly(n)’

1 " |A] S 2™ /poly(n) 1

If we run the algorithm a polynomial number of times, with high probability, one of those

runs will produce a satisfying assignment of ¢. m

Consider now the converse problem. Given a probabilistic algorithm which finds valid
assignment for some Boolean formula ¢ in time t, can we say that the Boolean formula
has a witness w with low computational, i.e., satisfying depth*(w|¢p) < O(logn), where
n is the number of variables occurring in ¢?

The answer to this problem depends on the assumptions we make. The answer is
false if we assume that BPP = FewP = EXP and is true if we assume that good

pseudorandom generators exist.

Theorem 4.3.2. [fBPP = FewP = EXP then we can find a witness for every satisfiable
formula in probabilistic polynomial time but for every polynomial q there are infinitely
many Boolean formulas & and some ¢ > 0 such that: depth?(w|d) > nE, for all satisfying

assignments w of ¢.

Proof. For any formula ¢ we can find a satisfying assignment in exponential time and
since EXP = BPP we can find a witness probabilistically quickly, i.e., in probabilistic
polynomial time.

Fix a complete language L for EXP and since L is in FewP, let M be an NP machine
accepting L with at most p(n) accepting paths on each input.

Let x be a string in L with [x|] = n. By Cook’s reduction of the NP-completeness of
SAT, we can compute a ¢ that has the same number of satisfying assignments as M(x)

has accepting computations. Let w be any witness of ¢. We have:

e K(w|d) = Ologn), since we can search for the satisfying assignments w of ¢ and

identify one of them by its index.

e Let g be any polynomial. If K¢(w|dp) < n° then we can compute whether x is in
L in deterministic time 2™ by trying all small programs and seeing if any of them

produce a witness.



60 4.4 Depth can not increase rapidly

By the time hierarchy theorem?, EXP is not contained in deterministic time 2“0“), SO
there must be infinitely many ¢ with K9(w|p) > n® for some & > 0. Thus, we get
depth%(w|d) > n® for any ¢ < 9. ]

We now prove that if good pseudorandom generators exist then the converse propo-
sition holds, i.e., under the assumption that exponential time is not infinitely often
in subexponential space (which is sufficient for the existence of good pseudorandom
generators that stretch a seed of length O(logn) to a string of length 2"), all the satisfying
assignments w of ¢ with n variables produced by a probabilistic algorithm in time t(n)
have depth*(w|¢p) < O(logn + log(t(n))).

Proposition 4.3.3. Let ¢ be a constant, t some polynomial and A a probabilistic al-
gorithm that on an input Boolean formula with n variables runs in time t(n). Under
Hypothesis 4.2.3, for any n and formula & over n wariables if the algorithm outputs a
satisfying assignment of & with probability at least 2/3 then there is a satisfying assignment
w of ¢ with depth,(w|d) < c(logn + log t).

Notice that the probabilistic algorithm may output different witnesses on different

random coin tosses used by the algorithm.

Proof. Since there is a probabilistic algorithm that finds a valid assignment w for ¢ in time
t(n), there is a random string T satisfying [r| < t(n) and such that depth(w|d, ) = O(1).
Now, given a seed of length O(log r+logt) we can derandomize the BPP algorithm using
the pseudorandom generator. So K'(w|¢p) < O(logr +logt) < O(logn + logt) and then
depth*(w|d) < O(logn + log t). ]

4.4 Depth can not increase rapidly

We show that if f is an honest polynomial time computable function then it can not
significantly increase the depth of its argument, i.e., deep objects are not possible to be
quickly produced from shallow ones. A function f is honest if the size of the output is
polynomially related with the size of the input.

We start showing that it holds for honest efficiently computable functions with few

mverses.

2This theorem formalizes the intuition that if we allow more time to a Turing machine of computation,
then it can decide more languages. It has been proved, as mentioned in the Preliminaries Chapter, by

Hartmanis and Stearns in [HS65].



CHAPTER 4. LOW DEPTH WITNESSES OF SAT 61

Proposition 4.4.1. Let f: X* — X* be a polynomial time computable function that is at
most m to 1. Ify = f(x) and x is shallow, then depth'(y) < logm + O(1).

Proof. Since we assume that f is a fixed polynomial time function and it is independent
from the strings involved, it is clear that f has a constant time bounded Kolmogorov
complexity.

Since f(x) =y, we can write:
K'(y) < K'(f) + K'(xIf) < O(1) + K(x)
Now, consider the following set:
Ay =w:flw) =y)

Since f is computable and is at most m to 1, Ay is recursive (given y) and has at most
m elements. Thus:
K(x) <K(y) + log|Ay| = K(y) +logm

Then using the last two inequalities we get:
K'(y) < K(x)+0(1) < K(y) +logm + O(1) & depth'(y) < logm + O(1)
O

Theorem 4.4.2. Let f: X" — £* be a computable 1 — 1 function that requires superpoly-
nomaial time, but has the property that with an advice string s becomes polynomial. Then

the advice string must have length at least equal to the difference in depth between x and
y = fx).

Proof. Let t be a fixed polynomial such that f with the advice s is computable in time
at most t. We have that K'(y) < K'(x) + K'(ylx,s) + |s| = K'(x) + O(1) + |s|. Then,
K'(y) < depth®(x) + K(x) + [s| + O(1) and since K(x) = K(y), we get

depth'(y) < depth'(x) + |s| + O(1)
]

In the next result we show that, relative to a random oracle for every honest efficiently
computable f, the depth of f(x) can not be much greater than the depth of x. Later on
we will replace the random oracle by a pseudorandom generator.

We say that a statement holds relative to a random oracle if, when we choose an oracle
R uniformly at random, the statement is true with probability one, when all computations

have access to the oracle R.



62 4.4 Depth can not increase rapidly

Lemma 4.4.3. For most oracles R the following holds: If f : X* — X* is an honest
polynomial time computable function relative to R then, for any polynomial t there is a
polynomial t' so that depth® (f(x)|f, R) < depth'(x|f,R) + O(log|x|) for all x € Z*.

Proof. Fix x, let y = f(x) and define the set Ay as the set of strings z’ € TKUIOR) for
which there is a prefix z of z’ such that U"®(z) = x/ in time t and f(x') =y.

By construction, x can be computed from a string in Ay (in fact, from x* the first
string in lexicographic order that, with oracle access to f and R, produces x in time t).
Since f is computable in polynomial time in R, Ay can be computed (given K'(x|f,R) and
y) by enumerating all programs of size up to K'(x|f,R), if a program z outputs a string

x’ in time t with f(x’) =y then we output all z’ € ZK'™IFR) that extend z. So,
K(xly,R) < K(xa,ly, f,R) +1og|Ay| + O(logn) = log|Ay| 4 O(logn)

which implies |Ay| > 2KMuiRIZOlegn) By the relativized symmetry of information we

have:

K(xly, f,R) = K(ylx, f, R) + K(x|f,R) — K(y|f,R) &+ O(logn).

As y = f(x) and f is known, we have that K(y|x, f,R) = O(1) and so
K(xly, f,R) = K'(x|f, R) — depth®(x|f, R) — K(y|f,R) = O(logn)

implying that
2K (XIf,R)

K(xly,f,R)—O(logn) __
|Ay| > 2 - 2depth® (x|f,R)+K(y|f,R)+clogn

for some constant c.
If we randomly pick a program of size K*(x|f, R), the probability that it is in A is at

least
1

2depth® (x/f,R)+K(y|f,R)+clogn :

Since f is honest there is some  such that |z| < |[y|9 for all z such that f(z) =y = f(x).
Let m = [yl + 1. Note that since f is polynomial time computable and honest, m is
bounded by a polynomial in |x].

Let ¢’ be a constant to be specified later. Define a function g : £* — X' where
k = depth*(x|f,R) + K(yl|f,R) + c’logn and { = K*(x|f,R), by letting the j** bit of the
output of g(w) be R((1™,w,j)). When R is chosen at random the output of g(y) is

completely independent from the part of R used to define A, since A, depends on strings



CHAPTER 4. LOW DEPTH WITNESSES OF SAT 63

in R only of length less than m. Thus,

Pr[3w:gw) € Ayl =1—-Prlvw:g(w) ¢ A]

2deptht (x|f,R)+K(y|f,R)+c’ logn

1
>1— (1 — - )
2depth®(xIf,R)+K(ylf,R)+clogn

72((:’7(:) logn

=1—e
—1 e
Z ] _Z_nclfc
Then,
Privyaw: g(w) € Ayl =1—Pr[Fyvwy: g(wy) € A
> 1y

=1— zfnc/*cjtn

For the appropriate choice of ¢’ we can find a wy for every y, with high probability, such
that g(wy) is in Ay, i.e., we can find a wy for which there is a prefix z of g(wy) satisfying

f(U(z)) =vy. So, for some polynomial t" we have:
K" (ylf,R) < [wy| + O(logn) = depth(x|f,R) + K(ylf,R) + O(logn).
and thus conclude that
depth® (ylf, R) < deptht(x|f,R) + O(logn).

By the Kolmogorov zero-one law [Kol50] this high probability result implies these state-

ments must hold over the choice of R with probability one. O

We now improve the previous result to more general terms under a standard hardness
assumption, namely exponential time is not infinitely often in subexponential space. The
idea behind the proof is to compose the pseudorandom generator in Lemma 4.2.2 with

the pseudorandom generator in Lemma 4.2.1, as done by Antunes and Fortnow [AF09b].

Theorem 4.4.4. Let f : £* — X* be an honest polynomial time computable function
and x € I". Then, under Hypothesis 4.2.3, for any polynomial t(n) larger than the
computation time of T there is a polynomial t'(n) so that depth® (y[f) < depth'(x|f) +
O(logn), where y = f(x).

Proof. Since depth'(.) decreases as t increases, we assume without loss of generality that
t is much larger than the running time of f.

Notice that this result is true without any assumptions if K(f(x)) > K(x) — O(logn)
as, depth(f(x)|f) < K'(f(x)|f) — K(f(x)If) < K'(f(x)If) — K(xIf) + O(logn) < K'(x|f) —



64 4.4 Depth can not increase rapidly

K(x|f) + O(logn) = depth'(x|f) + O(logm). So we will focus on the case K(f(x)) <
K(x) — clogn for all constant c.

Continuing the proof of Lemma 4.4.3, consider the set H of functions h : &% — ™
where k = depth, (x|f) + K(y[f) + ¢’logn and m = K'(x|f) such that for all y there is a
wy and a prefix z of h(wy) satisfying f(U(z)) =y. Notice

1. By the same argument as in the proof of Lemma 4.4.3, a randomly chosen h will

fall into ‘H with probability very close to one.

2. By definition of H, we can determine whether h sits in H in ﬂg(n) C Zg(n) with

oracle access to h.

With the above conditions and the fact that logm < k < 3n for sufficiently large ¢’, the
set H fulfills the requirements of Lemma 4.2.1 so we can use a polynomially-long random
seed to describe an h in H. Notice that in the worst case we will need to describe a
function that it characterized by a string of length poly(n) - 2™ that requires a seed of
length poly(log(poly(n) - 2")) which is polynomial in n. Given a good pseudorandom
generator (Lemma 4.2.2) we can use an O(logn) bit random string to generate the seed
for the first generator. Notice that to achieve poly(n) bits using the pseudorandom
generator of Lemma 4.2.2 we need a seed of O(log(poly(n))) = O(logn). We call the
result of the composition of the two pseudorandom generators G.

Composing this procedure with the procedure of the previous theorem, we have a way

to describe y by the following program for a fixed y:

Input: a seed s and a witness wy

Output: y

1. Compute s’ = G(s).

2. Consider s’ as a function h that maps a sequence of length depth'(x) +
K(y)+O(logn) into a program of size at most K*(x), as per Lemma 4.4.3.

3. Compute p = h(wy), giving a program in the set A,.

4. Run the universal Turing Machine with the appropriated prefix of the

program p and call the output x'.
5. Compute f(x’). (By the construction in the Lemma 4.4.3, this is y.)

6. Output y.



CHAPTER 4. LOW DEPTH WITNESSES OF SAT 65

Since all constructions are independent of any given instance, we have a description for y
requiring only the description of s, wy and an O(logn) term to account for the information
needed to consider the prefix, that can be computed in time t’(n), a polynomial depending
on the running time of the function h, depending on t, and the running time of p, again

depending on t. Therefore,

KY(ylf) < [s| + wy| + O(logn)

= O(logn) + depth'(x|f) + K(y|f)
So, depth! (y|f) < deptht(x|f) + O(logn). O
However if BPP = EXP the previous result does not hold.

Theorem 4.4.5. Assume BPP = EXP. For all polynomial t, there is a polynomial time
computable honest function f such that, for all polynomials t’, there is a polynomial q such
that for every natural number n there are strings y and x with [yl = n and x| = q(n)

satisfying:
1. y = f(x),
2. depth'(y) > n — O(logn), and
3. depth'' (x) < O(logn).

Proof. Fix n. Let y be the lexicographically least string such that K'(y) > n. We can
compute y so K(y) < O(logn) and depth*(y) > n — O(logn).

We can find y in time 2°™ given n and t(n) so by the hypothesis BPP = EXP there
is a probabilistic algorithm A that will compute y given 1". Let t’ be the running time
of A.

Let m = q(n) > n be the number of random bits used by A. Let f(r) simulate A
using 1 as the random coins. Let x be Kolmogorov random of length m.

We have f(x) =y since the set of strings that cause f to give the wrong answer will
be small and all such strings will have low Kolmogorov complexity.

Finally we have depth' (x) < O(logn) because x is random. ]

4.5 Properties of conditional depth

Bennett [Ben88] noticed that the impossibility of rapid growth of depth can not be

extended to a transitive law relative to shallowness, i.e., if x is shallow relative to y



66 4.5 Properties of conditional depth

and y is shallow relative to z, this does not necessarily imply that x is shallow relative
to z. Bennett considered z to be a Kolmogorov random string of size n, y = 0" and
x =z ® d where d is some deep string.

We conjecture that the transitive law relative to shallowness does not hold. However,
assuming that pseudorandom generators exist, we show that depth satisfies an analog of
a triangular inequality, which informally states that the depth of y is bounded by the
depth of x and the depth of y given x. In fact we prove something slightly stronger
(Corollary 4.5.2).

Theorem 4.5.1. Under the Hypothesis 4.2.3, given a polynomial t(n) there is a polyno-

mial t'(n) such that for any x,y,z € £* and n = max(|x|, |yl, |z|)
depth® (y|z) < deptht(x|z) + depth®(y|x, z) + O(logn)
Proof. Define a = K'(x|z), b = K'(yx, z), depth'(x|z) = r and depth'(y|x,z) = s. Then,
K(x|z) = a—r1 and K(y|x,z) =b—s.

Consider the set A consisting of all w such that there are a [u| < a and [v| < b with
Ut (u,z) =w and Ut(v,w,z) =y, i.e,

A = {wlK'(wlz) < a AK'(ylw,z) < b}.
By construction, x is an element of A and A is computable given y and z. Then,

K(xly,z) < log|Al+c, i.e., A has at least 2X09:2)=¢ elements. By symmetry of information,
we have that:
K(xly,z) > Klylx,z) + K(x|z) — K(yl|z) — O(logn)
b—s+a—r—K(ylz) — O(logn)

Thus,
2a+b

|A| 2 2r+s+K(y|z)+c’logn

for some constant ¢’. The probability of a random program p of size smaller than a +

b 4 O(logn) to generate y is at least Using a similar construction of

2r+s+K(ylz)+c’logn :
Theorem 4.4.4 we can find a seed of size r+s+K(y|z)+O(logn) that generates a program

producing y within polynomial time t’. So,
K"(ylz) < K(ylz) + 1+ s+ O(logn)

and then
depth® (ylz) < 1+ s+ O(logn).



CHAPTER 4. LOW DEPTH WITNESSES OF SAT 67

Corollary 4.5.2. Under the Hypothesis 4.2.3, given a polynomial t(n) there is a polyno-

mial t'(n) such that for any x,y € Z* and n = max(|x|, [y|)
depth® (y) < depth'(x) 4 deptht(ylx) + O(logn).

However if we replace the existence of pseudorandom generators assumption by the
assumption BPP = EXP the previous results do not hold. In fact, in the next result we
show a pair of strings x and y that under the assumption BPP = EXP, satisfy depth'(x)
and depth'(y[x) are small and depth'(y) is big.

Theorem 4.5.3. If BPP = EXP, then there are x,y € {0,1}* such that depth*(x) <
O(1) and depth'(ylx) < O(1) but depth'(y) > n — O(1), with n = max(|x|,ly|) and t a

polynomial in n.

Proof. Let x be a Kolmogorov random string, i.e., such that K(x) > |x|, and y the
lexicographically least string satisfying K'(y) > [y|. Since all random strings are shallow,
depth'(x) < O(1).

The string y can be computed by the following procedure: enumerate all binary strings
in lexicographic order and for each string w, compute K'(w). If this number is bigger
lyl, then output w and stop. Thus, K(y) = O(1). On the other hand, by construction,
K'(y) > [y, so depth'(y) > [yl —O(1).

To finish we prove that depth*(ylx) is a constant. Since K(y) < O(1), then K(ylx) <
O(1). The program for y given above enumerates at most 2V strings before outputting
a result, and for each of them it executes up to a polynomial number of steps. Since
by assumption BPP = EXP, there is a probabilistic algorithm that takes a certain
random input, runs in polynomial time and outputs y. We let this random input be x.
Taking the size of the probabilistic algorithm to be a constant, K'(ylx) = O(1) and thus
depth®(ylx) = O(1). O



68

4.5 Properties of conditional depth




Chapter 5
Complexity cores

The contents of this chapter is based on the following publication:

[Soul0] A. Souto, Kolmogorov compexity cores, in Proceeding of Computability in
FEurope, volume 1658 of Lecture Notes in Computer Science, pages:376-385,
Springer-Verlag Berlin Heidelberg, 2010, Azores, Portugal;

We study the relationship between complexity cores of a language and the descrip-
tional complexity of the characteristic sequence of the language based on Kolmogorov

complexity.

Intuitively, a complexity core is a set of hard instances of a language, i.e. instances

which can not be decided in polynomial time.

In the last chapter we showed that we can efficiently find satisfying assignments for
formulas that have at least one assignment of logarithmic depth. This result made
us congjecture that formulas having only high depth witnesses form a complexity core,
i.e., they are the hardest formulas to decide. However this turns out not to be the

case.

Nevertheless, we prove that a recursive set A has a complexity core (respectively,
proper complexity core) if for all constants ¢ (respectively, all polynomial p(n)),
the computational depth of the characteristic sequence of A up to length n is larger
than ¢ (respectively larger than p(n)) infinitely often. We also explore the connection
with average case complexity. In particular, we show that if a language has a
complexity core of exponential density, and the strings are distributed according to
a time bounded version of the universal distribution, then it can not be accepted in

average polynomial time.



70 5.1 Motivation

5.1 Motivation

A polynomial complexity core of a language A is the set of strings for which any Turing
machine deciding A requires time larger than a polynomial for almost all strings. Lynch
[Lyn75] proved that any recursive set that is not in P admits an infinite polynomial
complexity core. Later, Orponen and Schoning [OS84] proved that, if each algorithm
for a language has a non-sparse set of “hard” inputs, then, in fact, the language has a
non-sparse proper polynomial complexity core.

In this chapter we study a connection between the computational depth of the charac-
teristic sequences of languages and the existence of (proper) complexity cores. We address
this issue by studying the computational depth of sets in the computational classes P,
EXP, FULL-P/log and P/poly. First, we give a characterization of the recursive sets
not in P, thus admitting a polynomial complexity core, based on computational depth.
Then we prove that if a recursive set is not in P/poly the depth of its characteristic
sequence is larger than any polynomial almost everywhere. We also establish a similar
relationship between sets of logarithmic depth and the class of FULL-P /log .

The complexity of a problem is usually measured in terms of the worst case behavior of
algorithms. Many algorithms with a bad worst case performance have a good performance
in practice, since instances requiring a large running time rarely occur. Thus, in some
cases, the average case complexity of a problem is a more significant measure than its worst
case complexity. In order to address this problem, Levin [Lev86] introduced the theory
of average case complexity, giving a formal definition of Average Polynomial Time for a
language L and a distribution p. Some languages may remain hard in the worst case but
can be solved efficiently in average polynomial time for all reasonable distributions. We
prove that any Turing machine deciding a proper complexity core of exponential density
can not recognize the language in average polynomial time when a time bounded version

of the universal distribution is considered.

5.2 Preliminaries
5.2.1 Complexity Cores

The concept of polynomial complexity core was introduced by Lynch [Lyn75] and was

developed to capture the intuition of what should be the set of hard instances of a set.

Definition 5.2.1 (Complexity Core). Let M be a Turing machine and t a time con-



CHAPTER 5. COMPLEXITY CORES 71

structible function. We denote the set of t-hard inputs for M by
H(M,t) ={x € Z* : timem(x) > t(|x|)}.

Let F be a class of functions. A set C C X* is a F complexity core for a language
L C X*, if given any Turing machine M accepting L and any function p in F, C is almost
everywhere contained in H(M,p). A complezity core C for L is proper if C C L.

In particular, if F = P, the set of hard instances is called polynomial complexity core.

Rather than having a set of difficult instances for each machine, this notion captures
the idea of hard instances of a language in the sense that it is independent from the choice
of the Turing machine deciding the language.

Lynch proved that given a recursive language L not in P there is an infinite polynomial

complexity core C for L.

Theorem 5.2.2 (Lynch). If A is a recursive set not in P, then there is an infinite

recursive set C that is a polynomial complexity core for A.

The idea of the proof is to recursively eliminate strings that are decided by some Turing
machine M; in some polynomial time py, where py is a collection of increasing polynomials
and where 1 < k and we cycle over the lexicographic order strings, the machines and the

polynomials.

Proof. Let {Mi}ien be a standard enumeration Turing machines and let timey, be the
running times of the machine M;. Consider the increasing family of polynomials {py }xen,
where pi(n) = nk + k.

The construction of C is the following:

Construction 5.2.3.

Stage 0:
o Y = ¢, the empty string;

Stage k > 1:

o Foralli, 1 <1i <k that have not be eliminated so far test if timep, (y) <
pr(lyl) and M(y) # xaly). Eliminate all i that validate both conditions.

o For alli, T <1i<k not eliminated test if timewm, (y) > px(lyl).



72 5.2 Preliminaries

— If it is true then put y in C and set y to be the next string in the

lexicographic order and proceed to next stage.

— Otherwise sety to be the next string in the lexicographic order and

repeat this stage.

C is infinite since all stages terminate. If this was not the case, then it would exist a
stage k that is reached but does not terminate. Then for sufficiently long strings y, there
must exist 1 < k such that timem, (y) < px(lyl) and Mi(y) = xa(y). Thus, if we dovetail
the computations of all machines M;, where 1 <1 < mn, for which 1 is never canceled, we
obtain an algorithm for xa on sufficiently long strings y, which runs in polynomial time.

A patch for the shorter strings shows A € P, contrary to our assumption. O]

In order to study the frequency of intractable problems Meyer and Peterson [MP79],
defined a class of problems that are almost everywhere polynomial, i.e., the class of
decision problems for which only a sparse set of the inputs are allowed to run in non-

polynomial time.

Definition 5.2.4. Let A be a set. Consider the function densy : N — N defined by
densa(n) = #{x € A :|x| < n}. The set A is called sparse if for some polynomial p,
densa(n) < p(n). A set is co-sparse if its complement is sparse. We say that A has

exponential density if, for some € > 0 and infinitely many n, densa(n) > 2",

Definition 5.2.5. (APT) The class of almost polynomial time languages is:
APT ={L(M) : H(M,p) is sparse for some polynomial p}.

Later, Orponen and Schoning [OS84] proved an interesting connection of this class
with polynomial complexity cores. They proved that APT identifies exactly the set of

recursive languages that have a proper non-sparse polynomial complexity core. Formally,

Theorem 5.2.6. A recursive set A has a non-sparse polynomial proper complexity core
if and only if A ¢ APT.

The idea is similar to the one used by Lynch for proving Theorem 5.2.2.

5.2.2 Average Case Complexity

The analysis of the efficiency of an algorithm is typically based on a worst case scenario

of the running time. This analysis is important since this information might be needed to



CHAPTER 5. COMPLEXITY CORES 73

ensure that the algorithm would always finish on a specific time. However many common
algorithms are bad in terms of worst case complexity, they perform well in practice. In
middle eighties, Levin [Lev86], proposed a different measure of complexity based on the

average of the performance of the algorithm over all inputs.

Definition 5.2.7 (Average case complexity). Let p be a probability distribution. A

function f: X* — N is polynomial on p-average if there is an € > 0 such that

— [x|

In [Sch90] the author, using Markov’s inequality and classical algebraic manipulations,
proved that a function f is polynomial on p-average in Levin’s sense if and only if there
is a polynomial p : N x N — Ry, such that for all m > 0, Pr,[f(x) > p(x|, m)] < o
Observe that the definition takes into account that the average case measure depends not
only on the given instance x but also on the probability w(x) of the occurrence of x. If the
instance x does not appear, i. e. u(x) = 0, it has no effect on the average case analysis.
On the other hand, if for some string x, n(x) > 0 then f(x) < p(|x|, [1/w(x)]).

A result that will be used later was proved in [AFV03] and gives a connection between
average running time of a Turing machine and computational depth of each individual

instance for that Turing machine:

Theorem 5.2.8 (Antunes et al. [AFVO03]). Let T and t be two constructible time bounds.

The following conditions are equivalent:

1. T(X) e zo(deptht(x)ﬂog IxI)

2. T(-) is polynomial on m'-average.

Proof. (1 — 2) Let T(x) e 20Wdepth’()tlog)  Note that 2¢8™ = n¢ is polynomial on
m'-average. Then, by the closure property of the polynomial on m'-average functions,

all we have to do is to prove that 24P (X ig polynomial on mt-average.

zdeptht (x) 2Kt (x)—K(x) 2—K(x)

2T ) = L T ) =) T e

x x

The last inequality follows from Kraft’s inequality (see Theorem 2.3.10).
(2 — 1) Let T(x) be a time constructible function which is polynomial on m'-average.

Then for some ¢ > 0 we have




74 5.2 Preliminaries

Define Sijn ={x € " : 2 < T(x) < 2""" AK'(x) = j}. Let 2" be the approximate size
of Si;n. Then the Kolmogorov complexity of elements in Si;, is v, up to an additive
O(logn) factor.

Consider the above sum restricted to elements in Sij,. We have

Yy T t(x) < 1

]

XES@LH

T(x) > 2", m*(x) = 27 and there are at least 2" elements in the above sum. Hence the
2" x 2t x 27

above sum is lower-bounded by the expression T for some constant c¢. This
X
gives us
T(x)¢ 2" x 2t x 27 o
1 mt(x) Z — 21£+r717c logn
2 ] Ix|¢

XESLL“
Then ie +1—j—clogn < 0 < 1 and then there is a constant d, such that for all x € S;j,
ie < depth'(x) 4 dlog|x|. Then we conclude that Ty (x) € 20(depth®(x)+log ) ]

The above Theorem has an interesting connection to a result due to Li and Vitanyi
[LV92] relating the average case complexity and the worst-case complexity. They proved
that when the inputs to any algorithm are distributed accordingly to universal distribu-
tion, the algorithm’s average case complexity is of the same order of magnitude as its
worst case complexity. Rephrasing this result in the setting of average polynomial time

we can make the following statement.

Theorem 5.2.9 (Li-Vitanyi [LV92]). Let T be some constructible time bound. The

following conditions are equivalent:
1. T(x) is bounded by a polynomial in |x|.

2. T(-) is polynomial on m-average.

5.2.3 The class FULL-P/log and the class P/poly

Karp and Lipton [KL80] initiated the study of advice functions as a tool to provide a
connection between uniform models of computation and non-uniform ones. The idea is
to give the program for each string length access to a string that “helps” to compute
some language and thus incorporating the non-uniformity in the “advice”. The two most
natural functions to be considered for the length of the advice words are polynomials and
logarithms. The class P/poly has been widely studied in the literature (see, for example
[Adl78, BENW93, KL82, Ko82]).



CHAPTER 5. COMPLEXITY CORES 75

In this dissertation we also use a class that derives from P/log. It is known that
the class P/log is not closed under polynomial time Turing reductions (see, for example,
[BH98, BHM92, Ko87]). To have a more robust complexity class, Ko [Ko87] introduced
the class FULL-P /log . The robustness derives from the fact that the advice not only
helps to decide strings of a fixed length, but it is also required that it decides all strings
of length smaller or equal to a fixed length. Formally,

Definition 5.2.10. A set A is in the class FULL-P /log if:
(Vn)(3w :w| <clogn)(¥x:|x| <n):x e A& (x,w) € B
where B € P and ¢ is a constant.

In the literature it is possible to find several results relating this complexity class with
Kllog, poly]! and with Tally sets (see [BHM92, BH9S]).
We use this complexity class to determine the class of recursive language that are

deep.

5.3 Kolmogorov complexity and complexity cores

We show that if the computational depth of the characteristic sequence of a set is larger
than a constant almost everywhere then it has a polynomial complexity core, and if the
computational depth is larger than a polynomial almost everywhere then it has a proper
polynomial complexity core. All the results could be stated using the time bounded
Kolmogorov complexity instead of computational depth. However as we would like to
remove the condition of the sets being recursive and establish a bridge between the
previous chapter and complexity cores, we prefer to use computational depth.

We assume that all time bounds t considered in this section are polynomial on the
logarithm of the size of the string. Notice that by using this convention we are considering

sublinear time bounds, i.e., when analyzing xa,,,, with N = 21 — 1 we are only using

]
time polynomial in n.

Following the work of Juedes and Lutz [J1.92, JLI93] we begin by proving that a set A
with polynomial complexity cores with low density can not be complex with respect to

time bounded Kolmogorov complexity.

K(log, poly] is the class of languages A for which there is a constant ¢ and a polynomial p such that
KP(x) < cloglx| for all x € A



76 5.3 Kolmogorov complexity and complexity cores

Proposition 5.3.1. Let A be a set, ¢ > 0 a constant and g : N — [0, 00[ a function. If
every polynomial complexity core C of A satisfies densc(n) < 2™ — g(n) infinitely often
then Kf(A=) < 2™ —n~¢g(n) + O(logn) infinitely often, where f(n) = 2" - poly(n) for

some polynomial poly.

Proof. Let p be a fixed polynomial and set k = [1/¢]. Consider My, My, ..., a standard
enumeration of the deterministic Turing machines that decide A. For each m define the
following sets:

Hp = {x : timem,, (x) < p(x])}
By = Hp — 25
B= UBm
C=3*—-B

It is easy to see that Hy N C = Hpm — B C Hyy — By © 5™

Thus, H,, N C is finite and so C is a polynomial complexity core. Define the set
S={n:#C™ < 2" —g(n)}. It follows that S = {n : #B=™ > g(n)}. Hence, for each
nes,

g(n) <#B=4# (U Bm)
<) #Bl =) #(Bn)"

mk<n

< Y #B)TS ) #(H)T

O0<m<ne O<m<ne

So, there is m such that 0 < m < n® and #(H,,)™ > n¢g(n). Let (m) be a binary
representation of m and wy, wy, ..., be the lexicographic ordering of X*. Consider M as
the Turing machine implementing the following algorithm:

Algorithm 5.3.2. Let y be a finite string.

Fori=0 to 2™ do:

1. Simulate My, (w;) for at most p(n) steps.
2. If Min(wy) =1 or Mu(wy) =0 then set z =0 or z =1 respectively.

3. Otherwise set zi =y and Yy = Yyys....



CHAPTER 5. COMPLEXITY CORES 7

Output z.

It is easy to check that for all x € X, timep(x) < 2™ x poly(n) for some polynomial
poly. So if, for each n € N, we choose m € N and y € X* such that 0 < m < nf,
#H." > ntg(n) and y is the successive 2™ — #H. ™ bits consisting of xa(wi) with
w; € I™ — H,,, the output of M is exactly A=™. Setting f(n) = 2" - poly(n), by the

assumptions of the Theorem we have, infinitely often, that:

K'(A="n) < [(B(m),y)l+ O(1)
<yl +2p(m) + O(1)
< 2" — #HM + Ologn)
<2"—n"fg(n) + O(logn)

]

Lemma 5.3.3. For every <P -hard language H for E, there are sets B,D € DTIME(2")
such that D has exponential density and D N H = B.

Proof. Notice that the construction due to Meyer [Mey77] and reported in [BH77] used
in [JL92] (Theorem 12) also works for time bounds instead of space bounds. In fact there
is a set A € DTIME(2") such that, any <P reduction is incompressible i.e., for every
polynomial reduction f, {x : (Fy < x)f(x) = f(y)} is finite.

Let H be <P -hard for E and let f be a <P -reduction from A to H. Let B={y: 3x €
A,y =f(x) and ly| > x|} and D ={y : Ix € X*,y = f(x) and |y| > |x[}. Notice that since
f is polynomial time computable and A € E, then B,D € E.

To prove that D is dense, let p be some polynomial such that [f(x)| < p(|x|) and
let ¢ > 0 be a fixed real number such that p(n%) < n almost everywhere. Define

W = {x: [f(x)| < x|} and for sufficiently large n define m = [n?¢|. Thus:

f(ZS™) —Zsm C f(£sm) — f(w=m)
C{f(x):x € Z=™ and [f(x)| > x|}
c D<Spim)
c D=®
Thus
DM > [f(Z=™)] — |2
> [Z5M] = [{x](3y < x)f(x) = fy)} —[==™]
= 2™ = [{x|(Fy <x)f(x) = f(yl
Since the set {x|(Fy < x)f(x) = f(y)} is finite, for sufficiently large n, we have: |D="| >

2™ so D is exponentially dense.



78 5.3 Kolmogorov complexity and complexity cores

Notice that B = {y : 3x € A,y = f(x)and y| > x|} = {y : Ix € f'(H),y =
f(x) and [y| > x|} =HN{y:3Ix € *,y = f(x) and ly| > [x|} =HND. O

Lemma 5.3.4. Any DTIME(2")-core of every <P hard language H for E has a expo-

nential dense complement.

Proof. Let C denote the DTIME(2")-core of H and consider B and D as in the previous
lemma. Since D € DTIME(2"), by definition of complexity core, CND is finite. Since D
is exponentially dense it follows that D—C is exponentially dense and thus the complement

of C is exponentially dense. []

Theorem 5.3.5. For every <P hard language H for E, there is a ¢ > 0 such that
K (H™) < 2" —n~22" + O(logn), where f(n) = 2™ -poly(n) for some polynomial poly.

Proof. If H is <P hard, by last Lemma, there is ¢ > 0 such that every DTIME(2")-
core C of H satisfies densc(n) < 2™ —2™. Thus by Proposition 5.3.1 it follows, for
f(n) = 2™-poly(n) for some polynomial poly, that K'(H™) < 2"—n—2"4+O(logn). O

Theorem 5.3.6. Let t be a fized polylogarithmic function. A recursive set A is not in P if
and only if for all constant ¢, for infinitely manyn and N = 2""1—1, depth*(xa,,, In) > c.

Proof. Assume that there is a polynomial t and a constant ¢ > 0 such that, for all n,
deptht(xA“:N]In) < c¢. Since we have assumed that A is recursive, this means that for all
n, K(xa,./m) <c. So, if deptht(xA“:N]ln) < ¢ this implies Kt(XAH:N]In) < c. Let I be the
set of all pairs (p, 1) such that [p|+ |r| < c and (p, 1) is the least pair in the lexicographic

order corresponding to K*(xa,,,[m) for some n. Notice that:
1. #1 < 2%

2. If Ny < Ny and (py,11) and (pz, 12) correspond to Kt(XA[]:N1]|n]) and Kt(XAU;NZ]hTZ)
then, by definition of K, |p;| + |r1| < [p2| + [r2]. Also, for all x € £, if U™ (py, x)
stops in time t(N) then U™ (py,x) = U (p1,x) = Xa(X).

Consider now the following program p: on input x of length n, p runs each pair (p;,1i)
in lexicographic order for t steps and outputs the same answer which the largest program
in the lexicographic order outputted. From the construction, the running time of p is at
most 2°t(N) + O(1), which is polynomial on n. The correctness of the result follows from
item 2 above. Thus A € P.

To prove the converse, assume that A € P, so there is an algorithm g that, given
x, produces xa(x) in polynomial time on the length of x. Since the algorithm does not

depend on x, its length is a constant and then deptht(xA“:N]m) <c. ]



CHAPTER 5. COMPLEXITY CORES 79

Notice that, by Lynch’s characterization of complexity cores (Theorem 5.2.2) the previ-
ous result establishes a connection between recursive sets having a polynomial complexity

core and its computational depth.

Corollary 5.3.7. Let t be a fized polylogarithmic function. A recursive set A has a polyno-
maal complexity core if for all constant ¢ and, for infinitely many n, deptht(xAH:N]ln) > c,
where N =21 — 1,

Proposition 5.3.8. Let t be a fized polylogarithmic function. The set A is recursive
not belonging to P/poly if and only if for all polynomial p and for infinitely many n,
depth'(xa ., M) > p(n), where N =21 —1.

Proof. Assume, by contradiction, that there is a polynomial q such that there exists
an n for which deptht(XAH:N]m) < g(n) onwards. Since A is recursive this means that
K*(XayaIM) < q(n). Thus, there is p and r such that [p|+|r| < q(n) such that U"(p,x) =
Xa(x) in polynomial time for all x € Z=". So, giving p and r as advice we can decide
A=". so A belongs to P/poly.

To prove the converse, assume that A is a recursive set belonging to P/poly. Then
there is a polynomial q such that, given n, there are p and r such that [p|+r| < q(n) and
U"(p,x) = xa(x) in polynomial time for all x € Z=". Thus, for all n, Kt(XA“:NJTl) < q(n)
and then depth®(xa M) < q(n). O

In [Sch86], the author proved that APT C P/poly. Since all recursive sets not in
APT have a proper complexity core (see Theorem 5.2.6), as a consequence of the last

result, we conclude that:

Corollary 5.3.9. Let t be a fixed polylogarithmic function. A recursive set A has a proper
complezity core if for all polynomial p and for infinitely many n, deptht(xA“:N]m) > p(n)
where N =21 — 1,

An similar result to the last two Theorems establishes that all recursive sets that are
not in FULL-P /log have logarithmic depth. It is unknown an inclusion relationship
between APT and FULL-P /log . Notice that if APT C FULL-P /log then this result

would give a sharper characterization of sets admitting a proper complexity core.

Proposition 5.3.10. Let t be a fixed polylogarithmic function. A set A is a recursive set
not in FULL-P /log if and only if there is a constant ¢ such that, for infinitely many
n, depth'(xa, . In) > clogn, where N =21 —1.



80 5.3 Kolmogorov complexity and complexity cores

The proof of this result is similar to the proof of Proposition 5.3.8.

We now characterize complexity cores based on computational depth:

Definition 5.3.11 (Kolmogorov complexity core). We say that a set A has a Kolmogorov
complexity core for the uniform class C if for all ¢ € N and for all f € C and for infinitely
many M,

k
depth'os (! (XA M) > c.

In order to better understand the previous definition we apply it within the EXP

class.

Theorem 5.3.12. Let A be a recursive set. A has a complexity core relatively to the
class EXP if and only if for all constant c, for all sufficiently large function f € EXP
and infinitely many n, depth'®e () (XAqa M) > ¢, where N =21 — 1.

Proof. Assume that for some f € EXP, depthlogk(f) (XApagm) < O(1) for all n. Then,
since A is recursive this implies that Kf(XA“:N]m) < O(1). Thus, since there are a finite
number of possible programs for all n, we can construct one? deciding the problem the
membership in A for all x € £* in time f, i.e., there is an algorithm G such that G(x) =
Xa(x) and |G| < ¢, where ¢ is some constant. Thus A € EXP which implies that A has
not a complexity core with respect to the class EXP.

On the other hand, if A € EXP then there is an algorithm G such that G(x) = xa(x)
for all x € £* in an exponential number of steps. Since G does not depend on x, its length
is a constant. So, depthlogk(f) (XAqagM) < O(1), where N = pALLI— O

We already proved that if A is recursive and admits a Kolmogorov complexity core for
the polynomial time class then it satisfies the condition on Definition 5.2.1. In the next

result we show how to construct a complexity core.

Proposition 5.3.13. Let k > 0 be a fized integer. If A is a recursive set and for all
c € N and for all polynomial p and for almost all n € N, depth10gk (XApa M) > clog(n),

where N = 2™ — 1 then A has a polynomial complezity core.

Proof. We construct a polynomial complexity core inductively.
Let ngy be the first index such that depthlng (XA;agIM) > clog(n) for all n > my.
Since A is recursive, we know that K(xa,..,m) = O(1), so depthlogk(XAu:N]m) >
clog(n) is equivalent to Klos" (XApa M) > clog(n).

2Similar to the one constructed in Theorem 5.3.6.



CHAPTER 5. COMPLEXITY CORES 81

If for all c, Klog" (XAjagIM) > clog(n) then there is no p and 1 such that [p[ + [r] <
clog(n) and for all 1 <i< N, U'(p,i) =Xa,, in time log“(N) = poly(n).

So, there is at least one i, 1 <1 < N such that for all p and r satisfying [p|+[r] < clogn
either U"(p,1) # Xa,, or U(p,1) =Xa,, but time,(i) > poly(n). Since this is true for
all ¢, there is x of size at most n that can not be decided by programs of length at most
O(logn) in polynomial time. Such x is an element of the core of A.

To construct the next element in the core we consider the characteristic sequence up
to strings of size n; = 22"0“, ie., N =2%+ _ 1. Notice that now we allow programs
and oracles up to size logn; = 2™+, In particular, we can allow the oracle to be the
characteristic sequence of A up to strings of length ny; considering the program printing
the 1™ bit of r we conclude that in the alloted time, poly(n;) we can decide x. But, by
assumption, there is iy # 1 with 1 < i; < Ny such that no program and oracle of size
at most 2™*! (logarithmic on the size of the strings we are considering) can decide it in
time poly(n). The x; corresponding to the i element in the lexicographic order is the
next element in the complexity core.

Notice that we can go on forever with this argument and construct an infinite poly-
nomial complexity core although this will take a long time. Also, a program that decides

A has, in particular, to decide all strings up to a certain size. ]

5.4 Complexity cores and average case complexity

We now relate the existence of polynomial complexity cores with the universal distribution

m. From Theorem 5.2.9 we have:

Theorem 5.4.1. Let A be a recursive language such that A ¢ P. If M is a Turing

machine deciding A, then M s not polynomial on m-average.

Proof. Since A is a recursive set not in P then given a Turing machine M that decides
A and any polynomial p there is an n and a string x € ™ such that timepm(x) > p(n).
Then, by the characterization of polynomial average case of Theorem 5.2.9, M can not

run in polynomial time on m-average. ]

We can go further and prove that in fact A is not m' polynomial on average where t

is any super polynomial time constructible function.
Theorem 5.4.2. If A is recursive and not in P, then A is not m* polynomial on average
where t(n) =n-t'(n)log(n-t'(n)) and t’ is any sufficiently large super polynomial time

constructible function.



82 5.4 Complexity cores and average case complexity

Proof. If A is recursive and is not in P then it admits a polynomial complexity core H
that is recognizable in time t, where t is any super polynomial time constructible function,
as proved in [OS86]. Let densy(-) be the density function of H. Consider the following
probability distribution over X*:

1

— if H"
densy(n) - 20 hxe

uix) =

0 otherwise

By definition of polynomial complexity core we know that, for all polynomial p almost
all x € H satisfies timen(x) > p(|x[). Thus, there is n, such that M can not decide any
element of H of length larger than n,. Thus,

1

Pr.[timem(x) > p(x[)] > 1 — m-

Hence, according to the equivalence of polynomial time average complexity proved in
[Sch90], timep, is not p-polynomial on average. Notice that p is computable in some
super polynomial time t;. So, by Theorem 2.3.20, m'’, where t’'(n) = n - t;(n) log(n -
t1(n)) dominates p and we conclude that for any sufficiently large super polynomial time

constructible function t/, A is not polynomial on m'" average. ]

If the polynomial complexity core has exponential density we can improve the last
result by using the distribution mP, where p is a polynomial. Notice that mP assigns a
smaller probability to strings than m*' where t is some super polynomial time bound and

thus the result is not a corollary of the previous results.

Proposition 5.4.3. If a set A admits a exponential density polynomial complexity core

then A is not mP°Y polynomial on average.

Proof. If A admits a polynomial complexity core of exponential density then given any
Turing machine M that decides A, there is a ¢ > 0 such for all polynomial p and

sufficiently large n
#H™ = #{x € I" : timey (x) > p(n)} > 2"
Let q be a fixed polynomial time bound and consider the set:

D ={x € £ : depth%(x) < clogn}



CHAPTER 5. COMPLEXITY CORES 83

In [AFvMVO06] it is shown that there are approximately 2¢™ strings of length n such that
depth?” (x) > (1 — ¢/)n — clogn. Thus D=" ~ 2™ — 2¢™. So, if € > ¢/, by a Pigeon-hole
principle, D= N H™ # (). In fact:

#(D:n N H:n) > om Zs’n 42 _pn — pen zs’n >0

For any x € D™ N H™ we know that O(2depth?(J+ogxl) 5 polynomial in the length of x
and timep (x) > q([x|). Since this works for any polynomial q we conclude by Theorem

5.2.8 that timey, is not polynomial time on average with respect to m9. ]

Corollary 5.4.4. If NP does not have measure 0 in EXP then every NP-hard language,
with respect to polynomial time many to one reductions, is not in mP°Y polynomial on

average.

Proof. In [JL93] it is proved that if NP does not have measure 0 in EXP then any NP
hard language has a polynomial complexity core of exponential density (see Corollary 4.10

in [JLI93]). So, by the previous Proposition the result follows. O



84

5.4 Complexity cores and average case complexity




Chapter 6
Conclusions and future work

Computational complexity and Kolmogorov complexity are different kind of measures.
While the first studies the difficulty of of solving all instances of a problem the latter has
its focus on the difficulty of describing individual instances. Nevertheless it is interesting
to study the interplay between these two measures.

In this thesis we continued to explore the applications of Kolmogorov complexity
and more precisely, the computational depth (difference between time bounded and
unrestricted versions of Kolmogorov complexity) as a tool for computational complexity.

We applied computational depth in complexity theory to two directions:

1. Comparing it with sophistication;

2. Using it to derive a characterization on complexity classes and boolean formulas for

which we can find in probabilistic polynomial time satisfying assignments.

For the first item, we revisited the notion of sophistication for sequences. We proposed
new definitions of this concept based on the definition of sophistication for strings proposed
in [AF09a] with a similar flavor of [Lut03, May02]. We proved that the set of sequences
with lower sophistication equal to 0 has measure 1 and the set of sequences with upper
sophistication equal to 1 is dense. We showed a connection with classical notions of
dimension, namely constructive Hausdorff and Packing dimension, and aproved that
computational depth and sophistication are measures of different kind.

For the second item we firstly studied the relationship of computational depth with
the satisfiability problem. We proved that if a formula has an attribution of depth d then
we can use a probabilistic time algorithm running in time exponential in d to find another

true assignment for that formula. We also showed that if exponential time is not infinitely



86

often in subexponencial space, then the converse holds, i.e., if a probabilistic algorithm
finds a valid assignment for a Boolean formula ¢ in time t, there is a witness w for ¢
such that depth'(w|p) < O(logn). On the other hand if BPP = FewP = EXP, one
could find formulas that have a single solution of high computational depth that could be
found quickly using a probabilistic algorithm.

We looked at the question of whether one can increase the depth of a string efficiently
and showed that under the assumption of the existence of good psudorandom generators
one can not significantly increase the depth of a string in polynomial time, while if BPP =
EXP there are strings of high depth produces from string of very low depth.

Following this idea we asked if one could characterize the complexity core of SAT with
computational depth. This was not achieved, yet we established a connection between
computational depth of languages and the existence of complexity cores. This was done
by quantifying the computational depth of sets in the computational classes P, EXP =
DTIME(2P°W™) FULL-P/log and P/poly.

There are many different future research directions one can take from here.

Concerning sophistication and computational depth for sequences, it would be inter-
esting to know if a stronger result relatively to the difference between dimensional depth
and lower sophistication holds. One candidate for a sharper relation is the characteristic
sequence of the diagonal of Halting problem. These results may be applicable not only
in Computer Science but also in Dynamical Systems Theory. Some work has been done
in this direction using Kolmogorov complexity, see for example [Bru83, Whi9l, Zwe06].
It might be interesting to study if the measures presented in this paper can be used to
characterize some of the properties of the dynamics.

The paper [AFPS07] gave some insight for what should be a complexity cores in terms
of Kolmogorov complexity. The paper [Soul0] was the result of those thoughts. In Chapter
5 we had proved some results relating computational depth with existence of complexity
cores. It would be interesting to have a pure Kolmogorov complexity characterization of
the core itself instead of having the characterization of the languages that have a (proper)
complexity cores similar to what is done in [OKSW94] with instance complexity. It also
would be interesting to relax the condition of recursive languages to recursive enumerable
sets and explore a generalization of the definition of complexity cores using Kolmogorov
complexity or any other Kolmogorov complexity based measure.

Another line of research we intend to follow is the use of time bounded Kolmogorov
complexity or computational depth in analysis of some cryptographic primitives. Since

it is easy to impose time constrains to Kolmogorov complexity it might be suitable to



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 87

address some questions regarding one-way functions and zero knowledge protocols. In
particular, we are interested to study the notion of individual witness hiding proofs and
Kolmogorov one-way functions.

We plan to characterize and study individual witness hiding proofs, based on the
knowledge conveyed on individual communications between two parties by measuring the
difference between two time bounded Kolmogorov complexities, one when the verifier uses
the communication and the other when he does not use it.

Intuitively, the function f is one-way if is easy to evaluate but hard to invert. Thus
x and f give all the information needed to compute in polynomial time f(x) and, on
the other hand, the value f(x) does not convey, in polynomial time, useful information
about x. We conjecture that if f is a one-way function then the length of a shortest
program computing x given f(x), [x|, and f should be approximately equal to the length

of a shortest program computing x without any auxiliary input.



88




Bibliography

[AB09]

[AdI78]

[AF09a]

[AF09D)

[AFPS07]

[AFV03]

[AFvMVO06]

[AHLMO7]

S. Arora and B. Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, New York, NY, USA, 2009.

L. Adleman. T'wo theorems on random polynomial time. In Proceedings of the
Symposium on Foundations of Computer Science, pages 75-83, Washington,
DC, USA, 1978. IEEE Computer Society.

L. Antunes and L. Fortnow. Sophistication revisited. Theory of Computing
Systems, 45(1):150-161, Springer—Verlag, 20009.

L. Antunes and L. Fortnow. Worst-case running times for average-case
algorithms. Proceedings of the Conference on Computational Complezity,
pages 298-303, IEEE Computer Society, 2009.

L. Antunes, L. Fortnow, A. Pinto, and A. Souto. Low-depth witnesses are
easy to find. In Proceedings of the Conference on Computational Complezity,
pages 46-51, Washington, DC, USA, 2007. IEEE Computer Society.

L. Antunes, L. Fortnow, and N. Vinodchandran. Using depth to capture
average-case complexity. In Proceedings of the International Symposium
Fundamentals of Computation Theory, volume 2751 of Lecture Notes in

Computer Science, pages 303-310, Springer—Verlag, 2003.

L. Antunes, L. Fortnow, D. van Melkebeek, and N. Vinodchandran. Com-
putational depth: concept and applications. Theoretical Computer Science,
354(3):391-404, Elsevier Science Publishers Ltd., 2006.

K. Athreya, J. Hitchcock, J. Lutz, and E. Mayordomo. Effective strong
dimension in algorithmic information and computational complexity. STAM
Journal on Computing, 37(3):671-705, Society for Industrial and Applied
Mathematics, 2007.



90

BIBLIOGRAPHY

[AMSV09]

[Ant02]

[AS08]

[AS10]

[AST10]

[BDGO5]

[Ben&8|

[BENWO3]

[BH77]

[BHOS]

L. Antunes, A. Matos, A. Souto, and P. Vitanyi. Depth as randomness
deficiency. Theory of Computing Systems, 45(4):724-739, Springer—Verlag,
2009.

L. Antunes. Useful information. PhD thesis, Faculdade de Ciéncias da
Universidade do Porto, 2002.

L. Antunes and A. Souto. Sophisticated infinite sequences. In Proceedings
of the Computability in Europe 2008, pages 25-34, Springer—Verlag, Athens,
Greece, 2008.

L. Antunes and A. Souto. Information measures for infinite sequences. The-
oretical Computer Science, 41(26-28):2602-2611, Elsevier Science Publishers
Ltd., 2010.

L. Antunes, A. Souto, and A. Teixeira. A characterization of one-way
functions based on time-bounded komogorov complexity-extended abstract.
In Proceedings of the Logical Approaches to Barriers in Computing and

Complexity, volume 4, pages 3-5. Greiwswald University, Germany, 2010.

J. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity 1. Springer-
Verlag, Berlin, 1995.

C. Bennett. Logical depth and physical complexity. In A half-century survey
on The Universal Turing Machine, pages 227-257, New York, NY, USA,
1988. Oxford University Press, Inc.

L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential
time simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3(4):307-318, Birkhauser Verlag, 1993.

L. Berman and J. Hartmanis. On isomorphism and density of NP and
other complete sets. SIAM Journal on Computing, 6:305-322, Society for
Industrial and Applied Mathematics, 1977.

J. Balcazar and M. Hermo. The structure of logarithmic advice complexity
classes.  Theoretical Computer Science, 207(1):217-244, Elsevier Science
Publishers Ltd., 1998.



BIBLIOGRAPHY 91

[BHMO2]

[Brus3]

[Cha66]

[CooT1]

[FK96]

[For89]

[Gac93]

[GIT9)

[Gol01]

[GTVO1]

[GV04]

[Haul9]

J. Balcazar, M. Hermo, and E. Mayordomo. Characterizations of logarithmic
advice complexity classes. In Proceedings of the World Computer Congress
on Algorithms, Software, Architecture - Information Processing, pages 315—
321. North-Holland Publishing Co., 1992.

A. Brudno. Entropy and the complexity of the trajectories of a dynamical
system.  Transactions of the Moscow Mathematical Society, 2:127-151,

Moskovskoe matematicheskoe obshchestvo, 1983.

G. Chaitin. On the length of programs for computing finite binary sequences.
Journal of ACM, 13(4):547-569, ACM Press, 1966.

S. Cook. The complexity of theorem-proving procedures. In Proceedings of
the Symposium on Theory of Computing, pages 151-158. AMC, 1971.

L. Fortnow and M. Kummer. On resource-bounded instance complexity.
Theoretical Computer Science, 161:123—-140, Elsevier Science Publishers Ltd.,
1996.

L. Fortnow. Complexity-theoretic aspects of interactive proof systems. PhD

thesis, Massachusetts Institute of Technology, 1989.
P. Géacs. Lecture notes on descriptional complexity and randomness, 1993.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NPCompleteness. W.H. Freeman and Company, 1979.

O. Goldreich. Foundations of Cryptography. Cambridge University Press,
2001.

P. Gacs, J. Tromp, and P. Vitanyi. Algorithmic statistics. IEEE Transactions
on Information Theory, 47:2443-2463, IEEE Computer Society, 2001.

P. Grunwald and P. Vitanyi. Shannon information and kolmogorov complex-
ity, 2004.

F. Hausdorff. Dimension und dusseres mass. Mathematics Annuals, 79:157—
179, 1919.



92

BIBLIOGRAPHY

[HS65

[ILL8Y]

[TW96]

[JL92]

[JL93]

[KA91]

[Kar72]

[KLS0]

[KL82]

[Ko82]

J. Hartmanis and R. Stearns. On the computational complexity of
algorithms. Transactions of the American Mathematical Society, 117:285—
306, American Mathematical Society, 1965.

R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random generation from one-

way functions. In Proceedings of the Symposium on Theory of Computing,
pages 12-24. ACM Press, 1989.

R. Impagliazzo and A. Wigderson. P=BPP unless E has sub-exponential
circuits: Derandomizing the XOR lemma (preliminary version). In Proceed-
ings of the Symposium on Theory of Computing, pages 220-229. ACM Press,
1996.

D. Juedes and J. Lutz. Kolmogorov complexity, complexity cores, and the
distribution of hardness. Kolmogorov Complexity: Theory and Relations to

Computational Complexity, pages 43-65, Springer—Verlag, 1992.

D. Juedes and J. Lutz. The complexity and distribution of hard problems.
Journal on Computing, 24:177-185, Society for Industrial and Applied
Mathematics, 1993.

M. Koppel and H. Atlan. An almost machine-independent theory of program-
length complexity, sophistication, and induction. Information Scinces, 56(1-
3):23-33, Elsevier Science Publishers Ltd., 1991.

R. Karp. Reducibility among combinatorial problems. pages 85-103, New
York, 1972. Plenum Press.

R. Karp and R. Lipton. Some connections between nonuniform and
uniform complexity classes. In Proceedings of the Symposium on Theory
of Computing, pages 302-309, New York, NY, USA, 1980. ACM Press.

R. Karp and R. Lipton. Turing machines that take advice. In Logic and
Algorithmic, L’Enseignement Mathématique, 1982.

K. Ko. Some observations on the probabilistic algorithms and NP-hard
problems. Information Processing Letters, 14(1):39-43, Elsevier Science
Publishers Ltd., 1982.



BIBLIOGRAPHY 93

[Ko87]

[Kol50]

[Kol65]

[Kop87]

[Kop95)

[Kra49]

[KvM02]

[Lap97]

[Lev74]

[Lev86]

[LM93]

[LRO5]

K. Ko. On helping by robust oracle machines. Theoretical Computer Science,
52(1-2):15-36, Elsevier Science Publishers Ltd., 1987.

A. Kolmogorov.  Foundations of the Theory of Probability.  Chelsea
Publishing, 1950.

A. Kolmogorov. Three approaches to the quantitative definition of infor-
mation. Problems of Information Transmission, 1(1):1-7, Springer—Verlag,
1965.

M. Koppel. Complexity, depth, and sophistication. Complex Systems,
1:1087-1091, Complex Systems Publication Inc., 1987.

M. Koppel. Structure. The universal Turing machine (2nd ed.): a half-
century survey, pages 403-419, Springer—Verlag, 1995.

L. Kraft. A device for quantizing, grouping and coding amplitude modulated

pulses. Masters thesis, Department of Electrical Engineering, M.I.T., 1949.

A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexpo-
nential size proofs unless the polynomial-time hierarchy collapses. SIAM
Journal on Computing, 31(5):1501-1526, Society for Industrial and Applied
Mathematics, 2002.

S. Laplante. Kolmogorov Techniques in Computational Complexity Theory.
PhD thesis, University of Chicago, 1997.

L. Levin. Laws of information conservation (non-growth) and aspects of
the foundation of probability theory. Problems Information Transmission,
10:206-210, Russian Academy of Sciences, 1974.

L. Levin. Average case complete problems. SIAM Journal on Computing,
15(1):285-286, Society for Industrial and Applied Mathematics, 1986.

L. Longpré and S. Mocas. Symmetry of information and one-way functions.
Information processing Letters, 46(2):95-100, Elsevier Science Publishers
Ltd., 1993.

T. Lee and A. Romashchenko. Resource bounded symmetry of information
revisited. Theoretical Computer Science, 345(2-3):386-405, Elsevier Science
Publishers Ltd., 2005.



94

BIBLIOGRAPHY

[Lut00a]

[Lut00b)]

[Lut03]

[LV92]

[LVOS]

[LW95]

[Lyn75]

[May02]

[Mey77]

[Mil01]

IMLT71]

[MP79]

J. Lutz. Dimension in complexity classes. In Proceedings of the Conference on
Computational Complexity, pages 158, IEEE Computer Society, Washington,
DC, USA, 2000.

J. Lutz. Gales and the constructive dimension of individual sequences. In
Proceedings of the Colloquium on Automata, Languages and Programming,

Lecture Notes in Computer Science, pages 902-913. Springer-Verlag, 2000.

J. Lutz. The dimensions of individual strings and sequences. Information
and Computation, 187(1):49-79, Academic Press, Inc., 2003.

M. Li and P. Vitdnyi. Average case complexity under the universal
distribution equals worst-case complexity. Information Processing Letters,
42(3):145-149, Elsevier Science Publishers Ltd., 1992.

Ming Li and P. Vitanyi. An Introduction to Kolmogorov Complezity and Its
Applications. Springer-Verlag, 2008.

L. Longpré and O. Watanabe. On symmetry of information and polynomial
time invertibility. Information and Computation, 121(1):14-22, Academic
Press, Inc., 1995.

N. Lynch. On reducibility to complex or sparse sets. Journal of ACM,
22(3):341-345, ACM Press, 1975.

E. Mayordomo. A kolmogorov complexity characterization of constructive

hausdorff dimension. Information Processing Letters, 84(1):1-3, Elsevier
Science Publishers Ltd., 2002.

A. Meyer. reported in [BH77]. 1977.

P. Miltersen. Derandomizing complexity classes. Handbook of Randomized

Computing, Kluwer, 2001.

P. Martin-Lof. Complexity oscillations in infinite binary sequences. Proba-
bility Theory and Related Fields, 19(3):225-230, Springer—Verlag, 1971.

A. Meyer and M. Paterson. With what frequency are apparently intractable
problems difficult? In MIT technical report TM-126. MIT, 1979.



BIBLIOGRAPHY 95

[MTS08]

[MTS10]

[Mun99]

[INWO4]

[OKSW94]

(0S84

[0S86]

[Pap85]

[Pin07]

[PSMAO9]

[SASB10]

[Sch&6]

A. Matos, A. Teixeira, and A. Souto. On a relationship between nondeter-
ministic communication complexity and instance complexity. In Proceedings
of the Computability in Europe 2008, 2008.

A. Matos, A. Teixeira, and A. Souto. On the largest monochromatic com-
binatorial rectangles with an application to communication complexity. In
Proceedings of the Computability in Europe 2010, pages 264273, University
of Azores, 2010.

M. Mundhenk. On hard instances. Theoretical Computer Science, 242,
Elsevier Science Publishers Ltd., 1999.

N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer
and System Sciences, 49:149-167, Elsevier Science Publishers Ltd., 1994.

P. Orponen, K. Ko, U. Schoning, and O. Watanabe. Instance complexity.
Journal of ACM, 41(1):96-121, ACM Press, 1994.

P. Orponen and U. Schoning. The structure of polynomial complexity cores
(extended abstract). In Proceedings of the Mathematical Foundations of
Computer Science, pages 452-458, London, UK, 1984. Springer-Verlag.

P. Orponen and U. Schoéning. The density and complexity of polynomial
cores for intractable sets. Information and Control, 70(1):54-68, Academic

Press Professional, Inc., 1986.
C. Papadimitriou. Computational Complexity. Wiley, 1985.

A. Pinto. Applications of Kolmogorov Complezity to Cryptography. PhD
thesis, Faculdade de Ciéncias da Universidade do Porto, 2007.

A. Pinto, A. Souto, A. Matos, and L. Antunes. Commitment and
authentication systems. Designs, Codes & Cryptography, 53(3):175-193,
Springer—Verlag, 2009.

C. Santos, L. Antunes, A. Souto, and J. Bernardes. Assessment of
disagreement: a new information based approach. Annals of Epidemiology,
20:555-561, Elsevier Science Publishers Ltd., 2010.

U. Schoning. Complete sets and closeness to complexity classes. Theory of
Computing Systems, 19(1):29-41, Springer—Verlag, 1986.



96

BIBLIOGRAPHY

[Sch90]

[Sha48]

[Sip97]

[Sol64]

[Soul0]

[STP10]

[Sul&4]

[Tris2]

[TSAM10]

[Tur37]

[Vad99)]

R. Schapire. The emerging theory of average case complexity. In MIT
technical report 431. MIT, 1990.

C. Shannon. A mathematical theory of communication. Bell system technical
journal, 27, Bell labs, 1948.

M. Sipser. Introduction to the Theory of Computation. PWS Publisher, 1997.

R. Solomonoff. A formal theory of inductive inference, Part I. Information
and Control, 7(1):1-22, Academic Press Inc., 1964.

A. Souto. Kolmogorov complexity cores. In Computability in Europe 2010,
volume 6158 of Lecture Notes in Computer Science, pages 376-385. Springer-
Verlag, 2010.

A. Souto, A. Teixeira, and A. Pinto. One-way functions using komogorov
complexity. In Proceedings of the Computability in Furope, pages 346-356,
University of Azores, 2010.

D. Sullivan. Entropy, hausdorff measures old and new, and limit sets of
geometrically finite kleinian groups. Acta Mathematica, 153(1):259-277,
Springer—Verlag, 1984.

C. Tricot. Two definitions of fractional dimension. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 91, pages 57—
74. ACM Press, 1982.

A. Teixeira, A. Souto, L. Antunes, and A. Matos. Entropy measures vs.
algorithmic information. In Proceedings of the International Symposium on
Information Theory, pages 1413-1417, IEEE Computer Society, June 2010.

A. Turing. On computable numbers, with an application to the entschei-
dungsproblem. In Proceedings of the London Mathematical Society, vol-
ume 42, pages 230-265. Springer-Verlag, 1937, Correction: 43: 544-546
(1937).

S. Vadhan. A study of statistical zero-knowledge proofs. PhD Thesis,
Massachusetts Institute of Technology, 1999.



BIBLIOGRAPHY 97

[VV03]

[V'y99)

[Whi91]

[YDDO4]

[ZL70]

[ZweO6]

N. Vereshchagin and P. Vitanyi. Kolmogorov’s structure functions and
model selection. IEEE Transactions on Information Theory, 50:3265-3290,
Computer Society, 2003.

V. V’yugin. Algorithmic complexity and stochastic properties of finite
binary sequences. Computational Journal, 42(4):294-317, Elsevier Science
Publishers Ltd., 1999.

H. White. On the algorithmic complexity of the trajectories of points in
dynamical systems. PhD Thesis, University of North Carolina at Chapel
Hill, 1991.

L. Yu, D. Ding, and R. Downey. The kolmogorov complexity of random
reals. Annals of Pure and Applied Logic, 129(1-3):163 — 180, Elsevier Science
Publishers Ltd., 2004.

A. Zvonkin and L. Levin. The complexity of finite objects and the
development of the concepts of information and randomness by means of the
theory of algorithms. Russian Mathematical Surveys, 256:83-124, Russian
Academy of Sciences, 1970.

R. Zweimuller. Asymptotic orbit complexity of infinite measure preserving

transformations. Discrete and Continuous Dynamical Systems, 15:353-366,
AIMS, 2006.



98

BIBLIOGRAPHY




Appendix A

Other work

During my research, I also developed other scientific work, collaborating with other

researchers. I participated in several research projects in different areas:

e The work developed in the area of medicine with C. Santos, L. Antunes and J.
Bernardes [SASB10], where we proposed a new information based measure of agree-
ment between two observers and studied the advantages of the use of this new

measure.

e In cryptography, I have worked with A. Pinto, A. Matos and L. Antunes [PSMA09],
where we analyzed some cryptographic schemes namely, authentication and com-
mitment. Also, together with L. Antunes, A. Teixeira and A. Pinto in [AST10]
and in [STP10], we discussed the classical notion of one-way functions based on

Kolmogorov complexity.

e In computational complexity, I also contributed in the papers [AMSV09], [MTS08]
and [MTS10]. One of the most gratifying collaboration end up with the paper
[TSAM10] at ISIT 2010, where together with A. Texeira, A. Matos and L. Antunes,
we studied if the known result of having the Shannon entropy being equal to the
expected value of the Kolmogorov complexity also holds when Shannon entropy is

replaced by Tsalis and Rényi entropies, two generalizations of the Shannon entropy.

e With H. Burhman, I did some work in quantum computation field, during the visit
to CWI in 2007. We studied the advantage of the use of a quantum computer when
we play a generalization of the classical Mastermind game with n pegs and k colors,
showing upper and lower bounds for its quantum query problem. This work has not

been published yet.



100

e Together with F. Moreira, my Master thesis advisor, during my PhD, I developed
some work on Dynamical Systems and Nonstandard Analysis. We investigated a
generalization of Birkhoff’s Theorem for non-invariant measures and studied a new
proof of Oseledets’ Theorem, showing the existence of Lyapunov exponents. This is

a work in progress, hopefully to be publish it soon.



Assessment of disagreement: a new information based approach

Cristina Costa Santos, MSc', Luis Antunes PhD?, André Souto MSc?, Jodo Bernardes PhD?

1. Biostatistics and Medical Informatics Department — CINTESIS, Faculty of Medicine, University of
Porto
2. Instituto de Telecomunicagdes. Faculty of Sciences, Faculty of Science, University of Porto

3. Obstetrics and Gynaecology Department, Faculty of Medicine, University of Porto

Corresponding author:

Cristina Costa Santos

Biostatistics and Medical Informatics Department,
Faculty of Medicine, University of Porto.

Al. Prof. Hernani Monteiro

4200-319 Porto, Portugal

Tel: +351 22 551 3622  Fax:+351 22 551 3623 E-mail: csantos@med.up.pt

Running title: A new approach to assess disagreement

Word count: 3839
Abstract word count: 154

Number of tables: 4

ABSTRACT

Purpose

Disagreement on the interpretation of diagnostic tests and clinical decisions remains an important
problem in Medicine. As no strategy to assess agreement seems to be fail-safe to compare the degree
of agreement, or disagreement, we propose a new information based approach to assess
disagreement.

Methods

The sum over all logarithms of possible outcomes of a variable is a valid measure of the amount of
information contained in the variable. So the proposed measure is based on the amount of
information contained in the differences between two observations. This measure is normalized and
satisfies the flowing properties: it is a metric, scaled invariant and it has differential weighting.

Results

Two real examples and a simulation were used to illustrate the usefulness of the proposed measure to
compare the degree of disagreement.

Conclusions

Used as complement to the existing methods, our approach can be useful to compare the degree of
disagreement among different populations.

MeSH heading key words: Observer Variation; Information Theory; Reproducibility of Results



Introduction

Measurement is essential both for clinical care and for epidemiologic research; however
measurement always implies some degree of variability'. Ideally the only source of variability in
measurements should be the variability within subjects, however often observer variability and other
sources of variability are also present.

In clinical care, diagnosis often depends on measurements, and disagreement in these measurements
may have obvious implications for clinical practice and may also have medico-legal no:mwn:a:oomw.
Before the introduction, in clinical practice, of a new diagnostic method, it is essential to assess the
agreement between the new method and the traditional one and it is also fundamental to know
whether the new method can be reproduced by a second observer. In research, disagreement in
measurements may lead to discrepant results in validity or randomized controlled studies with the
same objectives and with the same methods, consequently misleading and heterogeneous results in
meta-analysis will be found”. As it is impossible to control the various sources of variation of a
measurement, agreement studies have a very important role. Despite the importance of agreement
studies, misleading and sometimes inappropriate measures of agreement have been used in leading
medical literature™”. Considering the limitations of current strategies to assess agreement and as no
strategy seems to be fail-safe to compare the degree of agreement among different populations,
agreement studies should be interpreted with caution and possibly combined with the use of different
strategies to assess agreement always with the limitations of these strategies in mind**,

In this article, we propose a new approach to assess agreement based on information theory.

Methods and Results

Most used strategies to assess agreement

The Intraclass Correlation Coefficient (ICC) is claimed to be suitable for observer agreement
assessment’. The ICC is defined as the ratio of the variance between subjects, to the total variance®”.
These variances are derived from analyses of variance (ANOVA). Fleiss and Shrout present different
kinds of ICC derive from different ANOVA models, and the ANOVA model depends on the study
amwmmzm. One-way random effects model should be used when the subjects are deemed a random
sample of subjects to be evaluated by the observers. The focus of interest is the difference of the
individual observer’s rating from the average rating of the observers for the i subject’.

In two-way models the observers are deemed an important factor in the ICC computation. In two-
way random effects model, not only the subjects are deemed random, but the observers are deemed a
random effect as well. In two-way mixed model each target is evaluated by k observers, who are the
only observers of interest, in this case, the observers are a fixed effect while the subject ratings are a
random effect’.

The ICC (from two-way models) that should be used for assessing agreement was defined by
McGraw and Wong as the ‘ICC for agreement’. We obtain the ‘ICC for consistency’ or the ‘ICC for
agreement’ excluding or not the observer variance from the denominator mean square, Rmvnnné_v\w.
The systematic variability due to observers is irrelevant for ‘ICC for consistency’ but it is not for
‘ICC for agreement’.

The ICC ranges from O (no agreement) to 1 (perfect agreement), however it can be negative, how
such negative ICC values should be interpreted is quite unclear. The ICC assumptions, multivariate
normal distributions and equality of variances, should be checked.

An important limitation of ICC is that it is strongly influenced by the variance of the trait in the
population in which it is assessed’. This limitation can be illustrated with the following example:

suppose that we aim to assess whether a depression scale can be reproduced by a second observer
when applied to a random sample of the adult population (an heterogeneous population, with high
variance) the scale’s ICC may be higher than when the scale is applied to a very homogeneous
population (with low variance), such as patients hospitalized for acute depression. This ICC
characteristic has also been considered by some authors as an advantage, for it would make the
discordance relative to the magnitude of measurements'®, however comparability across populations
is not possible with ICC. Consequently, ICC values have no absolute meaning, and the cut-off value
of 0.75 proposed by Burdock’ and Lee'', and often reproduced to signify a good agreement, has
limited justification.

Lin’s concordance correlation coefficient (CCC) is the Pearson Correlation of Coefficient, which
assesses the closeness of the data to the line of best fit, modified by taking into account how far the
line of best fit is from the 45° line crossing the olmms_w Lin objected to the use of the ICC as a way
to assess agreement between methods of measurement and developed the concordance correlation
coefficient (CCC). However, there are similarities between certain specifications of the ICC and the
CCC . Some limitations of ICC, like the limitation of comparability of population described above,
are also present in CCC'.

Bland and Altman propose the limits of agreement to assess agreement between methods of
measurement’”, Limits of agreement can be calculated based on the mean difference between the
measurements of two methods in the same subjects and the standard deviation of these differences.
Approximately 95% of these differences will lay between the mean differences +1.96 standard
deviation of these differences. The limits of agreement approach depends on some assumptions about
the data: the mean and standard deviation of the differences are constant throughout the range of
measurement and these differences are approximately Normally distributed". Limits of agreement
are expressed in terms of the scale of measurement and the decision whether a degree of agreement
is acceptable or not is always a clinical, not statistical, judgment.

Other approaches'® 7, have been proposed for assessing agreement; however all of them are also
limited when the aim is to compare the agreement in different populations with different trait
characteristics.

The New Approach: Information-Based Measure of Disagreement

Entropy, introduced by Shannon, can be described as the average amount of information contained in
a variable'®. A high value of entropy means that a large amount of information is needed to describe
an outcome variable about which we have high uncertainty. The sum over all logarithms of possible
outcomes of the variable is a valid measure of the amount of information, or uncertainty, contained
in a variable. Consider that we aim to measure disagreement between measurements obtained by
observer A (variable A) and observer B (variable B). Also, consider for variable A, a vector A that
can take the range of non-negative values (ay,...,a,) and for variable B, a vector B that can take the
range of non-negative values (b; . b,). The intuition behind our definition is that the disagreement
between A and B is related to the differences between them, with the minimum reached when A and

n
B are identical. So, it is then natural to consider M_omm?‘ |£ the amount of information contained
i=l
in the differences between observers A and B. By adding 1 to the differences, we avoid the behavior
of the logarithmic function between 0 and 1, while keeping a quite natural close relation to the notion
of entropy where Shannon considered the log of the inverse of a probability, i.e., the log of a value
always greater or equal to 1. Now, in order to get a value between 0 and 1 we normalize the amount
of information contained in the differences to obtain the following measure of disagreement.
Considering two vectors A = (aj,...,a,), and B = (by,...,b,) with non-negative components. The
information-based measure of disagreement is defined as:



Tylw

i

d(AB)=L > log, +1
n

=] Bmx?;w@
[0-9)

max{0,0}
This coefficient equals 0 when the observers agree, or when there is no disagreement, i.e., when a; =
b;. In this case we say that there is no information in the differences between observers A and B. As
observer A and B’s measurements disagree, the amount of information in the differences between
observers A and B increases and the information-based measure of disagreement increases, tending
to 1, or, in other words, the distance between the observers increases.

[0-0)
max{0,0}

so the contribution of this observation to the final sum of disagreement is log>(1+0) = 0.

with the convention =0.

The convention =0 has a natural interpretation since if both observers rate 0, they agree,

Properties of Information-Based Measure of Disagreement

The information-based measure of disagreement, d(A,B), is a metric, i.e., the following properties
hold:

- is non-negative, d(A,B) is always greater or equal to than zero;

- is zero if and only if the observers rate exactly the same measurements, d(A,B)=0 if and

only if A=B;

- is symmetric, d(A,B)=d(B,A) and

- the triangular inequality is verified, d(A,B)<d(A,C)+d(C,B).
The information-based measure of disagreement is scaled invariant, d(A,B)=d(kA,kB) with k a non
zero constant. It has also differential weighting, i.e., a difference found between high values
contribute less than the same difference found between low values. The appendix contains the proof
of each property.

Inference of the information-based measure of disagreement

In the absence of any distributional assumption, the most obvious inference method is the non
parametric bootstrap. Each of the M bootstrap samples is taken from a, (i=1ton), and b, (i=1to
n), where g; and b; are the measurements rated by the observers A and B respectively, on the
subject i, and provides an estimate of the proposed information-based measure of disagreement using

1& T -b
d(A,B)=—> 1 LA
ARy ot o ab]

+1]. A confidence interval for the proposed measure of disagreement

can be obtained from the percentiles of the empirical distribution of the M estimates.

Example - systolic blood pressure

Bland and Altman present the example of measurements of systolic blood pressure of 85 individuals,
by two observers (J and R) with sphygmomanometer, and one other measurement, by a
semiautomatic device Amv_c. Luiz et al re-analyze the data and also observe, with a graphical
approach, a greater agreement between the two observers than between the observers and the
semiautomatic device'®. Using our information-based measure of disagreement we also obtained
significantly more disagreement between each observer and the semiautomatic device than between
the two observers (Table 1).

Example - Apgar score at first minute

The Apgar score is widely used in developed countries for assessing the clinical status of the
newborn, determining whether or not there is a need for immediate medical care. It is usually
assessed at the first and fifth minutes after birth and ranges between zero and ten. It is based on the
analysis of the newborn’s skin color, response to stimulus, breathing, muscle tonus and heart rate.
Cardiotocography is the most common method used for fetal monitoring during labor. It registers the
heart rate of the fetus and contractions of the uterus. The value of fetal monitoring procedure is in its
ability to predict newborn outcome, as the prediction of newborn outcome during labor can decrease
perinatal mortality and morbidity.

Three obstetricians were asked to evaluate 72 intrapartum cardiotocographic tracings independently
and through them predict the Apgar score at the first minute. After birth, the true values of the Apgar
scores were evaluated by the caregivers responsible for immediate neonatal support. To simulate an
observer who estimated Apgar by chance, we randomly generated Apgar score values between zero
and ten.

Table 2 presents the true Apgar scores evaluated after birth for 72 newborns and the Apgar scores
predicted by the three obstetricians based on the intrapartum cardiotocographs tracings. The
obstetricians were blinded for the neonatal outcome and evaluate tracings independently. Table 2
also presents a random estimation of the Apgar scores created by a generation of random values
between zero and ten.

Table 3 presents the agreement, assessed by the ICC, and the disagreement, assessed with the
information-based measure of disagreement, between each obstetrician’s predictions and Apgar
evaluated by the caregiver for neonatal support and between randomly generated Apgar and
evaluated by the caregiver for neonatal support.

As ICC is a measure of agreement, higher values correspond to better agreement. However, as the
proposed information-based measure of disagreement is a measure of disagreement, higher values
correspond to a higher disagreement, i.e., a worse agreement. ICC results suggest that one
obstetrician predicted Apgar scores no better than the random generation of values. This is an artifact
caused by the dependence of the ICC on variance. When Apgar scores were randomly generated,
variance is much higher (7.7) than when obstetricians predict them (variances ranging from 0.4 and
0.7).

On the other hand, the information-based measure of disagreement evidenced that the Apgar score
predictions by the obstetricians were significantly better, i.e. there was less disagreement with Apgar
scores evaluated by the caregivers responsible for neonatal support, than by the random generation of
Apgar scores (Table 3).

Simulation study

To assess the performance of the proposed measure we used simulations in different scenarios. From
Uniform distributions between 0 and 100 we generated the observer A’s ratings for sample sizes of
10, 25, 50, 100, 500 and 5000. In a first scenario, Observer B’s ratings were created by adding a
systematic difference to observer A’s ratings: Observer B’s ratings were equal to observer A’s
ratings plus 10 unities. In a second scenario, Observer B’s ratings were created by adding a random
difference to Observer A’s ratings: Observer B’s ratings were equal to observer A’s ratings plus a
quantity generated by a Normal distribution with mean O and standard deviation 5. In a third
scenario, Observer B’s ratings were created by adding both random and systematic differences to
Observer A’s ratings: Observer B’s ratings were equal to observer A’s ratings plus a quantity
generated by a Normal distribution with mean 10 and standard deviation 5. We assumed as 0 all
generated negative Observer B’s ratings.



A thousand bootstrap samples were taken from data for each scenario and each sample size to
provide the estimates of the proposed information-based measure of disagreement. Table 4 presents
the mean and standard deviation of those 1000 estimates (standard error). Table 4 also presents the
bias, i.e., the difference between the original and the mean of 1000 estimates of the information-
based measure of disagreement. The point estimates of the proposed information-based measure of
disagreement had very small bias and standard error even for small sample sizes.

Discussion and Conclusions

We can look at disagreement between observers as the distance between their ratings, so the metric
properties are important. Moreover, the proposed measure of disagreement is scale-invariant, i.e.,
the degree of disagreement between two observers should be the same if the measurements are
analyzed in kilograms or in grammas, for example.

Differential weighting is another property of the proposed information-based measure of
disagreement: each comparison between two ratings is divided by a normalizing factor, depending
upon each pair of ratings alone, before summing. Therefore, the information-based measure of
disagreement is appropriate for ratio scale measurements (with a natural zero) and it is not
appropriate for interval scale measurements (without a natural zero). For example, outside air
temperature in Celsius or Fahrenheit scale does not have a natural zero. The 0 degrees is arbitrary
and it does not make sense to say that 20 degrees is twice as hot as 10 degrees. Temperature in
Celsius or Fahrenheit scale is an interval scale. On the other hand, height has a natural 0 meaning:
the absence of height. Therefore, it makes sense to say that 80 inches is twice as large as 40 inches.
Height is a ratio scale. Suppose the heights of a sample of subjects measured independently by two
different observers. A difference between the two observers of one inch in a child subject represents
a worse observers’ error than a disagreement between observers of one inch in an adult subject. Due
to differential weighting property of the information-based measure of disagreement, a difference
between the observers of one inch in a child in fact weights less to the estimate of information-based
measure of disagreement between observers than a difference between the observers of one inch in
an adult.

The usual approaches used to evaluate agreement have the limitation of the comparability of
populations. In fact, ICC depends upon the variance of the trait population; although this
characteristic can be considered an advantage it does not allow one to compare the degree of
agreement across different populations. Also the interpretation of the Limits of Agreement depends
on what can be considered clinically relevant or not, which could be subjective and different from
reader to reader. The comparison of the degree of agreement in different populations is not
straightforward. Other mm?omormm_m. "7 to assess observer agreement have been proposed, however
the comparability of populations is still not easy with these approaches.

The proposed information-based measure of disagreement, used as a complement to current
approaches for evaluating agreement, can be useful to compare the degree of disagreement among
different populations with different characteristics, namely with different variances.

Moreover, we believe that information theory can make an important contribution to the relevant
problem of measuring agreement in medical research, providing not only better quantification but
also better understanding of the complexity of the underlying problems related to the measurement of
disagreement.

Acknoledgements

This research was partially supported byCSI2 (PTDC/EIA-CC0O/099951/2008) and the grant SFRH /
BD /28419 / 2006.

References

—_

12.

13.

14.

15.

17.

18.

Bland M. An Introduction to Medical Statistics. 3" ed. Oxford University Press. 2000.

Costa Santos C, Costa Pereira A, Bernardes J. Agreement studies in obstetrics and
gynaecology: inappropriateness, controversies and consequences. Br J Obstet Gynaecol 2005;
112 (5): 667-9.

Gow RM, Barrowman NIJ, Lai L, Moher D. A review of five cardiology journals found that
observer variability of measured variables was infrequently reported. J Clin Epidemiol.
2008;61:394-401.

Luiz RR, Szklo M. More than one statistical strategy to assess agreement of quantitative
measurements may usefully be reported. J Clin Epidemiol. 2005; 58:215-6.

de Vet H. Observer reliability and agreement. In: P. Armitage and T. Colton, Editors,
Encyclopedia of biostatistics. 1st ed. Wiley, Chichester. 1999, pp. 3123-3127.

Shrout PE, Fleiss JL. Intraclass Correlation: uses in assessing rater reliability. Psycological
Bulletin.1979; 88: 420-8.

Burdock EI, Fleiss JL and Hardesty AS. A new view of interobserver agreement.
Psycological Bulletin. 1963;16:373-84.

McGraw KO, Wong, SP. Forming inferences about some intraclass correlation coefficients.
Psychological Methods. 1996;1(1):30-46.

Muller R, Buttner P. A critical discussion of intraclass correlation coefficients. Stat Med
1994;13:2465-2476.

. Steiner DL, Norman GR. Health Measurements Scales. A practical guide to their

development and use. 3th ed. Oxford University Press. 2003.

.Lee D, Koh D, Ong CN. Statistical evaluation of the agreement between two methods for

measuring a quantitative variable. Comput Biol Med 1989;19:61-70.

Lin LK. A concordance correlation coefficient to evaluate
reproducibility. Biometrics. 1989;45:255-68.

Nickerson CAE.A Note on "A Concordance Correlation Coefficient to Evaluate
Reproducibility". Biometrics. 1997;53:1503-7.

Atkinson G, Nevill A. Comment on the Use of Concordance Correlation to Assess the
Agreement between Two Variables. Biometrics. 1997;53:775-7.

Bland JM, Altman DG. Statistical methods for assessing two methods of clinical
measurement. Lancet 1986;1:307-310.

. Luiz RR, Costa AJ, Kale PL, Werneck GL. Assessment of agreement of a quantitative

variable: a new graphical approach. J Clin Epidemiol. 2003;56:963-7.

Monti KL. Folded empirical distribution function curves-mountain plots. Am Stat.
1995;33:525-7.

Shannon "I. A Mathematical Theory of Communication. Bell System Technical Journal.
1948;27:379-423,623-656.

. Bland JM, Altaman DG. Measuring agreement in method comparison studies. Stat Methods

Med Res. 1999;8:135-60.



APPENDIX

Properties of the proposed disagreement measure
The proposed disagreement measure, d(A,B), has the flowing properties:
Property 1 (Non-negativity). Let A and B be two non-negative, random variables of size n, d(A, B) > 0.

Proof. If the two observations are zero, then by convention its contribution is zero. On the other observations,
the property follows from the fact that the factors in the argument of log are at least 1.

Property 2 (Identity of indiscernibles). Let A and B be two non-negative, random variables of size n. d(A, B)
=0ifand onlyif A=B.

lai by

Proof. d(A, B) = 0 if and only if log,
me??wL

+1|{=0 for all 1<i<n. So, a,=b,=0or

a
7‘+_ =1 forall 1<i<n,ie.,if and only if A=B.

BE&P ,b, }

Property 3 (Symmetry). Let A and B be two non-negative, random variables of size n. d(A, B) = d(B, A).

Proof. d(A, B) = d(B, A) because of maximum and the absolute value symmetry.

Property 4 (Triangular inequality). Let A, B and C be three non-negative, random variables of size n.
d(A,B) <d(A,C)+d(C,B)

Proof. In order to prove d(A,B) < d(A,C) + d(C, B) we have to prove that forall 1<i<n:

T. —-c

la, = b,
me?zw } Smxﬁn:w@

First we deal with the case where at least two of the elements a,, b, and c;are 0.

+1{<log, +1{+1log, 0]

!
o8 max{a,.c,}

If a,=b,=c, =0 then the inequality I is trivially true with the convention made.

a a
If a=b=0 ad ¢ #0 then log, 7‘ 1|=0, log, t >0and
B BE@F. ,b; w B Bmx?:n w.
log, 7‘+_ > 0, and then, again, the inequality I is true.
me?_ ,b, }
. TN. Y
If a,=c¢;=0 and b#0. In  this case log,| ———+1|=log, ,
max{a,,b, }

+1 | = 0 which verifies the inequality L.

log, +1|=log,| “+1 |and log,

me?:w } BE&Q. ,C; }
Now assume that at least two of the values a,, b, and c; are positive. Proving the inequality I is equivalent, to

prove:

ja: = i)

1< 1
Bmx?t@ w me??mL+ an?tw w <
R N
Bmx?t@ w :Ex.?:m “. Emiat@ v Bmx?tm T:E&mtw “.
So, is ﬁ:mmo:w_: to prove that:
Ja; - ja; ~cil ~ b

Bmx?iww Emin:n w Emintww.
Suppose that max{a;,b, }> c; .
Then max{a;,b; }> max{b;,c; }and max{a;,b;}> max{a;,c;}.
1 1 1 1
so. me?t@h : Bmx,ﬂatvhmﬁ_ Smxﬁa?w@ = Bmiﬁ;a@.
|a, b, b,
me?_;whl Bmx?:wh waﬁa:o w me.@:ww
Now, suppose that me??wLA c;then a;,b; <c;. Without loss of generality we can suppose that

a.

+le, -

la,
Thus <

b<a<c.So, prove that:
T..li < Tﬁ.li Tﬁ.li
max{c;,b; }

max{a;,b;} ~ max{a;,c;

is the same to prove:

] \+ ] _ ~No
c; ¢ a;
and
Gmdi cimbi aimhi_y @ b [y b\ a4 bi b
Ci i a; G ¢ a; ¢ Cj a;
b b b. b
as nASrm:\A\&i\vo ,EEV_I‘I‘N+‘~VO
¢ a ¢ G G og

Property 5. Let A and B be two non-negative, random variable of size n.d(A,B) <1.

la, -
BE&P uw }

jai 1] _

< +1|<1
BE&S,WW

Proof. The property follows the fact that ,so log,

Property 6. (Scale invariance). Let A and B be two non-negative, random variable of size n and k a positive,
non zero constant. d(A,B) = d(kA,kB) .

Proof.
M_ |ka; — kb;| .
0g,| 1T
Ak = 2| ‘max(ka,  kb;)
(KA,kB) =. .
M_om ‘»T:IE +1
= * k max(a;,5,) — d(A.B)
" ,

10



Commitment and Authentication Systems*

Alexandre Pinto** André Souto Armando Matos Luis Antunes

DCC-FC & LIACC
R. Campo Alegre 1021/1055
4169-007 Porto

Abstract. In the present paper, we answer a question raised in the paper Constructions and
Bounds for Unconditionally Secure Non-Interactive Commitment Schemes, by Blundo et al, 2002,
showing that there is a close relation between unconditionally secure commitment schemes and
unconditionally secure authentication schemes, and that an unconditionally secure commitment
scheme can be built from such an authentication scheme and an unconditionally secure cipher
system.

To investigate the opposite direction, we define optimal commitment systems and show that these
must be resolvable design commitment schemes. Then, a proof is given that the resolvable design
commitment schemes are a composition of an authentication system and a cipher system and the
conclusion follows that this is the case for all optimal commitment systems.

‘We also show how to build optimal schemes from transversal designs that are easy to build and can
be more efficiently implemented than the proposal in the previously cited paper.

Keywords: Commitment, Authentication, Unconditional Security, Galois Field.

1 Introduction

Commitment schemes were introduced by Blum ([1]). It is not possible to build unconditionally
secure commitment schemes with only two parties, but Rivest proposed the first uncondition-
ally secure non interactive commitment scheme with a trusted initializer, in a non-published
manuscript called “Unconditionally Secure Commitment and Oblivious Transfer Schemes Using
Private Channels and a Trusted Initializer” and available at
http://citeseer.ifi.unizh.ch/rivest99unconditionally.html.

In [2], the authors begin a mathematical formalization of such commitment schemes. They
also prove some lower bounds on the binding probabilities and propose and analyse implemen-
tations of optimally secure systems. They give a general description of a commitment scheme in
Rivest’s model that uses encoding and authentication keys and also a simplified scheme where
the authentication key is not necessary. Then they offer a construction of commitment schemes
based on resolvable designs and analyse its binding probabilities.

They list two open problems: finding a lower bound on the amount of information that has
to be pre-distributed to the users and sent by the sender to the receiver; and the existence of
some relation between these schemes and authentication codes.

The first of these questions was answered in [7], while the present paper proposes to an-
swer the second one. We show that an unconditionally secure commitment scheme with trusted
initializer can be built from

* A preliminary version has appeared in the proceedings of ICITS 07.
** Corresponding author contacts — email: alex.miranda.pinto@gmail.com, phone: +351 919528890, fax: N/A.

— a composition of an unconditionally secure authentication code without secrecy, without
splitting and with no arbitration
— and an unconditionally secure cipher system.

This relation suggests an attack already referred in [7] that is the counterpart of the imperson-
ation attack of an authentication system. We give a combinatorial and an information-theoretic
lower bound for its probability of success. The second of these bounds is already present in [7]
but while their proof used techniques from hypothesis testing, ours uses only the definition of
mutual information and the log sum inequality.

We begin by giving some definitions and notation in Section 2, as well as formal definitions
of unconditionally secure cipher, authentication and commitment systems. We then analyse the
possible attacks against commitment schemes in Section 3, and show how these can be built
from a cipher system and an authentication code.

In Section 5, we define the notion of optimal commitment scheme and show that such a
scheme is a resolvable design commitment scheme as proposed in [2]. We follow with the main
results of this paper, showing that optimal systems must be resolvable design commitment
schemes and that all of these can be decomposed into a cipher system and an authentication
code.

We then propose a generalization of the affine plane commitment scheme in [2] that is
efficiently implementable in both hardware and software by allowing an alphabet of source
states with size |S| = 2" rather than having |S| = p for prime p. In the former case, the needed
arithmetic operations reduce to bit shifts and bitwise logical operations, which have very fast
hardware and machine-code implementations.

We show that this is possible for every n, by building an appropriate Transversal Design and
using a result due to Stinson ([12]) to turn it into an unconditionally secure authentication sys-
tem. Our commitment scheme follows from composition with the One-Time Pad cipher system.
By the previous results, this scheme is optimal.

Finally, Section 7 contains some concluding remarks and possible directions for future work.

2 Preliminaries

We denote alphabets by calligraphic type, e.g. P, C. Depending on context, these alphabets can
be seen as subsets of N or of {0,1}*. Elements of these alphabets are usually represented by
lowercase letters. The size of a set is denoted by | - |. Random variables over these sets are
represented by uppercase versions of the name of the set, like P, C and so on. Greek letters are
reserved for some probabilities and real parameters not greater than 1. Probability expressions
of the type Pr[X = z]| and Pr[X = z|Y = y| are sometimes simplified to p(z) and p(z|y)
respectively. The function E(-) denotes the expected value of some distribution.

Sometimes, functions of two arguments are written as parameterized functions of one ar-
gument. For example, f(k,s) is the same as fi(s). The function H(-) and its variants denote
Shannon’s entropy function.

The users of the protocols bear the standard names of the literature: Alice and Bob are
the legitimate participants, Eve is a passive eavesdropper, Oscar is a malicious opponent with
complete power over the channel between Alice and Bob, and Ted is a trusted initializer. Alice



is always the sender and Bob the receiver. In the commitment scheme, both Alice and Bob can
be malicious and try to break the protocol.
We now give formal definitions of the cryptographic constructions used in this paper.

2.1 Cryptographic Systems
Clipher Systems
Definition 1. A cipher system is a tuple denoted CP(P,C,K, f(k,p)) where P is the alphabet
of plaintext messages, C is the alphabet of ciphertext messages and K is the alphabet of secret
keys. For each k € K, there is a function fi : P +— C with fi(p) = f(k,p) that is injective and
defined for allp € P.o

A cipher system is unconditionally secure if the random variables P, K,C = f(K, P) satisfy:

H(P) = H(P|C).

Authentication Systems We give only the details needed for authentication codes and refer the
reader to [8], [9] and [10] for more information.

Authentication codes without secrecy allow a party to send a message composed of a source
value s and an authenticator a such that an attacker has at most a probability « of forging a
new message or a probability 5 of altering a known valid message such that the receiver will
accept these forgeries as valid.

If the attacker sees 7 valid messages before sending his forgery, this is called a deception attack
of level i. The most basic attacks are the impersonation attack (i = 0) and the substitution attack
(¢ = 1) and are the only ones considered in this paper. The probability of success for an attack
of level i is denoted Py,.

The participants of the scheme share a secret key that allows the sending party to compute
the right authenticator for a source value, by computing a = f(k, s), and the receiving party to
decide if a message is a forgery or not, by evaluating g(k, (s, a)).

There is always some positive probability of success for any attack. We list some bounds
from the literature: log Pyy > H(K|M) — H(K) ([8]), log Psy > —H(K|M) ([5]), Pu, > ;\_:
and Py, > ,@,l\w ([11], [12]). An authentication code is unconditionally secure if the maximum

probabilities of success meet these bounds. We only consider systems where any pair (s,a) is
valid for at least one key.

Authentication Attacks: In an impersonation attack, the attacker sends a forgery (s,a) € S x A
without seeing any valid message. The probability of the receiver accepting this message as valid
is
payoff(s,a) = M Pr[K = k]
ke, gi(s,a)=1
In a substitution attack, the attacker knows that (si,a1) is a valid message before sending a
forgery (s,a) € S x A. The probability of the receiver accepting this message as valid is

Dokek, gn(s,0)—1, gu(s1,a1)=1 LI = K]

ayoff (s, a, s1,a1) =
payoll(sa,sr ) = e i PR = F]

Definition 2. An authentication code without arbitration, without splitting and without secrecy
is a tuple denoted AC(S, A, K, f(k,s),g(k,(s,a)),a, B) where S is the set of source states, A is
the set of authenticators and K is the set of the secret keys. For each k € IC, there is an injective
encoding rule f : S — A with fiy(s) = f(k,s) that computes the message authentication code
(mac) for each source value s € S. For each k € K, a verification function g : S x A+ {0,1}
with gi(s,a) = g(k, (s,a)) can be defined as g(s,a) =1 iff f(k,s) =a.

The value « is the maximum chance of success for an impersonation attack and (3 is the
mazimum chance of success for a substitution attack. Formally, for any fived k € IC,

max payoff(s,a) < «
?&mmiv yoff(s, ) <

and
max ayoff (s, a, s1,a1) <
) esxaPO S @ 51,01) < 6
S

Commitment Systems Commitment schemes with a trusted initializer allow a sender to commit
to a value and send that commitment to a receiver such that the value she committed to remains
hidden from this. In a second step, the sender reveals her commitment and the receiver may
verify that the sender is not fooling him. The third participant is required only to give the other
two some information that enables them to carry out the protocol. This third participant is
completely honest and trusted by the other two.

A commitment scheme must satisfy a Concealing Property, i.e., the receiver can guess the
value committed to only with a probability equal to a uniform random guess. On the other
hand, the sender’s commitment must effectively bind her, which means she can not open to the
receiver a value different from her commitment. As shown in [2], a commitment system can not
be completely binding, and so we say a system is (1 — €)-binding if the probability of the sender
deceiving the receiver is at most e.

Definition 3. A commitment scheme is a tuple denoted CM(X,Y,K,V, f(k,x),9(v, k), o, 5)
where X is the source states alphabet, ) is the coded states alphabet, K is the alphabet of the
committer’s keys, V is the alphabet of the verifier’s tags. For each k € KC, there is an injective
encoding rule fi : X — Y with fi(x) = f(k,z) that computes the encoding of each possible
commitment x € X. For each v € V, there is a verification function g, : K — {0,1} with
gu(k) = g(v, k).

The values o and B are the mazimum chances of success for the two kinds of attack described
in Section 3.1. Formally,

max Pr[V =v] <«

kek -
Sg=yy

and

) Pr[V =wv
. Levyom Prl ] <8
kK€K M:m‘\t Pr[V =]



2.2 Combinatorial Designs

Design theory is a large body of research dedicated to statistical constructions known as designs.
We give only the results and definitions we need in this paper and refer the reader to some
textbook in design theory.

Definition 4. At — (v,k,\,b,7) design is a pair (D,S) where b= D], t <k <v, A >0, S is
a set of v distinct elements, called points, and D is a collection of subsets of S each with exactly
k elements, called blocks. Besides, every point occurs in exactly r blocks and every subset of S
with exactly t points occurs in exactly A blocks.

These constructions are called t-designs. When t = 2, they are usually called Balanced In-

complete Block Designs (BIBD). o

Definition 5. A design is said to be resolvable if its blocks can be partitioned into sets P; called
parallel classes, each with exactly v/k elements, such that the blocks in each parallel class form
a partition of S.
A resolvable 1 — (v, k, A\, b, 1) design is called affine if for any two blocks By, By belonging to
different parallel classes, it happens that |By N Bs| is equal to k*/v. o
; , AQ) _
Theorem 1. If (D,S) is a t — (v,k,\,b,r) design, then b= a Furthermore, each point
t
N
occurs in exactly r = %
()
Definition 6. At — (v,k,\,b,7) design is called symmetric if b= v, and equivalently k = r.

Theorem 2. In a symmetric t — (v,k, X, b,r) design, the intersection of any two blocks has
cardinality .

Definition 7. A transversal design TD(k,n, \) is a pair (D,S) such that |S| = k-n, the points
in S can be divided into exactly k groups of n elements each, there are X - n? blocks, each of
them containing at most one point from each group, and any pair of points from distinct groups
occurs in exactly A blocks. o

It is easy to see from the definitions that a transversal design is not a 2-design because two
points from the same group are never contained in any block.

3 Analysis of Commitment Schemes

This section presents an analysis of the possible attacks against a commitment scheme and shows
how to build such schemes from a cipher and an authentication scheme.

3.1 Security

In a commitment scheme, both participants can launch attacks.

Bob’s Attack The security of a commitment scheme can be measured by the probability that
Alice has of cheating Bob while Bob can not cheat Alice with more than a priori probability.
Bob’s chances at guessing each x should not be altered by his knowledge of v and y, i.e., for
all triples (z,y,v), p(z|y,v) = p(z). This can be summarized using Shannon’s entropy with
H(X)=H(X|Y,V).

Alice’s Attack Let Alice commit to a value z and send y = f(k,z) to Bob where k is her secret
key. Alice cheats Bob if she can reveal a k' # k such that \Nﬂwm@v = 2’ with 2/ # x, and Bob
accepts k' as valid, i.e., g,(k’) = 1. It is proved in [2] that a commitment scheme can not be
invulnerable against all of Alice’s attacks: Alice can compute the set Vi, = {v € V : p(v|k) > 0}
of all the tags that Bob may have. She then picks the tag vy € Vj that maximizes p(v|k). Let
a = p(volk). By an averaging argument, a > 1/|V;|. Now, Alice picks two values x # 2’ and
computes y = f(k,z). But by the concealing property, there is a key k" such that f(k’,2) = y and
g(vo, k') = 1 which allows Alice to cheat successfully if Bob’s tag is vg. The success probability
of this attack is the probability that Bob is holding the tag chosen by Alice, a. It is shown in
the same paper that the average probability of this attack is at least 2~ (VIK) and therefore
there’s at least one instance with at least this probability of success.

The attack described above is the counterpart to a substitution attack in an authentication
system. There is yet another attack that Alice can perform, which has been pointed in [7].
This is the counterpart of an impersonation attack. These relations are a consequence of the
construction of commitment schemes from authentication codes. In the previous attack, Alice
makes the best possible use of her private information, but she can also launch an attack ignoring
it altogether. To do this, Alice simply computes for each key the probability that Bob accepts
it, i.e., for a fixed key k she finds

(k) =" p(v). (1

vEVL

She then picks the key that maximizes the above sum and reveals it to Bob in the revealing
step. We give two combinatorial lower bounds for this attack when the distribution of the keys
and tags is uniform.

Theorem 3. There is some k € K with probability of success ~(k) > %n where E(|K,|)

signifies the average number of keys that each tag validates.

Proof. Consider (k) as defined above. Its average value is

YIRS p) =
keK veVy

YIKID S Kulp(v) =
vey

B(|K|)

Kl

BUK)

Then, by an averaging argument, there is some & which has (k) > K



E(Vi])

Corollary 1. There is some k € K with probability of success (k) > v where E(|Vg])
signifies the average number of tags that validate each key.
Proof. Tt suffices to note that 3, V| = -,y Kol
We can show an analog result with Shannon’s entropy:
Theorem 4. There is some k € K with probability of success
A(k) > 27T,
Proof. By definition of mutual information (see [3])
Eo(v
—IE;V) = 3 plkv)log £4
keK,veV o ,sv
For each k € K, p(k,v) = 0 for every v € V. Thus, the above can be written
k
MU MU p(k,v)log % (2)
keK veVy %A ,S
The log sum inequality (see [3]) states that
- b; - MU:\ b;
> ailog— < (> a; | log S= (3)
i=1 i i=1 Yisy o
Applying (3) to (2),
p(k)p(v)
—I(V:K) = 5, v) log ———
(ViK) =" plk,v)log )
keK veVy
MUw.Q« MU:@\ NNQAVE?V
< plkv) | log ek Zuen, PP
W\W :WW Yer Xvev, P(F;v)
=1-log> > p(k)p(v)
keK veVy
=1log > p(k)y(k)
ke
=log E(7(K))

where E(y(K)) is the average value of the success probability for each k. By an averaging
argument, there is at least one k that has probability greater or equal to the average value. For
this k:

(k) > B(y(K)) > 271UV,

A commitment scheme is said to be unconditionally secure if it is perfectly concealing and
the maximum probabilities of success for these two attacks are equal and meet the lower bounds.
This implies H(K) = H(V|K) + H(K|V).

3.2 Construction of Commitment Schemes

This section presents a proof that an unconditionally secure commitment scheme can be built
using an unconditionally secure cipher system and an unconditionally secure authentication
system without secrecy as building blocks. Each user in these systems has a function to play. We
call that function a “role”. In composing a commitment scheme with two different systems, the
users of the former will have to play the different roles of the latter at different steps, so we refer
to these roles by writing the abbreviation of the system followed by the role played, all within
square brackets. In the remainder of the paper, C'P stands for “cipher system”, AC' stands for
“authentication system” and C'M stands for “commitment system”. The cipher system consists
of three roles: [CP.Alice|, [CP.Bob] and [CP.Eve]; the authentication system has roles [AC.Alice],
[AC.Bob] and [AC.Oscar].

As previously mentioned, in a commitment scheme there are two kinds of attacks. The first
is against secrecy: Bob must not learn the secret value Alice committed to before the right time,
so Alice sends it enciphered. The second attack is against authentication: Alice must not send
a fake opening key, so she must send it through an authentication scheme. In the first step,
Alice uses a cipher system without receiver. She merely sends Bob an encrypted message, but
he must not be able to open it. Essentially, Bob takes the role of [CP.Eve]. After Bob receives
a key in the revealing step, he takes the role of [CP.Bob] and opens the ciphertext learning
Alice’s commitment. In the second step, Alice sends Bob the key to open the encrypted message
he has, but Bob needs to be sure it is the right key, distributed to her in the initial phase.
Essentially, Alice acts as a relay between Ted and Bob. Since she reads what the initializer sends
and has a choice of relaying that message or changing it for another one altogether, she has
complete control over the channel. In this phase, Ted plays the role [AC.Alice], Alice plays the
role [AC.Oscar] and Bob plays the role [AC.Bob]. We summarize the above in Table 1.

User |Committing Step| Revealing Step
Alice [CP. Alice] [AC.Oscar]
Bob [CP.Eve] [CP.Bob] / [AC.Bob]
Ted [AC.Alice]

Table 1. Roles Played

Theorem 5. Given an unconditionally secure cipher system CP(P,C,K, f(k,p)) and an au-
thentication system without secrecy AC(S, A, &, h(e,s),g(e, (s,a)), o, B) with S = K, there is a
commitment scheme with initializer (per Rivest’s model) CM(P,C,Sx A, E, f(s,p), g(e, (s,a)),

Proof. The several components of the commitment scheme are obtained from the cipher and
the authentication system as shown in Table 2. Because we have used letters given in the initial
definitions, there are two different alphabets labelled K. They are not to be confused. For each
k € CP.K, there are |A| different ¥’ € CM.K, all with the same behaviour in the cipher system.
Considering the analysis in [2], these |A| keys form a parallel class of keys in the combinatorial
design used as basis for the resolvable design commitment scheme. The protocol is as follows:

a, B).



Cipher|Commitment|Authentication
P X
C y
K S
K Sx A
v B
f(k,p) .
9(k, (s, a))

Table 2. Equivalences between systems

1. Initialization: Ted chooses uniformly at random an encryption key s € S and an authenti-
cation key e € €, computes the authenticator a = h(e, s) and sends (s,a) to Alice and e to
Bob.

2. Committing Step: Alice commits to z by sending Bob the encryption y = f(k, ).

3. Revealing Step: Alice sends Bob a possibly false key (s, a’). Bob checks if g.({s',a’)) =1
and if so, he decrypts 2’ = f ' (y).

This construction yields a commitment scheme that follows Rivest’s model, as is shown next.
The crucial point of this construction is that the source value that Ted wants to send Bob in
the revelation step is the actual key that the latter must use to open Alice’s commitment. The
figures in Section 4 can help to understand this. It is easy to verify that the families of functions
[f(k,p) and g(k, (s, a)) satisfy the formal requirements of the commitment scheme. Now we check
the concealing and binding properties.

Concealing Let xg be the value Alice committed to, ko the key she holds and yo = f(ko,zo) the
value Bob received. Let ey be Bob’s tag. Let X, = {z € X : 3k € K s.t. f(k,x) = yo} be the
set of possible plaintexts for the ciphertext Bob holds, K¢, = {k € K : Ja € A s.t. h(eg, k) = a}
be the set of possible Alice’s keys and let Xy, o, = {z € & : Ik € K¢y s.t. f(k,x) = yo} be
the set of possible values for Alice’s commitment given the information Bob knows. Because the
authentication system does not have splitting, for each possible k£ € K and e € £, there is exactly
one a € A such that h(e, k) = a. Therefore, all the keys can be associated to each particular e,
and so K = K, implying that X, = X, .

Bob’s probability of guessing Alice’s commitment without or with knowledge of e is, re-
spectively, p(olyo) = Dpexc, f(k.0)=yo P(K) and p(zolyo, eo) = M»mamo,x%,ﬁ_uug%g and by the
above reasoning they’re equal. Then

H(X|Y,E) = B, (H(X|Y =y, E = ¢))
= Eye(d_ plaly,e)log1/p(aly, )

TEX
- NQAMU p(xly)log 1/p(x]y))
TeEX
= E,(H(X|Y =y))
=H(X|Y).

If follows, by assumption, that H(X|Y,E) = H(X) and this commitment scheme satisfies the
concealing property.

Binding Let ¢ be the value Alice committed to and (ko, ag) be the key/authenticator pair that
she holds. In order to reveal a value 2’ # x¢, Alice needs to make Bob accept a key k' # ko.
Alice can make two kinds of attack, as described in Section 3.1. Her chances of success are, for
the first attack:

| max MU p(e).
(k' umhkamﬁm?,tﬂfﬁng

This corresponds to the impersonation attack against the authentication system and so this
probability is at most a. Likewise, for the second attack:

h et gle K @)=, gle(koa0))=1 P(€)
max
(K ,a"),(ko,a0) KX x Ak’ £ko Dece, gles(it,a))=1 P(€)

)

which corresponds to a substitution attack and is at most 8. Thus, this commitment is (1 —
max (v, 3))-binding.

Corollary 2. Given an unconditionally secure cipher system and an unconditionally secure
authentication system without secrecy there is an unconditionally secure commitment scheme
with initializer (per Rivest’s model).

Next, we show how the different flows of information in the three systems are related.

4 Flow Analysis

In the conclusion to the paper [2], the authors suggest a possible relation between commitment
schemes and authentication schemes with arbitration, but point that the information flows be-
tween these systems are different. Here, we analyse the different flows of information in a com-
mitment scheme, and how these are realized through the flows present in the cipher and in the
authentication systems. We understand by information flows the data that is sent from one user
to another user. The following pictures help visualize the flows in the different systems. In these
figures, there are blocks representing each participant in the system and arrows representing the
messages sent by them, this is, the flows of information between users. Within some blocks is
another name within square brackets. This represents the name of the user of the commitment
scheme that will be playing the role indicated by the block. For instance, when Alice sends her
commitment to Bob, he is playing the role of Eve in the cipher scheme: he receives a ciphertext
but can not read it. Next is shown how each flow is used to implement the flows of the final
commitment scheme. When necessary, we describe roles with the same notation of Section 3.2.
In the following list, we describe the flows in each system and identify them with a name between
brackets that indicates the system the flow belongs to and the step when it takes place. When
some steps have two similar flows, these are further distinguished with letters ’a’ and "b’.




Alice

Cipher Scheme

v =1k

Bob

Eve

[Commit.Bob]

Fig. 1. A Cipher Scheme

Authentication Scheme

(s.a)

Oscar
[Commit.Alice]

Fig. 2. An Authentication Scheme

Commitment Scheme

Bob
[Commit.Bob]

y = k)

Fig. 3. A Commitment Scheme

(CP1) Alice (a) and Bob (b) receive a secret key by some secure channel. This includes the
case where they create a key themselves and exchange it.
(CP2) A message is sent from Alice to Bob (a) and possibly also read by Eve (b).

In an authentication system as described above, there are the following flows:

(AC1) Alice (a) and Bob (b) receive a secret key by some secure channel.

(AC2) A message is sent from Alice to Oscar (a), who may change it before relaying it to Bob
(b). Note this is just a simplified model. In reality, Alice sends the message to Bob, but Oscar
may intercept and alter it or not.

In a commitment scheme, there are the following information flows:

(CM1) Ted gives a key to Alice (a) and a verification tag to Bob (b).
(CM2) Alice sends her commitment to Bob.
(CM3) Alice sends her key to Bob to open her commitment.

The information flows of the commitment scheme are carried out by the information flows
of the other systems like this:

— Flow (CML.b) is achieved by flow (AC1.b). Flow (ACl.a) is ignored because Ted does not
need to remember the key after he creates a valid message to send Alice. Flow (CMl.a)
is achieved by flow (AC2.a), that is, Ted takes the role [AC.Alice] and sends a message to
Alice ([AC.Oscar]). Due to the nature of the construction, namely because the authentication
system does not have secrecy, flow (AC2.a) includes flow (CP1.a), because Alice now has a
key for the cipher system.

— Flow (CM2) is achieved by flow (CP2.b).

— Flow (CM3) is achieved by flow (AC2.b). From this message, Bob deduces a key, completing
flow (CP1.b), and opens the commitment by flow (CP2.a).

Cipher|Commitment|Authentication
(CPl.a) (CM1.a) (AC2.a)
(ACL.b)
(CM1.b) [(ACLa)]
(CP2.b) (CM2) .
(CPLb) .
(CP2.a) (CM3) (AC2.b)

Table 3. Information Flows

5 Optimal Commitment Schemes

In [2], the authors propose a general commitment scheme which they call “resolvable design
commitment scheme”. In this section, we define optimal commitment schemes and show that
they are resolvable design affine commitment schemes. Then, we close the circle showing that



all resolvable design commitment schemes can be viewed as the composition of a cipher system
and an authentication system. For simplification, in what follows, consider that the source val-
ues, keys and verification tags are distributed uniformly, since this maximizes uncertainty and
therefore security.

Definition 8. A commitment scheme CM (X, Y, K,V, f(k,x),g(v, k), o, B) is optimal if it is
unconditionally secure, |X| = |Y| and has the minimum number of keys for a fized number of
source states and the desired security level. Besides, the probability of Alice’s cheating should be
equal to the probability of Bob’s cheating. <

Lemmas 1 and 2 give some properties that an optimal commitment system must have. Lemma
3 excludes BIBDs as the possible minimal system, and this is necessary because such systems
are not resolvable. This means that there can be pairs of blocks with empty intersection and so
these are counted in Lemma 4. After these lemmas, we're ready to give the two main theorems:
that an optimal commitment system must be affine resolvable and that a resolvable commitment
scheme can be decomposed into a cipher system and an authentication system.

Lemma 1. If a commitment scheme CM (X, Y, K.V, f(k,z),g(v,k),a, B) is optimal, then oo =
B and |V| = (1/a)?.
Proof. By definition,

= . > .
o = max [Vil/ V| 2 E(i])/ IV

and by optimality of the system the above holds with equality. Then, |Vj| is constant for all k.
Likewise, and by Theorem 3, |K,| must be constant. By definition,
__ DPrlgw.k) =19 k) =1]
b= wmw%umwm Prlg(v, k') =1]
HoeV:glvk) =g k) =1}

Tiliee . [{veViglo k) =1}
_ ?\w n <>,;
= max —— .

k#k'ek Vil

Let p = maxyspex [Vi N V| Then

_
B=w

The value p can not be 0 because if so each tag would verify exactly one key and Bob would be
able to cheat Alice with absolute certainty, so 8 is minimum if 4 = 1 and

o= Vil/[V|
B=1/|Vkl

We show that v is minimum when o = . Let |[Vi| and [V| be such that & = § = 7. Then
[Vi|?> = |V|. Denote by ag and 7o the values of a and 7 respectively in this case.

Assume for contradiction that there is some combination of values |Vg| and |V| such that
~v = max(a, 3) < 7. Assume w.l.o.g that o > . Then
a=7<y=ag=
Vkl/ VI < VIV V] & 1/ Vel > 1/ V2 =
B> ap > a.
Thus we have a contradiction, and so the minimum ~ is achieved when « = . This implies that
1/[Vel = Vil/[V] and [V] = Vi|* = (1/@)*.
Lemma 2. If a commitment scheme CM(X,Y,K,V, f(k,z),g(v, k), a, B) is optimal, then |X|?
K] = [VI.
Proof. Let v be Bob’s tag and y the coding of Alice’s commitment. Define
Xyo = {2 : Ik € Ky sit. .QLQ\V } to be the set of possible commitments for Alice given
the information Bob holds. Then, |X, | < [K,|. Because |K,| is constant, by Lemma 1,
M Pr(y,v)H(X|Y =y, V =v)
yeYveY

3" Pr(y,v)log| X,
yeYwey

> Pr(y,v)log|K,|
yeYwey
= log K, |

and by optimality of the system log [K,| > H(X) = log |X]|.

By the proof of Corollary 1, |K| - [V = |Ky| - [V| and using Lemma 1, this brings |K| =
|KCol-|Vk| > |X|-|Vk|. But since the system is optimal and the number of keys is minimal, then it
must be that |KC,| = |X|. Bob’s chance of guessing Alice’s commitment is 1/|X|, by definition of
security. From Lemma 1, Alice’s chance is 1/[Vy|. Because in an optimal system Alice’s chance
of success is equal to Bob’s, 1/|X| = 1/|Vy| < |X| = |Vi| which implies |K| = |X|> =

Lemma 3. If a commitment scheme CM(X,V,K,V, f(k,z),g(v,k),a, ) is optimal, then its
incidence matriz can not be a Balanced Incomplete Block Design (BIBD).

H(X|Y,V)

IN

IA

Proof. By Lemma 2, |V| = |K|. Suppose the incidence matrix of the commitment scheme is
a 2 — (v,k,\,b,r) Balanced Incomplete Block Design. Then the design is symmetric and by
Theorem 2, any two keys have exactly A tags validating them. By the proof of Lemma 1, the
maximum intersection between any two lines should be 1, so A = 1. Then, by Theorem 1, each
tag validates exactly » = (v — 1)/(k — 1) keys and again by Theorem 2, r = k. This brings
b=wv=Fk?—k+ 1 where b= K| and v = [V|. By definition, r = |K,|.

By Lemma 2, |K[/|X] = |K,|. Then, b/k must be an integer, but

b R —k+1
& i
—k—1+1/k



and this can not be an integer for k > 1.

Lemma 4. Let p = |X|. If a commitment scheme CM (X, V,K,V, f(k,x),g(v, k), o, B) is opti-
mal, then the sum of distinct pairs of keys that don’t have any tag in common is p* - (p — 1)/2.

Proof. Consider a square matrix where cell (i, j) contains the value |V, NV, | where k; # k; € K.

There are p* - (p> — 1) filled cells. We count the pairs that have a non-empty intersection.
Each key has tag v1 in common with p— 1 different keys and since it is validated by p tags, each
key contributes with p(p — 1) to the total of the sum

Q\HM M _SSDSé

k€K kj#k; €K

Therefore, o’ = p* (p — 1). But this sum counts each pair twice, so the total number of distinct
intersections is o = p?(p — 1)/2. We can find the total number of distinct key pairs that don’t
intersect, recalling that in this particular case all filled cells are either 0 or 1, which means that
o is the sum of all 1s in the table. As before, only a half of the matrix needs to be considered.
Then, the number of distinct key pairs without tags in common is

' =p)/2=pp-1)/2=p"-(p—1)/2.

Theorem 6. If a commitment scheme CM(X,Y,K,V, f(k,x),g(v, k), o, B) is optimal, then it
is an affine resolvable commitment scheme, and all keys in each parallel class encrypt each value
x € X to the same value y € Y. That is, the function y = f(k,x) depends only on the index of
the parallel class containing k, and not on k itself.

Proof. Let p = |X|. From the previous results, there are p keys. Fix some g € X. The concealing
property implies that there must be exactly p keys transforming zo into each possible value
y € Y. Then, the keys can be grouped in p groups such that all keys k;; in group i satisfy
f(kij,x0) = y;. There are exactly p keys validated by each verifier tag. For each two keys k; and
k;j validated by the same tag, it must happen that f(k;,zo) # f(kj, o) or else there won't be
enough keys to hit all the values in Y. But by Lemma 4 and a counting argument, this implies
that all pairs of keys in different groups must have exactly one common tag. Since there are p
disjoint keys in each group, each validated by p tags, each group forms a partition of |V| and is
therefore a parallel class. The design is therefore resolvable and since the maximum intersection
between two keys is 1 = k?/v it is also affine.

Now consider a value z; € & different from z¢. Suppose there are two keys k;, k; in different
groups that code z; in the same way. That is:

f(kiyxo) # f(kj, o)
[k z) = f(kj,@1)
?&3 D<ri =1.

Following the same reasoning as above, if f(k;, z1) = f(k;,x1) then they can not have any tag in
common, contradicting the previous division in groups. Therefore, keys in different groups code

2 in different ways and by a counting argument all keys in the same group transform x into the
same y.

Repeating the argument for any z; € X and for all groups, it must happen that all keys
ki, kj in the same group satisfy

S (ki) = f(kj, )
and so the theorem is proved.

Theorem 7. A resolvable design commitment scheme obtained from a resolvable 1—(v, k, A\, b, 1)
design (D, S) is a composition of a perfectly secure cipher system and an authentication code
with Py = k/v and Py = 25082 ro o1y distinct By, By € D.

Proof. Let B be Alice’s block and w be Bob’s tag in the above system. Then w € B. By Theorem
1, b=r-v/k. Then, w can be seen as a number between 0 and v — 1.

By definition of resolvable design, B belongs to some parallel class. Then, B can be written
(2,7), where 7 is the index of the parallel class and j is the index of the block within the parallel
class. The pair (¢,7) can be interpreted as a pair source value / authenticator.

When Alice commits to zg € Z;, she sends Bob yy = (x¢ + ¢) mod r. Then, z( can be seen
as a symbol in alphabet X' = Z, and yo as a displacement of ¢ positions over that alphabet.
This corresponds to applying a Ceasar’s cipher to the secret message . In general, Ceasar’s
cipher is not secure, but here the message is composed of only one symbol, which means its
size is equal to the size of the key. In this situation, it is equivalent to the one-time pad and
is unconditionally secure. Since all blocks in the same parallel class encipher z( in exactly the
same way, the index of the parallel class represents the cipher key used by Alice.

Now we show that the design used to check the validity of the value revealed after the
commitment can also be used to make an authentication scheme with r source states, v/k
possible authenticators for each source state and v encoding rules. Any block from the design
can be identified by a pair (i, j), where i is the index of the parallel class it belongs to and j
its index within that class. Let B be the set represented by a block with indices (4, j). Then, B
can be interpreted as belonging to an authentication code: 7 represents the source code and j
the respective authenticator. Each element w € B contributes for the definition of an encoding
rule in the following way: f(w,i) = j. Since each w belongs to exactly one block in each parallel
class, there is a unique value associated to each pair (w,). Since there are k elements in each
block, there are exactly k encoding rules associating i to j.

The probability of an impersonation attack is the maximum probability of finding the right
authenticator for a specific pair key / source state. There are a total of v encoding rules. The
number of rules that associate some source state 7 to a given authenticator j is, by construction,
k. Thus, for all such pairs (4, 7),

payoff (i, j) = MU 1/v=Fk/v

wES: f(w,i)=j

and because this is constant for all pairs, it is the probability of an impersonation attack. For
the substitution attack, suppose the attacker knows that the secret encoding rule associates i;



to ji. By construction, there are k such keys. For any pair (i,), the probability of success is

Cwesif wii) =i (wir)=jr P(W)
Do wes:fw,in)=j P(W)
imi. nB ;i
k

payoff (i, j, i1, j1) =

j is the block of the design indexed by (i,7). Then, the probability of the substitution
attack is % over all By, By € D, By # Bo.

6 Generalization to Galois Fields

As noted in [2], affine resolvable 2-designs are optimal among the resolvable designs in terms of
binding probabilities, however not many classes of such designs are known to exist. Notwithstand-
ing this, there are other kinds of designs that can achieve the same goals, namely Transversal
Designs.

This section addresses this question by showing how to construct a resolvable Transversal
Design T'D(2",1,2"), for any n, that is also a 1 — (22",2", 1) affine resolvable design. From such
a design, we then build an unconditionally secure authentication code and an unconditionally
secure commitment scheme.

Theorem 8. For any positive integern, it is possible to construct a Transversal Design TD(2",1,2").

Proof. The order of any finite field can be written p*, where p is a prime and k > 1 is an integer
(see [4]). Let GF(p™) represent one such field. For any finite field GF(p"), there is a primitive
polynomial of degree n and coefficients modulo p ([4]). For composite orders p™, the elements
of the field are considered to be polynomials and the operations of the field are addition and
multiplication of polynomials modulo the prime p. Addition is denoted by & and multiplication
by ®.

Fix some n and some primitive polynomial for GF(2"). We build a table with 22" rows and
2" columns. The rows are divided in 2" groups of 2" elements each, and uniquely identified by a
pair (a,b) where a,b € Zon. Each column is labelled by a number x € Zan. Cell ((a,b), z) holds
the value a ® x @ b, which is a number in Zon.

We show this table represents a T'D(2",1,2") transversal design. Consider the set of points
VY =1{0,1,...,22" — 1} and divide them in 2" groups of 2" points. Each row represents a block
with 2" points, one from each group. For row j, the i value represents the index of the point
in the i’ group that belongs to the j* block. By construction, each block has one point in each
group. Finally, each two points from distinct groups can occur in only one block. To see this, let
(20,90) and (x1,y1) be two points from distinct groups, where xg # 1. For both points to be in
the same block, there must be a pair (a,b) such that a ©® 2o &b =yp and a ® 1 b = y;. Then,

a®ryo—Y=aOr — Y =
a® (xg—x1) =yo — Y1-

Since (zg — 1) and (yo —y1) are defined and (zg —x1) # 0, then a is completely determined,
and so is b. That means there is only one pair satisfying both equations, which means both
points can belong to only one block. This concludes the proof.

This design originates an authentication code AC(2",2",22" 1/2",1/2"), as proved in [12].

With such an unconditionally secure authentication scheme, and using the one-time pad as
a perfect cipher system, we can build an unconditionally secure commitment scheme as outlined
in section 3.2.

Let S = {0,1}". The protocol is as follows:

1. Initialization: Ted chooses randomly a pair (a,b) € S x S and a number z; € S, computes
y1 = a® 1 ® b and sends the pair (z1,y1) to Bob and the pair (a,b) to Alice.

2. Committing Step: Alice commits to zg € S by enciphering yo = zo ¢ a and sending yo to
Bob.

3. Revealing Step: Alice sends (a/,") to Bob, who checks that o’ ® 21 ® b’ = yi. If so, he
computes x(, = yo & a’ and accepts z{, as Alice’s commitment.

The resulting commitment scheme is a generalization of the affine plane commitment scheme.
It uses the one-time pad as cipher system, which is very fast to implement both in software and
hardware. Besides, it allows the use of a complete alphabet of strings of size n, whereas in the
affine plane with order p, the alphabet of allowed values does not coincide with any alphabet of
all strings of a given size. In general, the latter systems will be less efficiently implemented in
hardware and software because the basic instructions are more oriented to a fixed size of bits
than the corresponding arithmetic value.

Finally, we address the matter of calculating addition and multiplication in a Galois Field.
Each element of GF(2") is a binary string of size n, where bit i corresponds to the coefficient of
term 2’ in a polynomial of degree strictly less than n. Addition is performed by adding the poly-
nomial coefficients degree by degree, which corresponds easily to an exclusive-or between both
strings. Thus, this operation can be performed extremely fast both in hardware and software,
especially if n corresponds to the size of the word of the microprocessor used.

Multiplication can be computed by shifting one of the strings to the left an appropriate num-
ber of positions for each bit 1 in the other string, XORing the several displaced versions together
and computing the remainder of the division by the primitive polynomial. This sounds compli-
cated, but can all be implemented with shift and XOR instructions, and both kinds are quickly
implemented in hardware and machine-code. A whole analysis of a possible implementation is
given in [6].

7 Conclusion and Further Work

This paper continues the work began in [2] and [7] in the analysis of unconditionally secure
commitment schemes. It gives formal characterizations of cipher schemes, authentication schemes
without secrecy, splitting or arbitration and perfectly concealing commitment schemes with a
trusted initializer, as proposed by Rivest. Then, we showed how to build an unconditionally
secure commitment scheme using an unconditionally secure cipher system and an unconditionally
secure authentication code. Based on this construction, we showed a new proof for an attack



against commitment schemes analog to the impersonation attack of authentication codes that
had been referred in [7] and gave a similar combinatorial lower bound. Then we showed that the
resolvable design schemes proposed in [2] can be built according to our composition and that any
optimal commitment system must be a system of this kind. We then considered whether it would
be possible to build commitment schemes using the One-Time Pad as the cipher system. This
requires the source alphabet to have 2" elements. A positive answer was given to this question
by showing how to build an adequate transversal design and then an authentication code with a
source alphabet of size 2" that is unconditionally secure against impersonation and substitution
attacks. With the composition given before, this implies the existence of such commitment
schemes that are in fact generalizations of the resolvable design commitment scheme to Galois
Fields of composite order. The construction used can be applied to any field of order GF(p™)
for any prime p, and not just p = 2.

This answers affirmatively the question raised in [2] about the relation of commitment
schemes and authentication schemes, although with a solution different from the one suggested
in that paper. Also this shows that a cipher system is needed too. Accordingly, the theory of
authentication codes without secrecy can be used in the analysis of commitment schemes. Fur-
ther work can be done to understand if other kinds of authentication codes can also be used to
develop different kinds of commitment schemes and if there are viable alternatives to the cipher
system.

8 Acknowledgements

This work was partially supported by KCrypt project (POSC/EIA/60819/2004), the grants
SFRH/BD/13124/2003 and SFRH/BD/28419/2006 from Fundagéo para a Ciéncia e Tecnolo-
gia (FCT) and funds granted to Laboratério de Inteligéncia Artificial e Ciéncias de Computa-
dores(LIACC) through the Programa de Financiamento Plurianual, FCT and Programa POSI.

References

1. Manuel Blum, Coin flipping by telephone: a protocol for solving impossible problems 24th IEEE Spring Com-
puter Conference, pp 133 — 137 IEEE Press, 1982.

2. C. Blundo, B. Masucci, D.R. Stinson, R. Wei, Constructions and Bounds for Unconditionally Secure Non-
Interactive Commitment Schemes (Designs, Codes and Cryptography), Vol 26, 2002.

3. Thomas M. Cover, Joy A. Thomas, Elements of Information Theory, John Wiley & Sons, 1991.

4. Rudolf Lidl & Harald Niederreiter, FINITE FIELDS pp 50-51, 89-91 Cambridge University Press, 1983.

5. Ueli Maurer, Authentication theory and hypothesis testing IEEE Transactions on Information Theory, vol.
46(4), 1350-1356 2000.

6. D. McGrew and J. Viega, The Galois/Counter Mode of Operation (GCM) Submission to NIST Modes of
Operation Proc January, 2004.

7. Anderson C. A. Nascimento, Akira Otsuka, Hideki Imai, Jorn Miiller-Quade, Unconditionally Secure Homo-
morphic Pre-distributed Commitments Applied Algebra, Algebraic Algorithms and Error-Correcting Codes 2003,
pp 87-97, 2003.

8. Gustavus J. Simmons, Authentication Theory / Coding Theory, Advances in Cryptology: Proceedings of
CRYPTO’ 84, Lecture Notes in Computer Science, vol. 196, 411-432, Springer Verlag, Berlin, 1985.

9. G. J. Simmons, Message authentication: a game on hypergraphs Congressus Numerantium, vol. 45, 161-192,
1984.

10. Gustavus J. Simmons, A Natural Tazonomy for Digital Information Authentication Schemes, Advances in
Cryptology - CRYPTO’ 87: Proceedings, Lecture Notes in Computer Science, vol. 293, 269-288, Springer Verlag,
Berlin, 1988.

11. Douglas R. Stinson, Combinatorial Characterization of Authentication Codes, Advances in Cryptology:
Proceedings of CRYPTO’ 91, Lecture Notes in Computer Science, vol. 576, 62-72, Springer Verlag, Berlin,
1992.

12. Douglas R. Stinson, Some Constructions and Bounds for Authentication Codes, Advances in Cryptology
- CRYPTO’ 86: Proceedings, Lecture Notes in Computer Science, vol. 263, 418-425, Springer Verlag, Berlin,
1987.



One-way functions using Kolmogorov complexity*

Lufs Antunes'?**

Armando Matos
Alexandre Pinto®
André Souto! 2t

Andreia Teixeira'2#

L% x %

! DCC - Faculdade de Ciéncias dad Universidade do Porto
2 TInstituto de Telecomunicacoes
3 CCTC / DI - Universidade do Minho
4 LIACC

emails: 1fa@dcc.fc.up.pt; acm@dcc.fc.up.pt; ampinto@di.uminho.pt;
andresouto@dcc.fc.up.pt;andreiasofia@dcc.fc.up.pt

Abstract. A one-way function is intuitively defined to be an honest function which is easy to compute, but
hard to invert. We propose an individual approach to one-way functions based on Kolmogorov complexity
and prove some relationshipsbetween the new proposals and the classical definitions of one-way functions.
In particular, we prove that Kolmogorov one-way functions are more restrictive than the classical one-way
functions. We also relate Kolmogorov one-way functions with the conjecture of polynomial time symmetry
of information.

1 Introduction

Our main objective is to prove the perfect secrecy of assymmetric cryptographic protocols using Algorith-
micInformation Theory instead of Information Theory. The advantage is the possibility of characterizing the
security of individual instances of cryptographic protocols. For that purpose, we will apply the time-bounded
version of Kolmogorov complexity to the analysis of cryptographic primitives that compose the assymmetric
cryptographic protocols, namely one-way functions, pseudo-random generators, extractors, and zero-knowledge
interactive proof systems. In this paper, we study one-way functions, defining Kolmogorov one-way functions.
Intuitively speaking, a one-way function is a function that is easy to evaluate but hard to invert. The existence
of these functions is an open question which implies P  NP. It is also an open question if this is a necessary
condition. It is well known that the existence of one-way functions is necessary for the existence of pseudo-
random generators, digital signatures, identification schemes, and public-key encryption. On the other hand,
it is also known [BM84,GMRS88.IL89,ILL89,Rom90] that the one-way functions are sufficient for the creation
of a pseudo-random generator and trapdoor one-way functions are sufficient for the construction of public-key
encryption and signature schemes. This is a motivation for the study of one-way functions in more depth.

‘We present a characterization of injective one-way functions based on time-bounded Kolmogorov complexity.

Classically, there are several definitions of one-way functions, such as: strong, weak and deterministic. Informally,
[ is a strong one-way function if all efficient inverting probabilistic algorithms succeed with negligible probability;
[ is a weak one-way function if all efficient inverting probabilistic algorithms fail with non-negligible probability;
in the case of deterministic one-way functions, the function only needs to be resistant to deterministic adversaries.
An interesting fact about these functions is that not every weak one-way function is a strong one-way function;
however weak one-way functions exist if and only if strong one-way function exist (see [Gol01] for details).

The Kolmogorov complexity K(z) ([Kol65], [Sol64] and [Cha66]) of a string z is the length of the shortest
program producing z in a universal Turing machine. The time-bounded version of Kolmogorov complexity K*(z),
is the length of the shortest program producing the string z in a universal Turing machine within time ¢(|z|).

* A preliminary version of this work was presented at Computability in Europe 2010
** The authors are supported by C'SI? (PTDC/EIA- CCO/099951/2008)
*** The author is also partially funded by LIACC through PFP of FCT
¥ The author is also supported by the grant SFRH / BD / 28419 / 2006 from FCT
 The author is also supported by the grant SFRH / BD / 33234 / 2007 from FCT

In this work, we characterize one-way functions using different approaches. In this section let us denote the
expression E(K(x|f(z),n)) by B, the expected value of time-bounded Kolmogorov complexity of an object
z € X" given f(z), where f is the description of the function, given by an oracle. We first relate £ with
the classical notions of one-way functions (Theorems 4, 5 and 6). We show that if £ > ¢ for any positive
constant ¢, then f is a weak one-way function. In the another direction, if f is a weak one-way function,

then there is a polynomial g(n) such that £ > _“ﬂ;vw on the other hand, we show that if f is a strong one-
1

way function, then E > ¢ T - iiv logn for every constant ¢ and for every polynomial ¢(n). In a second

approach, we define one-way functions based on individual instances (Definition 7) and relate it with the
classical notion of weak one-way functions (Theorem 7); then a characterization of one-way functions based on
time-bounded Kolmogorov complexity of the individual instances is given (Definition 8) and a relationship with
deterministic one-way functions is studied (Proposition 1). For the second approach the intuition is that the
time-bounded Kolmogorov complexity is suitable to one-way functions using individual instances. We expect
that  and f give all the information needed to compute in polynomial time f(z) and, on the other hand, the
value f(z) does not convey in polynomial time useful information about z, in fact, we expect that the length of
a shortestprogram computing x given f(z), |z|, and f should be approximately equal to the length of a shortest
program computing x without any auxiliary input.

We show that Kolmogorov one-way functions are more restrictive than classical one-way function in the sense
that the existence of Kolmogorov one-way functions with certain parameters implies the existence of classical
one-way functions.

In [LM93] and [LW95], the authors relate the existence of one-way functions and the conjecture of polynomial
time symmetry of information. For the unbounded version of Kolmogorov complexity, symmetry of information
was first proved by Levin (as suggested in [ZL70]), but the proof is not valid when polynomial time-bounds
restrictions are imposed. The conjecture of polynomial time symmetry of information has close connections to
several complexity theoretic questions, similar to the connections concerning the existence of one-way functions.
In this work, we relate this conjecture with the existence of Kolmogorov one-way functions, by proving that
the polynomial time symmetry of information fails if Kolmogorov one-way functions exist (Propositions 2 and
3 and Theorem 8).

2 Preliminaries

All the strings we use are elements of £* = {0,1}* and we denote them by z, y, z. The function log always
denotes the function log, and |.| represents the length of a string. The number of elements of a set A, i.e. its
cardinality, is denoted by #A. We assume that any time bound ¢(n) we use is constructible and larger than n.
For convenience we give definition of some order notations.
Definition 1. Let f and g be two positive functions.
— f(n) € O(g(n)) if and only if 3k > 0, ng ¥n > ng, f(n) < k- g(n).
— f(n) € 2(g(n)) if and only if 3k > 0, ng ¥n > ng, f(n) > k- g(n).
— f(n) € w(g(n)) if and only if Vk >0, 3ng Vn > no, f(n) > k- g(n).

2.1 Kolmogorov Complexity

‘We present the basic definitions and the results necessary for the rest of this paper; further details on Kolmogorov
complexity can be found, for instance, on the comprehensive textbook [LV08]. We will use the prefix-free
definition of Kolmogorov complexity. A set of strings A is prefix-free if there are not two strings = and y in A
such that x is a proper prefix of y.

Definition 2. Let U be a fized universal Turing machine with a prefiz-free domain. For any strings x,y €
{0,1}*, the Kolmogorov complexity of = given y with oracle access to f is

Uy(p,y) = =}

Ky (x|y) = min{
»



For any time constructible t, the t time-bounded Kolmogorov complexity of « given y with oracle access to f is
defined by
Kf(x

x|+

y) = min{|p| : Us(p,y) = = in at most t( y|) steps}.
r

The default value for y, the auxiliary input for the program p, is the empty string ¢ and for oracle f is the
null function. In order to avoid overloaded notation, in those cases we typically drop these arguments in the
notation. Notice that Kolmogorov complexity is machine independent in the sense that we can fix a universal

Turing machine U whose program size is at most a constant additive term worse than in any other machine,
and the running time is, at most, a logarithmic multiplicative factor slower than in any other machine.

One important result in Kolmogorov complexity is the following theorem on the existence of incompressible

strings (see [LVO08]).
Theorem 1. (Incompressibility Theorem)
=n}=n+K(n)+0(1).

2. For each fized constant v, the set {z : (x| =n) A (K(z) < n+K(n)—r)} has at most 2"~"+O0) cleme
i.e, almost all x have nearly mazimum complexity.

1. For each n, max{K (z) :

In Information Theory, one useful result is the symmetry of information which states that, given two distributions
X and Y, I(X]Y) = I(Y|X), where I(-) is the mutual information (see ). In [ZL70], it is shown that in the
resource unbounded case, the symmetry of information concerning the Kolmogorov complexity also holds:

Theorem 2. (Symmetry of Information) For all strings x and y in {0,1}",

K(z,y) = K(z) + K(y

z) + O(logn).

‘We will be interested in relating the existence of Kolmogorov one-way functions with polynomial time-bounded
symmetry of information, which can be described by:

Hypothesis 3 (Polynomial time-bounded symmetry of information) Lett be a polynomial. For all strings
x and y in {0,1}",
K'(,y) = K'(x) + K'(ylz) + O(logn).
This conjecture is unknown to hold unconditionally, but in [LM93] and in [LW95], it is shown that:
— If P = NP then polynomial time symmetry of information holds ([LW95]);

— If deterministic one-way functions exist, then the polynomial time symmetry of information conjecture is

false ([LM93,LW95)).

In [LRO5], the authors explore this conjecture for other types of time-bounded complexity measures.

2.2 One-way functions

Now we present the notion of one-way function.

Definition 3. A function f is honest if for some k > 0 and for all x € {0,1}*,
(If@)] =<

k) A (2] < |f@)]F + &)

T

In all definitions presented in this paper we assume that f is honest.

Definition 4 (Deterministic one-way function, [LM93]). A function f :{0,1}* — {0,1}* is a determin-
istic one-way function if the following two conditions hold:

1. Easy to compute: there is a (deterministic) polynomial-time algorithm A such that on every input x, the
algorithm A outputs f(z) (i.e., A(z) = f(z)).

2. Slightly hard to invert: for any polynomial time algorithm B, for some polynomial q, for all sufficiently large
n

probc o [f(B(f(x),n)) # f(2)] > )

Definition 5 (Weak one-way function). A function f:{0,1}* — {0,1}* is a weak one-way function if the
following two conditions hold:

1. Easy to compute: there is a (deterministic) polynomial-time algorithm A such that on every input x, the
algorithm A outputs f(z) (i.e., A(z) = f(z)).

2. Slightly hard to invert: there is a polynomial q such that for every probabilistic polynomial-time algorithm
B and all sufficiently large n’:

Prob, pexny oo [f(B(f(@),r,n)) # f(z)] > ok

Definition 6 (Strong one-way function). A function f : {0,1}* — {0,1}* is a strong one-way function if
the following two conditions hold:

1. Easy to compute: there is a (deterministic) polynomial-time algorithm A such that on every input x algorithm
A outputs f(x) (i.e., Alz) = f(z)).

2. Hard to invert: for every probabilistic polynomial time algorithm B, every positive polynomial q, and every
sufficiently large n,

prob, e snw st [[(B(f(2),rn)) = f(2)] <

It is easy to see that any strong one-way function is a deterministic and it is also a weak one-way function.

3 One-way functions and Kolmogorov complexity

We present some approaches to define one-way functions using Kolmogorov complexity.

3.1 An expected value approach

We first show how one-way functions are related with expected value of polynomial time-bounded Kolmogorov
complexity over £". In particular, we show that if the expectation is at least larger than any constant, we have
a weak one-way function but if this value is nearly maximum, then f is a strong one-way function. On the other
hand, we show that if f is a strong one-way function, then the expectation must be larger than logarithmic.

Theorem 4. Let f be an injective and polynomial time computable function. If for all polynomial t and for
every constant ¢, the expected value of K (x|f(x),r,n) over pairs (z,r) € X" x XU s larger than ¢ for
sufficiently large n's then f is a weak one-way function.

Proof. Assume that f is not a weak one-way function. Then, in particular, if g(n) = n?, there is an algorithm
B such that prob, . (B(f(z),r,n) # x) < 1/n? for infinitely many integers n. Let ¢ be any polynomial such that
t(n) > timep(n)log(timeg(n)). Consider the set:

I={(z,r) € " x L=t B(f(x),r,n) = x}



Notice that if (z,7) € I then Nﬁ&_}&vﬂﬁ:v < |B|. Thus, for infinitely many n:

B(KHalf@)rm) = Y prob(e.r) - K}(alf().rm) =

(.)€ X x D<)

= MU prob(z,r) - Nﬁ&_\ﬂ&v, r,n) + MU prob(z,r) N.I&_\ ),rn) <

(w,m)€el ()21
< prob[(z,r) € I] - |B| + M prob(z,r) - (n+ O(1)) <
ey
1
< |B|+ :‘wg +0(1)) € O(1)

Thus, if E(K}(x|f(x),r,n)) > ¢ is satisfied for all constants ¢ and for almost all n, then f is a weak one-way
function. u]

We now present two results that give some intuition about the expectation of the Kolmogorov complexity of a
strong one-way function and a weak one-way function. Notice that the result for weak one-way functions is not
tight since the gap for the bound proved in the last theorem is large.

Theorem 5. Let t be any polynomial. If f is a strong one-way function then, for every constant ¢ and every

polynomial q, E, 1yesny g (Kf (| f(z),r,n) > ¢ AH - iw:v logn for almost all n.

Proof. Assume, by contradiction that for some constant ¢ and some polynomials ¢ and ¢ we have E,, )¢ gy s<tm) QQA&_\A&V

c T - @v log n infinitely often. By the Markov bound we have:

) - o . c T - iﬂiv logn 1
Prob, yesnx s [Kp (2| f(2),7,n) < clogn] > 1 — T o) 9

We build an algorithm @ that on input (f(z),r) tries to invert f(z), and succeeds for the cases where
Nm? f(x),r,n) < clogn. This algorithm simply runs all programs of size up to clogn for at most ¢ steps
and with randomness r for input f(z). For each such program, @ tests if the output is an inverse of f(z), and
if it is , it outputs that inverse. If for the pair (x,r) it happens that Nﬁi}avuﬁ:v < clogn, then @ will find
a suitable shortest program and output the correct z. Therefore, its success probability is at least that of (z,r)
satisfying this condition, that is, Pr me (x| f(z),r,n) < clog L > ﬁH

Since there are at most 2¢1087+1 = 2. 2¢1°8" proorams of length at most clogn and each of them is run for a
polynomial number of steps, then clearly @ runs in polynomial time.

By assumption, we know that for infinitely many n’s,
Prob, e snx w<im [Q(f(2), 1, n) = 2] > o
Thus, f is not a strong one-way function. O

Theorem 6. Let t be any polynomial. If f is a weak one-way function then, there is a polynomial q such that,

By pyesnx st (K (2| f(z),r,n) > Naﬂ?f

Proof. Assume, by contradiction that for every polynomial p and for some polynomial ¢, we have E, e sy <t (K (2| f (x)

NM.NM%V infinitely often. By the Markov bound we have:
log(n) 1
(n)
wSTAEJmM:me;iTA\A&_\ ,r,n) < clogn] >1— % =1- )

‘We consider a polynomial time algorithm @ similar with the algorithm that was used in the proof of the last
theorem, that on the input (f(z),r) runs all programs of length at most clogn for ¢ steps each.

Since there are at most 2¢°8"+1 = 2p¢ programs of length at most clogn and each of them is run for a
polynomial number of steps, then clearly ) runs in polynomial time.

By assumption, we know that for infinitely many n's,

Prob, yyesnx e [Q(f(),rn) =a] > 1~ () =1- o)

Thus, f is not a weak one-way function. o

3.2 An individual approach

The characterization of one-way functions proposed in the last section does not give a satisfactory insight about
the security of particular individual instances of one-way functions. This issue is important in our approach
to cryptography. In fact, to have an individual instance analysis of security we must have a precise control on
the quantity of information that each particular instance may leak. In this section we give a notion of one-way
function based on Kolmogorov complexity of particular instances.

Definition 7. Let t be any polynomial, f : X* — X* be a polynomial time computable and injective function
and 6(+) a positive function. We say that an instance x of length n is é-secure relatively to a random string
re DS f:

Ki(alr.m) — K} (| f().r.n) < 5(n).
Let (-) be a function. We say that f is an (£, d)-secure Kolmogorov one-way function if for sufficiently large
n's we have:

Prob, yexny n<tm (v is d-secure for r) > e(n)

Intuitively, an (g, §)-secure Kolmogorov one-way function is a function whose probability of having an advantage
of more than § bits in the description of @ by seeing f(z) is not larger than 1 — .

Theorem 7. Lett be any polynomial. If f is an injective and polynomial time computable function which is an
(w(1/n), c)-secure Kolmogorov one-way function for every constant ¢, then f is a weak one-way function.

Proof. Let t be any polynomial and consider the following sets:

R = Ta.ﬂv € X x LI :Q?A r,n) <n—logn) V (Kf(z|r, f(z),n) < Wﬁs

rn)—c) W
RY = 5" x pSt)\ R-

Using a counting argument, given r, there are less than 27~legn+1

Thus, there are at most 271987 +1 x 24 pairs (.

strings  such that K} (z|r,n) < n —logn.
) € X" x Y= guch that K (z|r,n) <n—logn.

By the assumption of f being secure Kolmogorov one-way function, there are at most (1 — g(n)) x 27" pairs
(,7) € 2" x D= such that K (lr, f(x),n) < Kf(z|r,n) — ¢ and where g(n) € w(1/n). Thus,

#R— < 2t . Am:\_onztv +(1—gn))- gn+t(n)
— gntt(n) Aw\_on ntl g m?é

= gnid G )+ WV .

n

The number of pairs in R is at least (g(n) — 2) 2m+t(m),
Thus,
E((alf@,rm) = 3 proba,) - Ky(alf(z), )

() €D x DS

> M Eov?&i@mﬁi\.?&,ﬁ:v
a,r)ERT

> %va (n—logn—c) >
>g(n)-(n—logn—c)—2




Notice that (n —logn — ¢)- g(n) — 2 converges to infinity. Hence f, by the expected value characterization given
in Theorem 4, is a weak one-way function. O

In order to avoid dealing with probabilities we can think of a different approach based on Definition 7:
Definition 8. Let f:{0,1}* — {0,1}* be an injective and polynomial time computable function. We say that

[ is Kolmogorov one-way function if for all polynomial t, all constant ¢ and for all sufficiently large n and for
all @ of length n, K§(x|n) — K§ (x| f(x),n) < clogn.

Notice that this definition is a particular case of Definition 7, where the value of ¢ is taken to be 1.
Proposition 1. If f is a Kolmogorov one-way function then f is a deterministic one-way function.

Proof. We prove this proposition by contraposition. Assume that f is not a deterministic one-way function.
Thus, there is a deterministic polynomial time algorithm B such that for all polynomial ¢ and all ng, there is
an n > ng, for which:

#{x e 2" : B(f(x),n) =a} > 2" —

Thus, for an infinity of n’s, B inverts at least one @ such that [z| = n, K}(x|n) > \/n. For these x, we have
that Kj(z[n) > /n and K} (z|f(z),n) < ¢, where ¢ is a constant that includes the description of B. Taking
those x such that for all ¢, \/n > clogn + ¢’. So, we have:

Nﬁﬂi:v = Kj(z|f(x),n) > v/n—¢
> clogn+c — ¢
=clogn

]

It is unknown if the existence of Kolmogorov one-way functions defined as in Definition 8 implies or not the
existence of strong or even weak one-way functions.

4 On the Kolmogorov complexity one-way functions and the polynomial time
symmetry of information conjecture

Longpré and Mocas in [LM93] and Longpré and Watanabe in [LW95] have studied the relationship between
classical one-way functions and polynomial time-bounded symmetry of information conjecture.

Similarly, in this section, we explore the connection between the existence of Kolmogorov one-way functions
and the polynomial time-bounded symmetry of information.

‘We begin by observing the following:

Proposition 2. If there is a Kolmogorov one-way function with respect to Definition 8, then the polynomial
time-bounded symmetry of information conjecture is false.

Proof. In Proposition 1, we proved that if a Kolmogorov one-way function with respect to Definition 8 exists,
then a deterministic one-way function also exists. But from [LM93] and [LW95], it is known that if the de-
terministic one-way functions exist then the conjecture of polynomial time-bounded symmetry of information
conjecture does not hold. O

Proposition 3. If f is an injective total function and computable in polynomial time, then for all, except a
polynomial fraction of strings x. if y = f(x) then:

Ki(allz]) < Ki(ylly) + Oog K (yz, |yz))

Proof. Since the Kolmogorov complexity of a string can not increase by more than a constant when a polynomial
time function is applied, we only need to consider the case where K (z[[z]) < K (y|ly]).

Consider the strings = of length n such that Ky(z) > n — logn.

Now, considering the image of those strings through f, since only a polynomial fraction of the strings of length
n has Kolmogorov complexity less than n — logn, and since f is injective, all except a polynomial fraction
of the strings # map to strings y of high Kolmogorov complexity. For those strings, NWX ) — wa@ lyl) €
O(log K} (ye[yz])).- o

Theorem 8. If polynomial time-bounded symmetry of information conjecture holds then (1/poly, O(logn))-
Kolmogorov one-way functions do not exist.

Proof. 1f f(z) =y and |z| = n:
— Ki(yx|n,r) < Kf(x|n,r) + O(1) for all random string r € ppely(n);

— Kj(z|n,r) = K}(y[n) < O(logn) for all except a polynomial number of z and 7.
Thus, by polynomial time-bounded symmetry of information, for all except a polynomial number of z’s and
r's, we get:
KY(yln,r) + K aly, K} (yeln,r) + Ollogn)
& Ki(zly,n,r) < ) = K (yln,r) + O(log n)
= ~MMAHF;: r) < — K{(y|n,7) + O(log n)
= Kj(zly,n,r) < logn) + O(log n) = O(logn)

Then, for all except a polynomial number of ’s and r’s

K (z[r,n) — Kf(zly,r,n) > Kf(a|r,n) — O(logn) > O(logn)

which implies that f is not an (1/poly, O(log n))-Kolmogorov one-way function. u]

References

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. STAM J.
Comput., 13(4):850-864, 1984.

[Cha66] G. Chaitin. On the length of programs for computing finite binary sequences. J. ACM, 13(4):547-569, 1966.

[GMRS88] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM J. Comput., 17(2):281-308, 1988.

[Gol01]  O. Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.

[TL89] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptography. In SFCS
’89, pages 230-235. IEEE Computer Society, 1989.

[TLL89] R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random generation from one-way functions. In STOC ’89,
pages 12-24. ACM, 1989.

[Kol65]  A. N. Kolmogorov. Three approaches to the quantitative definition of information. Problems of information
transmission, 1(1):1-7, 1965.

[LM93] L. Longpré and S. Mocas. Symmetry of information and one-way functions. Information processing Letters,
46(2):95-100, 1993.

[LRO5]  T. Lee and A. Romashchenko. Resource bounded symmetry of information revisited. Theor. Comput. Sci.,
345(2-3):386-405, 2005.

[LVO8] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications. Springer Publishing
Company, Incorporated, 2008.

[LW95] L. Longpré and O. Watanabe. On symmetry of information and polynomial time invertibility. Information
and Computation, 121(1):14-22, 1995.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In STOC ’90, pages 387-394.
ACM, 1990.

[Sol64]  R. Solomonoff. A formal theory of inductive inference, part 1. Information and Control, 7(1):1-22, 1964.

[ZL70]  A. Zvonkin and L. Levin. The complexity of finite objects and the development of the concepts of information
and randomness by means of the theory of algorithms. Russian Mathematics Surveys, 256:83-124, 1970.



Depth as Randomness Deficiency

Lufs Antunes* Armando Matos
Computer Science Department Computer Science Department
University of Porto University of Porto

André Souto Paul Vitanyi ®
Computer Science Department CWI
University of Porto University of Amsterdam
Abstract

Depth of an object concerns a tradeoff between computation time and excess of pro-
gram length over the shortest program length required to obtain the object. It gives an
unconditional lower bound on the computation time from a given program in absence of
auxiliary information. Variants known as “logical depth” and “computational depth”, are
expressed in Kolmogorov complexity theory.

In this article we derive quantitative relation between logical depth and computational
depth and unify the different “depth” notions by relating them to A. Kolmogorov and L.
Levin’s fruitful notion of “randomness deficiency”. Subsequently, we revisit the computa-
tional depth of infinite strings, introducing the notion of super deep sequences and relate
it with other approaches.

1 Introduction

The information contained in an individual finite object (a finite binary string) can be mea-
sured by its Kolmogorov complexity—the length of the shortest binary program that computes
the object. Such a shortest program contains no redundancy: every bit is information; but
is it meaningful information? If we flip a fair coin to obtain a finite binary string, then with
overwhelming probability that string constitutes its own shortest description. However, with
overwhelming probability, all the bits in the string are apparently meaningless information,
just random noise.

The opposite of randomness is regularity; and the effective regularities in an object can
be used to compress it and cause it to have lower Kolmogorov complexity. Regular objects
contain laws that govern its existence and have meaning. For example, let the object in
question be a book on number theory. The book will list a number of difficult theorems.
However, it has very low Kolmogorov complexity since all theorems are derivable from the
initial few definitions. Our estimative of the difficulty of the book is based on the fact that it

“Email: 1falncc.up.pt. Web: http://www.ncc.up.pt/"1fa. Adress: Departamento de Ciéncia de
Computadores. Rua Campo Alegre, 1021/1055, 4169 - 007 PORTO, PORTUGAL

"Email: acm@ncc.up.pt. Web: http://www.ncc.up.pt/ acn.

"Email: andresouto@dcc.fc.up.pt. Web: http://www.ncc.up.pt/ andresouto.The author is supported
by the grant SFRH / BD / 28419 / 2006 from FCT

SEmail: Paul.VitanyiGcwi.nl. Web: http://homepages.cwi.nl/ paulv/.

takes a long time to reproduce the book from part of the information in it. We can transmit
all the information in the book by just transmitting the theorems. The receiver will have to
spend a long time to reconstruct the proofs and the full book. On the other hand, we can
send all the book. Now the receiver has all the useful information without having to spend
much time. Hence, there is a tradeoff: in both cases we send the same information in terms
of Kolmogorov complexity, but in the former case it takes a long time to reconstruct it from
a short message, and in the latter case it takes a short time to reconstruct it from a long
message. The existence of such book is itself evidence of some long evolution preceding it.

Previous work: Bennett [Ben88| introduced the notion of logical depth of an object as
the amount of time required for an algorithm to derive the object from a shorter description.

Antunes et al. [AFMVO06] consider logical depth as one instantiation of a more general
theme, computational depth, and propose several other variants based on the difference be-
tween a resource bound Kolmogorov complexity measure and the unbounded Kolmogorov
complexity.

For infinite sequences, Bennett identified the classes of weekly and strongly deep sequences,
and showed that the halting problem is strongly deep. Subsequently Judes, Lathrop, and
Lutz [JLL94] extended Bennett’s work defining the classes of weekly useful sequences and
proved that every weakly useful sequence is strongly deep in the sense of Bennett. Fenner et
al. [FLMRO5] proved that there exist sequences that are weakly useful but not strongly useful.
Lathrop and Lutz [LL99] introduced refinements (named recursive weak depth and recursive
strong depth) of Bennett’s notion of weak and strong depth, and studied its fundamental
properties, showing that recursively weakly (resp. strongly) deep sequences form a proper
subclass of the class of weakly (resp. strongly) deep sequences, and also that every weakly
useful sequences is recursive strongly deep.

Randomness deficiency of a string z with respect to a probability distribution was defined
and investigated by L.A. Levin [Lev74, Lev84] and by A.N. Kolmogorov. Levin [Lev74] also
showed that the Kolmogorov complexity of a string x coincides up to an additive constant
term with the negative logarithm of the Universal probability of z.

Results: We derive quantitative relations between the different notions of depth: logical
depth and computation depth (Section 3). Subsequently, we relate the different “depth”
notions to A. Kolmogorov and L. Levin’s fruitful notion of “randomness deficiency” (Section
4). We study the common information for infinite strings (Section 5) and finally, based on
the connection between randomness deficiency and computational depth, we introduce and
study the notion of super deep for infinite sequences (Section 6).

2 Preliminaries

We briefly introduce some notions from Kolmogorov complexity, mainly the standardize no-
tation. We refer to the textbook by Li and Vitdnyi [LV97] for more details. Let U be a fixed
universal Turing machine. For technical reasons we choose one with a separated read-only in-
put tape, that is scanned without backing up, a separate work tape on which the computation
takes place, and a separate output tape. Upon halting, the initial segment p of the input that
has been scanned is called “program” and the contents of the output tape is called “output”.
By construction, the set of halting programs is prefix free. We call U the reference universal




prefix machine. In the rest of this paper we denote the n-prefix of an infinite sequence a by
ay, and the i"-bit by o’

Definition 2.1 (i) The Kolmogorov complezity of a finite binary string x is defined as

1U(p) = =},

K(x) = min{lp
P
where p is a program, and the Universal a priori probability of x is
Qui)= > 27
Up)==

(ii) A time-constructible function ¢ from natural numbers to natural numbers is a function
with the property that ¢(n) can be constructed from n by a Turing machine in time of order
O(t(n)). For every time-constructible ¢, the t-time-bounded Kolmogorov complexity of x is
defined as

K'(z) = zm:ﬁi 1 U(p) = o in at most ¢(|z|) steps},

and the t-time bounded Universal a priori probability is defined as

Q)= > 277,

Ut(p)=z

and U'(p) = x means that U computes = in at most ¢(|x|) steps and halts.

A different universal Turing machine may affect the program size |p| by at most a constant
additive term, and the running time ¢ by at most a logarithmic multiplicative factor. The
same will hold for all other measures we will introduce.

Levin [Lev74] showed that the Kolmogorov complexity of a string « coincides up to an
additive constant term with the logarithm of 1/Qp(x). This result is called the “Coding
Theorem” since it shows that the shortest upper semi-computable code is a Shannon-Fano
code of the greatest lower semi-computable probability mass function. In order to state
formally the Coding theorem we need to introduce the notion of universal enumerable discrete
semimeasure.

Definition 2.2 There exists a universal enumerable discrete semimeasure, which we denote
by m. It is a discrete semimeasure that multiplicatively dominates every other enumerable
discrete semimeasure.

Theorem 2.3 (Coding Theorem) For every z € {0,1}",
K(z) = —log Qu(z) + O(1) = —logm(x).

Hence, if 2 has high probability because it has many long descriptions then it must have
a short description too.

We refer to mutual information of two finite strings as
I(z:y) = K(z) + K(y) - K(z,y).

Notice that the mutual information is symmetric, i.e., I(z:y) = I(y : ).

3 Depth

Bennett [Ben88] defines the b-significant logical depth of an object z as the time required by
the reference universal Turing machine to generate x by a program that is no more than b
bits longer than the shortest descriptions of . Bennett uses time as the number of steps;
instead, we generalize the definition to consider the number of steps t(|z|), where ¢ is a
time-constructible function. We will use a more general definition in the later theorems.

Definition 3.1 (Logical Depth) The logical depth of a string « at a significance level b is

. @@T& LN
): Qu(z) =2 W,

where the minimum is taken over all time constructible ¢.

xz

Idepthy(2) = min %A

Given a significance level b, the logical depth of a string x is the minimal running time
t(|z]), such that programs running in at most #(|z|) steps account for approximately a 1/2°
fraction of 2’s universal probability.

In fact, with some probability we can derive the string by simply flipping a coin. But for
long strings this probability is exceedingly small. If the string has a short description then we
can flip that with higher probability. Bennett proposal tries to express the tradeoff between
the probability of flipping a short program and the shortest computation time from program
to object.

Antunes et al. [AFMV06] developed the notion of computational depth in order to capture
the tradeoff between the amount of help bits required and the reduced computation time to
compute a string. The concept is simple: they consider the difference of two versions of
Kolmogorov complexity measures.

T

Definition 3.2 (Basic Computational Depth) Let ¢ be a time constructible function.
For any finite binary string x we define

depth’(z) = K'(z) — K(z).

Bennett is not very precise, but from his original paper [Ben88] we can conclude that
he intends that a string = to be (t(|z]),b)-deep iff ¢(|z|) is the least number of steps to
compute x from a program of length at most K(x) + b. Then, it is straightforward that
depth’(z) = K'(z)— K (z) iff 2 is (t(|z]), K*(x) — K (x))-deep. The relations between Bennett’s
logical depth and the computational depth follow.

x

The proof of Item (ii) below uses an idea contained in the proof of Theorem 7.7.1 of
[LV97]. Define K (t) where ¢ is a time-constructible function, as min;{i : T; computes t(-)},
where 17,75, ... is the standard enumeration of all Turing machines.

Theorem 3.3 Let t be a time-constructible function.
(i) If b is the minimum value such that ldepth,(x) = t(|z]), then depth’(z) > b+ O(1).
Qt@amﬁrxinp:a:_%Eriai53;«3?9:AavWE&:.



Proof. (i) Assume, ldepthy(z) = ¢(|z]). So
Qu (@)

—b
Q) =7

with ¢(|x]) least. Assume furthermore that b is the least integer so that the inequality holds
for this ¢(|x]). We also have

Qp (@) > 2 K@ _ 9~(K'(@)~K(@)-0(1)) _ 9-b-A

Qu(z) ~ Qu(x) '
where b+A = K'(2) — K () —O(1). The first inequality holds since the sum Q};(z) comprises
a term 275°@ hased on a shortest program of length K'(z) computing x in at most ¢(|z)

steps. Since b is the least integer, it follows that A > 0. Since depth!(z) = K(z) — K(z), we
find that depth’(z) > b+ O(1).

(i) Assume that depth’(z) = b, that is,  is (t(|z]),b)-deep. We can enumerate the set
S of all programs computing z in time at most ¢(|z|) by simulating all programs of length
I < |z| + 2log|z| for t(|z|) steps. Hence, the shortest such program ¢ enumerating S has
length |¢| < K(x,t) + O(1). But we achieve the same effect if, given = and b we enumerate
all programs of length [ as above in order of increasing running time and stop when the
accumulated algorithmic probability exceeds 275(#)+°  The running time of the last program
is ¢(|z|). (This shows that K (t,2) < K(b,z) + O(1), not K(t) < K(b) + O(1)). The shortest
program 7 doing this has length |r| < K(z,b) + O(1). Hence, K(S) < min{K (x,t), K(x,b)}.
By definition, Qf,(z) = Muwmm 2717l Assume, by way of contradiction, that

Qp(x) < g bominK(),K(1)}-0(1)
Qu(x)

Since Qu(z) = 2~ K®-00) we have
@@AHV < w\mﬂh&v\w\_uywn_ﬁmw,va“kA«vv\OAC

Denote m = K(x) + b+ min{K (b), K(¢)} + O(1). Since S is a prefix-free 3 ¢ 2Pl < 9=m,
Now every string in S can be effectively compressed by at least m— K (S)—O(1) bits. Namely,

M 9-lpl+m 1

peS

Therefore, the elements of S can be coded by the Shannon-Fano code with the code word
length for p at most [p| —m + 2. In order to make this coding effective, we use a program of
length K (S) to enumerate exactly the strings of S. This takes an additional K(S)+O(1) bits
in the code for each p € S. This way, each p € S is effectively compressed by m— K (S)—0O(1)
bits. Therefore, each p € S can be compressed by at least K (z) + b + min{K (b), K(t)} —
min{K (z,t), K (z,b} bits, up to an additive constant we can set freely, and hence by more
than b bits which is a contradiction. Hence,

Qu(z)

which proves (ii). o

t (e
Qpu(x) > 9—b-min{K(t),K(b)}-0(1)

4 A Unifying Approach

Logical depth and computational depth are all instances of a more general measure, namely
the randomness deficiency of a string x with respect to a probability distribution, Levin
[Lev74, Lev84]. For us, with some abuse of notation, see [LV97], a function p : {0,1}* — R
defines a probability measure or measure for short, if

nle) =1,
w(z)= 3" p(za).

ac{0,1}
Definition 4.1 Let u be a computable measure. Then,

@c@g

5z | 1) = ?m Ll

is the randomness deficiency' of  with respect to u. Here Qp is the universal a priori
probability of Definition 2.1.

Note that Qu(x) is of exact order of 27K by the Coding Theorem 2.3, i.e., up to
multiplicative terms Qp(z) and 2-5®) are equal. (In the literature, see for example [LV97],
m(z) = 27K@) is used instead of Qu(x), and it is straightforward that this is equivalent up
to a multiplicative independent constant by the Coding Theorem.)

Levin [Lev74, Lev84] showed that the randomness deficiency of z with respect to  is the
largest, within an additive constant, randomness p-test for z. So d(z | p) is, in a sense, a
universal characterization of “non-randomness”, “useful” or “meaningful” information in a
string x with respect to a probability distribution .

e Randomness deficiency is “almost non-negative” in the sense that 6(z | u) > C' for some
constant C' (possibly negative) and all z with p(z) > 0 . Indeed, every such element z
can be described by its log 1/u(z)-bit Shannon-Fano code word conditional to u. Thus
K(z | p) <logl/u(z)+ O(1).

For all computable measure p, the randomness deficiency of almost all elements of
positive p-measure is small: the p-probability concentrated on z’s with p(z) > 0 and
5(z | p) > B is less than 279, Indeed, d(x | 1) > B implies that K (x | p) < log1/p(x) —
8. Since there are at most 21°61/1(#)=8 programs with less than log 1/p(x) — B bits, the
number of z’s satisfying the inequality cannot be larger.

Every element with small randomness deficiency with respect to p possesses every sim-
ply describable property of a set of elements of positive p-probability, on which the
majority of p-probability is concentrated. We identify a property of elements of posi-
tive p-probability with a subset consisting of all elements having that property. More
specifically, assume that P is a subset with pu(P) > 1 — 277 (majority of u-positive
elements possess the property P) and K(P | u) < v (the property P has a short de-
scription). Then the randomness deficiency of all € P of positive p-probability satisfies

!|r] denotes the integer part of 7 and [a] denotes the smallest integer bigger than a.



0(x | u) > B—~—O(log|z|), which is large if 3 is large and ~ is small. Indeed, ignoring
the logarithmic terms, we have K (z | p) < log|P|+ K(P | p) <log1l/u(z) — 8+ 1.

The randomness deficiency measures our disbelief that x can be obtained by random
sampling from p. By the second property, with high probability, the randomness deficiency
of an element randomly drawn from p is small. On the other hand, if §(x | i) is small, there
is no way to refute the hypothesis that = was obtained by p-random sampling: every such
refutation is based on a simply described property possessed by a p-majority but not by x.
At this point, it is important to consider only simply describable properties, as otherwise we
can refute the hypothesis by exhibiting the property P = {y : u(y) > 0} \ {z}.

We now observe that logical depth and computational depth of a string x equals the
randomness deficiency of 2 with respect to the measures Q*(z) = MQ;EHa 2-IPl and 2-K*(@)
respectively. The proofs follow directly from the definitions.

Lemma 4.2 Let x be a finite binary string and let t be a time-constructible function.
(i) 1depth,(z) = min{t : 6(x | Q') < b}.
(i) depth(x) = §(x | m') where m'(z) = 27K'(),

5 On the information of infinite strings

Based on the unification of depth concepts for finite strings, we extend these ideas for infinite
sequences. In order to motivate our approach we start by introducing Levin’s notion of
randomness deficiency for infinite sequences.

Definition 5.1 (Levin) The value D(a/p) = [logsup(m(ay,)*/p(ey,))| is called the ran-
domness deficiency of o with respect to the semi-measure p. Here m(ay,)* is the density
probability function of m(ay,).

Let o and S be two sequences and m ® m be defined by m ® m(a, 3) = m(a)m(3).

Definition 5.2 (Levin) The value I(a : ) = D((o, 8)/m ® m) is called the amount of
information in o about B or the deficiency of their independence.

This definition is equivalent to the mutual information I(« : 8) = sup,, I(ay, : 8y).

Let @ and v be two random infinite and independent strings (in the sense that their
prefixes are independent). Consider the following sequence 3

Example 5.3

B=alytay?. ..

By Definition 5.2 we have
Ha:B) = supllan: )
n
sup(K (an) + K(B,) — K(an, 8,))
wp@g +n—(n+n/2) = oco.

\%

AsI(B:a)=1I(a:p) then I(B: a) = oco.

However, intuitively 8 contains more information about « than the other way around,
since from the sequence 3 we can totally reconstruct a but from a we can only recover half
of 3, namely, the bits with odd indexes.

This seems to be a lacuna in Definition 5.2. The definition says more when the information
is finite but that is precisely when we do not need an accurate result. Notice that if the
sequences are finite we can argue that they are independent. In the infinite case, one should be
able to classify the cases where the mutual information is infinite. Two infinite sequences may
have infinite mutual information and yet infinite information still lacks in order to reconstruct
each of them. In the previous example « fails to provide all the information of /3 related to =,
which has infinite information. In this section we will present two approaches to reformulate
the definition of “mutual information” in order to fulfill our intuition. In order to have a
proportion of information as the prefixes grow we need to do some normalization in the
process.

5.1 The Mutual Information Point of View

‘We are looking for a normalized mutual information measure I,, that applied to Example 5.3
gives
Ip(a:a)=1; ILyla:8)=1/2; IL,(8:a)=1; L,(8:8)=1

Contrarily to the definition of Levin of infinite mutual information, and accordingly to our
intuition, the above conditions imply that the normalized version must be non-symmetric.

Definition 5.4 (First attempt) Given two infinite sequences o and 3 the normalized mu-
tual information that B has about «v is defined as

2 .
I (8:a)= lim lim E

n—oom—oo I (o, : o)

The major drawback of this definition is the fact that the limit does not always exist.?
However, it does exist for the Example 5.3 with the desired properties. Furthermore, we
obtain for the same o and 8

Ip(a:a)=1; I,(B:B)=1;

Iy(a: f) = lim lim |§+§\A3+3\:\MVHW“

n—y00 M—00 n 2
. .. m+n—m
In,(8:a)=lim lim —— =1;
N—00 M—00 n
?Notice that there are sequences a for which lim does not exist.
n K(an)



Definition 5.5 (Normalized mutual information for infinite sequences) Given two
infinite sequences a and 3 we define the lower normalized mutual information that B has

about o as 15 )
. RTINS . m * Qn
Tme(B+ @) =liminf lim 000

and the upper normalized mutual information that 5 has about o as
. 1 Qw§ : Qﬁv
(B :a) =limsup lim ———
SAE v :\vooﬁ m—oo I(ap t o)
Notice that these definitions also fulfill the requirements presented in the beginning of this
section with respect to the example 5.3.

‘We now can define independence with respect to normalized mutual information:

Definition 5.6 Two sequences, o and 3, are independent if Iy, (o : B) = I} (8 : a) = 0.

m

In [Lut00, Lut02], the author developed a constructive version of Hausdorff dimension.
That dimension assigns to every binary sequence a a real number dim(«) in the interval
[0,1]. Lutz claims that the dimension of a sequence is a measure of its information density.
The idea is to differentiate sequences by non-randomness degrees, namely by their dimension.
Our approach is precisely to introduce a measure of density of information that one sequence
has about the other, in the total amount of the other’s information. So we differentiate
non-independent sequences, by their normalized mutual information.

Mayordomo [May02] redefined constructive Hausdorff dimension in terms of Kolmogorov
complexity.

Theorem 5.7 (Mayordomo) For every sequence o,
. -
dim(a) = liminf Klan)
n—oo n
So, now the connection between constructive dimension and normalized information mea-
sure introduced here is clear. It is only natural to accomplish results about the Hausdorff
constructive dimension of a sequence, knowing the dimension of another, and their normalized
information.

Lemma 5.8 Let o and 3 be two infinite sequences. Then

K
L s B) - dim(8) > dim(a) + lim inf _ K(anlhn)
n—eo n
Proof.
Iam : K(3
I (a, B) - dim(B) = limsuplim NAMM.S. M:VV -lim inf w@:v
n m Pt Pn n
(o, : B,
> :E:&:E:&E
n m NAQ w. 3 V
> liminf lim inf — 222
n m NA.AQQ:V |~A.AD i\w V
> liminf lim inf — 72— miEm/
n W,NW v qzlwﬁQ i\w V
> liminf M) 4 Jim inf m|Pm
m m NM_AQ i\w v3~
= dim(a) + liminf - ——21 o
m m

9

We present now the time bounded version of dim(c). This definition will be important
later on this paper.

Definition 5.9 The t-bounded dimension of an infinite sequence « is defined as

t
dim’(a) = liminf Klfan)
n—00 n

5.2 The Hausdorff constructive dimension point of view

In this subsection we define the common information between two sequences based on Haus-
dorff constructive dimension and establish a connection to it.

Definition 5.10 The dimensional mutual information of the sequences o and § is defined as
Tiim (v, B) = dim(a) + dim(8) — 2dim («, )

This measure of mutual information is symmetric. The definition considers twice dim («, 3)
because when encoding the prefixes «,, and 3, the result is a 2n-length string. Notice that,

Taim (e, 8) = dim(a) + dim(B) — 2dim (o, 5)

K . K (B, K({a

= liminf (any2) + lim inf ( \Nv — 2liminf ‘ic,mvﬁv

n—00 §\m n—00 3\m n—00 n
< liminf K(a/2) + K(Bpy2) = K2, Buy2)

n—0o0 3\&
= liminf E

n—00 n

- NAQ: : Q:v
< liminf —————
T onoee K(Bn)
< liminf lim ‘NAQE : E:V

o mse K (By)
= In(a:f)

The third inequality is true because:
1By am) = K(Bn) — K(Bnlam) > K(By) — K(Balan) = I1(By : an).

By the symmetry of the definition we also have that Iy, (o, 8) < Ins(B : ). These two
facts prove the following lemma:

Lemma 5.11 Let o and 8 be two sequences. Then
Liim (e, ) < min(Ip(a : B), I (B : @)
One can easily modify the definitions introduced in this section by considering the limits
when n goes to the length of the string, or the maximum length of the strings being considered.

One should also notice that when z and y are finite strings and K (y) > K (), In«(x : y) is
1 —d(z,y), where d(x,y) is the normalized information distance studied in [Li03].

10



6 Depth of infinite strings

‘We now study depth of infinite sequences and prove some results concerning these definitions.
To motivate our definitions we recall the definitions of the classes of weakly (vs. strongly
deep) sequences and weakly useful (vs. strongly useful) sequences.

Definition 6.1 ([Ben88]) An infinite binary sequence « is defined as

o weakly deep if it is not computable in recursively bounded time from any algorithmically
random infinite sequence.

e strongly deep if at every significance level b, and for every recursive function t, all but
finitely many initial segments o, have logical depth exceeding t(n).

Definition 6.2 ([FLMRO5]) An infinite binary sequence « is defined as

o weakly useful if there is a computable time bound within which all the sequences in a
non-measure 0 subset of the set of decidable sequences are Turing reducible to o.

strongly useful if there is a computable time bound within which every decidable sequence
is Turing reducible to o.

The relation between logical depth and usefulness was studied by Juedes, Lathrop and
Lutz [JLL94] who defined the conditions for weak and strong usefulness and showed that
every weakly useful sequence is strongly deep. This result generalizes Bennett’s remark on
the depth of diagonal of the halting problem, strengthening the relation between depth and
usefulness. Latter Fenner et al. [FLMRO5| proved the existence of sequences that are weakly
useful but not strongly useful.

The Hausdorff constructive dimension has a close connection with the information theories
for infinite strings studied before, see for example [FLMRO5], [Lut00], [Lut02] and [May02].
Therefore, in this section we define the dimensional computational depth of a sequence in
order to study the nonrandom information on a infinite sequence.

Definition 6.3 The dimensional depth of a sequence « is defined as

) = lim inf (/27K (@m)
n—oo n .

Lemma 6.4

depthlyn (@) < dim — dim
Proof.
(0 /27K (an))
depthf (o) = liminf —"—~
T K o) - K ()
= liminf ————"
n—00 n

< &EXQV — dim(a).

The last inequality holds since the sequence of values K(oy,)/n is non negative and then
liminf —K (a,,)/n < —liminf K (o) /n. °
n n

11

Now, in the definition of strongly deep sequences, instead of considering a fixed significance
level s we consider a significance level function s : N — N . Naturally, we want s(n) to grow
very slowly so we assume for example that s = o(n). With this replacement we obtain a
tighter definition as deepness decreases with the increase of the significance level.

Definition 6.5 A sequence is called super deep if for every significance level function s : N —
N, such that s = o(n), and for every recursive function t : N — N, all but finitely many initial
segments o, have logical depth exceeding t(n).

We have already characterized super deep sequences using their dimensional depth in
theorem 3.3. In fact we have

ldepthy () = t(|z]), with b minimal = depth’(z) > b+ O(1)

Theorem 6.6 A sequence o is super deep if and only if &ogrmwg (o) > 0 for all recursive
time bound t.

Proof. Let a be a super deep sequence. Then for every significance level function s, such that
s = o(n) and every recursive function ¢ we have that for almost all n, EoEFSVAD:V > t(n).
Then

depth"™ (a,,) > s(n).

9

Now if for some time bound g, depthy; |

S = o(n), and, infinitely often

() = 0 then there exists a bound S, such that

depth?™ (o)) < S(n).

This is absurd and therefore for all recursive time bound ¢, depthf;,(a) > 0.
Conversely if depthfy, (a) > 0 then there is some ¢ > 0 such that for almost all n,
depth’{"” (a,,) > en. This implies that

Idepth,(, (an) > 1depth,,, (an) > t(n)

for all significance function s = o(n) and almost all n. So « is super deep. 3

In [JLL94] several characterizations of strong computational depth are obtained. We can
prove analogous characterizations for super deepness.

Theorem 6.7 For every sequence « the following conditions are equivalent.
1. « is super deep;

2. For every recursive time bound t : N — N and every significance function g = o
depth’(av,) > g(n) for all except finitely many n;

3. For every recursive time bound t : N — N and every significance function g = o(n),
Q(ov) > 29MQ o) for all except finitely many n;

In [JLL94] the authors proved that every weakly useful sequence is strongly deep. Fol-

lowing the ideas in [JLL94] we can also prove that every weakly useful sequence is super
deep.

12



Theorem 6.8 FEvery weakly useful sequence is super deep.

Corollary 6.9 The characteristic sequences of the halting problem and the diagonal halting
problem are super deep.
Acknowledgement

‘We thank Harry Buhrman, Lance Fortnow, and Ming Li for comments and suggestions.

References

[Stock85] L. Stockmeyer, On approximation algorithms for #P, SIAM J. Computing 14
(1985), 849-861

[ACMVO07] L. Antunes and A. Costa and A. Matos and P. Vitnyi. Computational Depth: A
Unifying Approach. Submitted, 2007.

[AFPS06] L. Antunes, L. Fortnow, A. Pinto, and A. Souto. Low-depth witnesses are easy to
find. Technical Report TR06-125, ECCC, 2006.

[AF05] L. Antunes and L. Fortnow. Time-bounded universal distributions. Technical Report
TRO05-144, ECCC, 2005.

[AFMVO06] L. Antunes and L. Fortnow and D. van Melkebeek and N. V. Vinodchandran.
Computational depth: concept and applications. Theor. Comput. Sci., 354 (3): 391-404,
2006.

[Ben88] C. H. Bennett. Logical depth and physical complexity. In R. Herken, editor, The Uni-
versal Turing Machine: A Half-Century Survey, pages 227-257. Oxford University Press,
1988.

[FLMRO5] Stephen A. Fenner and Jack H. Lutz and Elvira Mayordomo and Patrick Reardon.
Weakly useful sequences. Information and Computation 197 (2005), pp. 41-54.

[Gac74] P. Ges. On the symmetry of algorithmic information. Soviet Math. Dokl., 15 (1974)
1477-1480.

[JLL94] David W. Juedes, James I. Lathrop and Jack H. Lutz. Computational Depth and
Reducibility. Theoret. Comput. Sei. 132 (1994), 37-70.

[LL99] James L. Lathrop and Jack H. Lutz. Recursive computational depth. Information and
Computation 153 (1999), pp. 139-172.

[Lev73] Leonid A. Levin. Universal Search Problems. Problems Inform. Transmission,
9(1973), 265-266.

[Lev74] Leonid A. Levin. Laws of information conservation (nongrowth) and aspects of the
foundation of probability theory. Probl. Inform. Transm., vol. 10, pages 206-210, 1974.

[Lev80] Leonid A. Levin. A concept of independence with applications in various fields of
mathematics MIT, Laboratory for Computer Science, 1980.

13

[Lev84] Leonid A. Levin. Randomness conservation inequalities: information and indepen-
dence in mathematical theories. Information and Control, 61:15-37, 1984.

[Li03] Ming Li and Xin Chen and Xin Li and Bin Ma and Paul M.B. Vitdnyi The similarity
metric. In Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms, 2001.

[LV97] Ming Li and Paul M. B. Vitdnyi. An introduction to Kolmogorov complezity and its
applications. Springer, 2nd edition, 1997.

[Lut00] J. H. Lutz. Dimension in complexity classes. Proceedings of the 15th IEEE Conference
of Computational Complexity, IEEE Computer Society Press, 2000.

[Lut02] J. H. Lutz. The dimensions of individual strings and sequences. Technical Report
¢s.CC/0205017, ACM Computing Research Repository, 2002.

May02] E. Mayordromo. A Kolmogorov complexity characterization of construtive Hausdorff
Ly Ly 2 p- Yy
dimension. Information Processing Letters, 84:1-3, 2002.

14



On the largest monochromatic combinatorial rectangles
with an application to Communication Complexity

Armando Matos!3*

Andreia Teixeiral?**

André Souto!?***

! Universidade Porto
2 Instituto de Telecomunicagoes
3 LIACC

Abstract. The concept of combinatorial rectangle is of fundamental importance in Communication Com-
plexity.

Given a finite set R, a combinatorial rectangle is a set of the form A x B where A and B are subsets of R. A
square R x R together with a function ¢: Rx R — {0, 1} is called a colored square. A colored square is called
random if each c(a,b) is an independent random variable; in this case, ¢ is called a random function. A
colored combinatorial rectangle A x B is called monochromatic if ¢(a, b) has the same value (either 0 or 1)
for every a € A and b € B.

We prove that the decision problem associated with the problem of finding the maximum area of a
monochromatic combinatorial rectangle (mer) of a given colored square is NP-complete.

Most of this paper deals with the asymptotic maximum area of the mecrs of a random square. Let p be
the probability that any cell has the value 1. We establish several improvements and generalizations of the
results previously known, namely: (i) better bounds for several statistical parameters associated with the
asymptotic maximum areas of mers; (ii) the generalization for arbitrary values of p of the results obtained
for p = 1/2, the only value previously studied. These results can be useful in Information Theory and
Communication Complexity; we use them to obtain a lower bound of the communication complexity of
“random functions”.

Keywords: Combinatorial problems, Communication Complexity.

1 Introduction

A fundamental concept in Communication Complexity is the combinatorial rectangle; for instance, a determin-
istic protocol for the computation of a function by two communicating parties corresponds to a partition of a

“colored square” into monochromatic combinatorial rectangles [3].

Given a finite set R, a combinatorial rectangle is a set A x B where A and B are subsets of R; its area is
[A] - |B|. A square R x R together with a function ¢: R x R — {0, 1} is called a colored square. A combinatorial
rectangle A x B is called monochromatic (“mer”) if c(a,b) has the same value (0 or 1; the corresponding
rectangles are denoted by “O-mecr” and “l-mer”) for every a € A and b € B.

‘We study the decision problem “given a colored square Q and an integer k, does Q contain a mer with
arca at least k?” and prove its NP-completeness. It is interesting to notice that the corresponding problem for
geomelrical rectangles can easily be solved in polynomial time; to see this, it is enough to observe that the total

number of geometrical rectangles is polynomial in [R].

Most of this paper is a study of mers in squares randomly colored with 2 colors, say 0 and 1. We prove lower
and upper asymptotic bounds for the maximum area of the mecrs belonging to such squares, improving and
generalizing the results previously proved in [1]. Notice that when studying areas, one must take into account

* acm@dcc. fc.up.pt; All the authors are partially supported by CSI? (PTDC/EIA-CCO/099951/2008).The author is
also partially funded by LIACC through Programa de Financiamento Plurianual, Fundao para a Cincia e Tecnologia
(FCT)

** andreiasofia@dcc.fc.up.pt; The author is also supported by the grant SFRH/BD/33234/2007 of FCT

*** andresouto@dcc.fc.up.pt; The author is also supported by the grant SFRH/BD/28419/2006 of FCT

not only how that area can be decomposed as a product of the lengths of the 2 sides, but also the different ways
in which a given number of rows or columns can be selected in the square.

Let p be the probability that any specific cell of the square has the color 1 and let n be the side of the square.
The special but important case of p = 1/2, is studied first; it corresponds to the “maximum randomness” of the
function being studied. It is proved that, if both sides of a combinatorial rectangle exceed 2logn, it is almost
sure that the rectangle is not monochromatic; thus, in this case, the maximum area of a mer is very small,
namely it does not exceed 4log? n.

We then allow one of the sides to be smaller than 2logn and discover that mers with maximum area (which
is n/2 + o(n)) have a side with a length which is either 1 or 2. However, due to the fact that the standard
deviation is different for those two cases, the largest mers turn out to have height (or width) 2; the length of

the other side is then W + o(n). The main results for the case p = 1/2 are Theorems 2 and 3.

These results are then generalized for an arbitrary value of p. First we prove that no mers exist with both
sides larger than (2/log(1/p))logn and from this fact we obtain an upper bound for the area. Then we allow
one of the sides to be smaller than (2/log(1/p))logn and discover again that the maximum area is obtained for
rectangles with a height which is independent of n but dependent on p. The main results for the general case
are Theorems 4 and 5. These results are then used to obtain a lower bound for the deterministic communication
complexity of the “random function”, see Theorem 6; for p = 1/2 this bound is necessarily almost optimal once
it almost equals the trivial upper bound [log(n) + 1], see [3].

2 Preliminaries

We present the basic definitions and results that will be needed later in this paper. The reader can consult [2] for
more details. For the basic concepts of Communication Complexity we refer the reader to the first two chapters
of [3].

The class of problems decidable in polynomial time by a deterministic (respectively non-deterministic) Turing
machine is called P (respectively NP). The decision problem A reduces polynomially to the decision problem B,
written A <, B, if there is a function f: I} — I} (where Za and Zp are the alphabets, A C I}, B C If)
computable in polynomial time such that, for every x € £*, we have x € A iff f(x) € B. The decision problem A
is NP-complete if A €NP and B <;, A for every problem B €NP.

If e is an event, prob(e) denotes its probability. A boolean random variable P(n) which depends on a
parameter n, holds almost surely or in the limit or asymptotically if limy_, prob(P(n)) = 1.

The mean of a random variable x will be denoted by (x) or by E(x). The variance and the standard deviation
will be denoted by v(x) and by o(x), respectively. When there is no possibility of confusion, we use p, v and o
instead of p(x), v(x) and o(x) respectively.

A random variable x is (w, 0)-normal if its density function and distribution function are respectively
x—_p

elx—1)?/(20%) 1 = R
f(x) = v and F(x) = ,\%_, e Y/2dt. A random variable x is normal if it is (0,1)-normal. Any
o T o
(1, 0)-normal random variable can be reduced by translation and change of scale to a normal variable z = X2,

o
Let @(x) and ®(x) be the density function and the distribution function respectively of the normal variable.

The following inequality will be useful and follows easily using the substitution z = y2/2 in the distribution
function: for x >0, 1 —®(x) < @(x)/x.
In particular we have
forx =21, 1—0(x) < @(x) (1)

Consider a (possibly biased) coin such that heads turn up with a probability p and tails turn up with

probability q = 1—p. Suppose that the coin is tossed n times; the number x of heads is a random variable with
n

probability binn ,(x) = AXVUxLH:\é. This is the binomial distribution. The mean, variance, and standard
deviation are respectively p =pn; v=npq; o= .,/Mmpq.

Using Moivre’s Theorem, a consequence of the Central Limit Theorem, if n is large enough and x has
a binomial distribution with parameters n and p, the distribution probability function f,(z) of the random
variable z = (x —pn)/\/npq is approximately normal in the sense that Ve > 0, Ing, Vn > ng, Vz : [fn(z) —
o(z)l <e.



3 Finding the maximum area of mcr’s is NP-hard

We study the complexity of the problem of finding the largest 1-mcr of a given colored square and prove that
the corresponding decision problem is NP-complete.
The 1-mer decision problem is the following.

1MMR, maximum area l-mcr
INSTANCE: ((Q,¢),n, k) where (Q,c¢) is a colored square with side n and k € Z*.
QUESTION: Does Q contain an l-mcr with area at least k?

Definition 1. Given a graph G = (V. E), a set A C V is independent if x,y € A = (x,y) € E.

Definition 2. A biclique of an undirected graph G = (V,E) is a disjoint pair (A,B) of subsets of V such
that (a,b) € E for every a € A and b € B. The number of vertices of the biclique is |A| + |B|. If A and B
are independent sets, the biclique will be called i-biclique (independent biclique). The number of edges of an
i-biclique is |A| - |B|.

The concepts of colored square, binary relation, 1-mcr and biclique are related. In particular, a colored
square (Q, ¢) with side n can be seen as a binary relation and an 1-mer A x B belonging to a colored square Q,
can be seen as a biclique of the corresponding graph.

‘Whenever we talk about bipartite graphs G = (Vi U Vo, E), it is assumed that V; and V, are independent
and disjoint. Notice that, if (A, B) is a non empty biclique of a bipartite graph G = (V; U Vy, E), then A C V;
and BC Vo or ACV, and B C V.

The following NP-complete decision problem related with 1MMR has been studied before [5].

MEiB, maximum edge independent biclique
INSTANCE: ((V; UV, E), k) where (V; U Vs, E) is a bipartite graph and k € Z*.
QUESTION: Does G contain an i-biclique (A, B) such that [A|-[B| > k?

In [5], the proof that 3SAT <, MEiB uses the decision problem Clique/2 and characterizes the polynomial
reductions 3SAT <, Clique/2 and Clique/2 <, MEiB;

The problems IMMR and MEiB are quite similar; the graph associated with a colored square with side n is
bipartite; compared with MEiB, the problem 1MMR has the additional restriction |V;| = [Vs|. In order to prove
that 1IMMR is NP-complete, we now describe a polynomial reduction MEiB<,, 1IMMR:

MEiB <, IMMR
(ViU Ve, B), k) = (Q.n,c.k')

Without loss of generality assume that [Vi| > [V,
with m > p. The reduction is defined by: n =m = [V,
and c(i,j) =0 for p<j<n; k' =k.

Then (V1 U Vs, E) has an i-biclique with k edges iff Q has an 1-mcr with area k' and that the transformation
associated with the reduction can be implemented in polynomial time. Thus,

and let Vi = {x1,%2,...,xm} and Vo = {y1,ya,...,Yp},
:Q={L2....n}x{L,2,...,njc(ij)=1if (i,j) € E

Theorem 1. IMMR is NP-complete.

4 The maximum areas when the probability is 1/2

4.1 Random colored squares

Let N ={1,2,...,n} and consider a random colored square (Q,c) where Q =N x N.
‘We say that s(n) is an asymptotic upper bound of the maximum area s of an l-mer if

lim prob{there is an 1-mcr with area > s(n)} =0
nSoo

‘We now look for good upper bounds s(n). Denote by E(a,b) the expected number of 1-mers with height a and

width b in a random colored square. We have E(a,b) = 279° Aﬁv Aﬂv
a

4.2 When both sides are large

Suppose that the values of a and b are such that a,b > clogn, where c is a positive constant to be defined
later. Hence E(a,b) = 279°(1)(}) < 279Pn®*P. Write a = clog(n) + & and b = clog(n) + B where « and B
are arbitrary positive constants. Then E(a,b) < 2-9Pna+b = g—ab+latb)lozn Notice that the exponent of 2
can be written as
—ab+ (a+b)logn =
—(clogn+ «)(clogn+ B) + (clogn + a + clogn + ) logn
=—c(c—2)log?n—(c—1)(x+ B)logn — af < —ylog’n

where vy is positive if ¢ > 2; here and henceforth by “c > 2” we mean that ¢ > 24y for some positive constant vy,
not depending on n. Thus E(a,b) < 27Y108" ™ and limy, o E(a,b) = 0. Thus,

Lemma 1. Ifc > 2 and a,b are such that a,b > clogn, then lim E(a,b) =0.

n—oo

Areas instead of sides. Suppose now that, instead of the sides of the 1-mcr, a certain area s(n) is given and
we ask if the probability that there exists some 1-mcr with an area at least s(n) is still vanishingly small; the
answer is yes, as proved below.

The number of factorizations of a number m is usually denoted by T(m) and it is known (see [4]) that
¥6 > 03c > 0: t(m) < cm®. As the maximum length of a side is n, the number of factorizations of s is at
most n; this number will be denoted by T (s).

Consider the case a,b > clogn with ¢ > 2. Can we expect that at least an 1-mcr with a given area exists?
Given that T, (s) < n, the expected number E(s) of such rectangles satisfies

E(s) < M E(a,b) < 1o (s)E(clogn, clogn)
{a,b:ab=sAa,b>clogn)
< A:Hmvm\iomm: =1 (s)nYlogn L povlogndl

where v is a positive constant. Thus the answer to the question is no. Hence we have
Theorem 2. For any constant ¢ > 2 and area s, the following event has asymptotic probability 0: “there is at

least one monochromatic combinatorial rectangle with area s and sides both larger than clogm™.

4.3 When at least one side is small

We study the maximum areas for the case where at least one of the sides is small (< 2logn).

Fixed subset of rows Let us consider first a fixed subset with a rows. The probability that there are only 1’s
at the intersection of all these rows with some column is p = 27¢; the number x of columns containing only 1’s

at those rows has a binomial probability function with
n 1—-1/2¢
20 LT @

Using Moivre result, we normalize x by a change of variable z = (x—) /0, see page 2; the probability distribution
of this normalized random variable i

, in the limit, a normal probability distribution.
We want that, if z > f(n), the probability prob(z > f(n)) is exponentially small. Based on inequality (1) a
possibility is f(n) = log? n.

Choosing the rows in every possible way By assumption a < 2logn, so that the number of ways of choosing

the a rows satisfies va < no L n2logn — gl2loge) In®n_The probability of an union of events is at most the sum
1
of their probabilities; thus the probability of having z > log? 1 is bounded by g(n) = ——e

V2r

—log?n/2+(2loge) In®*n

and limp o g(n) = 0.



Areas instead of sides The probability h(n) that there exists 1-mers with a given area s satisfies

h(n) < Tals)gn) < %H:mmumwgcwh n/2+(cloge)ln®n
< 1 :m\_om;\mi:omm:%:

_ e—log!n/2+(cloge) In*n+lnn

8

and again we have limy o h(n) = 0.

4.4 The “1 line” versus “2 lines” competition

The asymptotic maximum area of an 1-mer is n/2 + o(n). Two shapes have, in the limit, that area: 1 x n/2
and 2 x n/4. How do the probabilities of each of these shapes fall out when the horizontal sides are slightly
larger than the mean? Which of them (height 1 or 2), if any, domina

Let us review the main statistical parameters for the heights a = 1 and a = 2. Let x be the number of
monochromatic columns; the area of an 1-mcr is ax. We have

Tu = a=2 General case
E(x)| n/2 n/4 n/2%
E(s)| n/2 n/2 na/2%
v(x)| n/4 3n/16 n(l—1/2%)/2¢
o(x)|vn/2  V3n/4 n(l—1/29)/2¢
v(s)| n/4 3n/4 na?(1—1/29)/2¢
o(s)|vn/2 3n/2  ay/n(l-—1/29)/2¢

Heights larger than 2 can be ignored since the average value of the area is less than n/2.
Consider the standard deviations for a = 2 and a = 1; the former exceeds the second by a factor of v/3.
Thus, although the average value of the area is the same, we have

Theorem 3. In a random colored square, the largest monochromatic combinatorial rectangles have area n/2 +
o(n) and shape 2 x (n/4+ o(n)).

5 The maximum areas (arbitrary probability)

Consider again a random colored square (Q,c), but now suppose that each c(i,j) is a random variable z that
takes the value 1 with probability p > 0 and takes the value 0 with probability 1 —p > 0. All these random
variables being independent.

5.1 When both sides are large (arbitrary probability)

The main result of this sub-section is Theorem 4 which is a generalization of Lemma 1 (page 4).
As in Sec. 4.2 suppose that the values of a and b are such that a,b > clogn where c is a positive constant
to be defined later. Denote log(1/p) by k. We have

E(a,b) = p® Aﬂv AMV < pabnath (3)

a
_ 9-log(1/p)ab+(atb)logn _ g—kab+(a+b)logn )

Write a = clog(n)+a« and b = clog(n) +p where &, > € > 0. Thus, the exponent of 2 in (4) can be rewritten
as
—kab + (a+b)logn = —k(clogn + «)(clogn+ ) + (2clogn + « + ) logn
= —ke2log®n — ke(o+ B)logn — kaP + 2clog? n + (o« + ) logn
= —c(ke —2)log?n — (ke — 1) (o + B) log(n) — kap
The exponent is asymptotically negative if kc — 2 is a positive constant if ¢ > 2/log(1/p). Thus we have found

that the constant ¢ in (4.2) equals 2/log(1/p). In the limit, the coefficient of logn and the independent term
are irrelevant.

As we have seen in the case p = 1/2, the number of ways of choosing a lines and the number of shapes of
the maximum area rectangles do not influence the asymptotic results, and we get the following generalization
of Lemma 1.

Theorem 4. Ifa,b are such that a,b > clogn/log(1/p)
than 4log”n/log?(1/p) do not eist in the limit.

with ¢ > 2, then limy_,o E(a, b) = 0 so, areas greater

Small values of p correspond to small upper bounds for the areas while values of p near 1 correspond to larger
upper bounds.

5.2 When at least one side is small (arbitrary probability)

Suppose that one of the sides, say a, is small in the sense that a < % logn. As it happened in Sec 4.3,
the maximum area is obtained for a fixed value of a, that is, a value independent of n (but dependent on p).
The mean value, variance and standard deviation of the number of columns of an 1-mcr are E, o(x) = np%;
Vp,a(x) =np?(1—p?) and 0 a(x) = /np?(1 —pe). The first two expressions are generalizations of equalities
(2).

Let us find the value of a that maximizes the area. The mean value of the area is Ep, o(s) = nap®, compare
with particular case p = 1/2 (see the table in page 5). As a real function of a, Ep (s) has a maximum that can
be found by solving the equation dEp o(s)/da = 0; we find that the maximum area occurs for a = 1/In(1/p).

Theorem 5. The height of the mazimum area of an 1-mer is either a; = |1/In(1/p)] or az = [1/In(1/p)].
The mazimum area is max{na;p*, na,p®}.

We have seen that, with an error less than 1, the value of a that maximizes the area is a = 1/In(1/p). This
maximum area is
n 1 pl/m1/p) L gmp/myp) T

In(1/p) “Ma(i/p) en(1/p)
As expected, this value increases uniformly with p.

()

6 An application to communication complexity

The lower bound proved in Theorem 5 can be useful in Communication Complexity. Consider for instance the
random function fp,(x,y) that takes the value 1 with probability p > 0 and takes the value 0 with probability
1—p > 0. We will apply the results obtained in Sec. 5 to establish a lower bound for the deterministic
communication complexity of fy(x,y).

It is well known (see for instance [3]) that a deterministic protocol for f,, induces a partition Q =Ry URy U
...UR, of the n xn square Q into monochromatic rectangles. If A, is the maximum area of a monochromatic
rectangle of Q, the number m of rectangles of any such partition satisfies m > n?/A.x; therefore, we have the
following inequality for the communication complexity D(fp,) of fy(x,y): D(fp) = [log(n?/Amax)]-

The total area with color 1 is approximately pn?; thus, using the equality (5) the number of 1-mers is at least
pn?/(n/(eln(1/p)) = enpIn(1/p); considering also 0-mcrs, we get the following lower bound for the number of
monochromatic rectangles: enlpIn(1/p) + (1 —p)In(1/(1 —p))]. Thus we have

Theorem 6. The asymptotic deterministic communication complezity of a random function fy(x,y) satisfies
D(f) = [logn + log(pIn(1/p) + (1 —p) In(1/(1 —p))) + loge]

For any boolean function f(x,y), an upper bound of D(f) is [log(n) + 1] which corresponds to the following
trivial protocol, see [3]:
Protocol P: 1) Alice sends x to Bob (at most [logn] bits are needed); 2) Bob computes f(x,y) and sends this
result (1 bit) to Alice.
Theorem 6 shows that, for any fixed p with 0 < p < 1, this protocol is almost optimum for the random function
in the sense that

Dy (f) — D(f) < [log(n)] + 1 — [logn + log o&:@ +0 \EEW@ +loge]
<2—loge —log(pIn(1/p) + (1 — p) In(1/(1 — p)))



This difference is tabulated below for p = 0.1, 0.2,..., 0.9

P |01 02 03 04 05 06 07 08 09
Dp(f)—D(f) [218 156 127 113 1.09 113 127 156 218

‘We conclude that, in the limit, no protocol for the random function is significantly better than the trivial
protocol P.

References

1. Carsten Damm, Ki Hang Kim and Fred Roush, On Covering and Rank Problems for Boolean Matrices and Their
Applications, in LNCS number 1627, page 123, 1999.

2. M. Garey and D. Johnson Computers and Intractability: A Guide to the Theory of NP-Completeness, Series of Books
in the Mathematical Sciences, W.H. Freeman and Company, San Francisco, 1979.

3. Eyal Kushilevitz and Noam Nisan, Communication Complezity, Cambridge University Press, New York, Springer-
Verlag, 1996.

4. William LeVeque, Fundamentals of Number Theory, Dover Publications, 1996.

Ren Peeters, The Mazimum edge biclique problem is NP-complete, Discrete Applied Mathematics 131(3), pp 651-654,

2003.

o



On a relationship between
non-deterministic communication complexity
and instance complexity

Armando B. Matos (acm@ncc.up.pt),
Andreia C. Teixeira (andreiasofiat@hotmail.com), and
André C. Souto (andresouto@ncc.up.pt)*

DCC-FC & LIACC, Universidade do Porto
Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

Abstract. We study the relationship between non-deterministic communication complexity of uniform
functions [8,9,4] and instance complexity [7] (see the definitions in 2.1 and 2.2 respectively). For that
purpose, the witness of the non-deterministic communication protocol executed by Alice and Bob is inter-
preted by Alice as a program p that, for ¢ sufficiently large, “corresponds exactly” (see Definition 4) to the
instance complexity ic’ (7 : Y1(7)); in the previous expression T and 7 are the parts of the input known by
Alice and Bob respectively and Yi(Z) is the set of all values of y such that f(z,y) = 1.

The main results of this paper are meE\,SH:?nw%;e 2 Yi(z)} = N'(f) and max|z|— ,H:ﬁo:zv@ :
Yi(z))} = N(f) where icle.(a : S) is a variant of instance complexity (see Definition 5) and the non-
deterministic communication complexities N'(f) and N(f) are defined in [4], Chap. 2. We also present in
Sec. 5 a simple inequality relating individual communication complexity with instance complexity.

Keywords: communication complexity, instance complexity, non-determinism.

1 Introduction

Communication complexity and instance complexity seem at first to be totally unrelated concepts. In a typical
setup for communication complexity the two parties, Alice and Bob, have unbounded computational power and
one wants to find how many bits they need to exchange in order to compute the value of a given function of
their inputs, f : X x Y — {0,1}; on the other hand, the instance complexity ic’(z : A) is the length of the
shortest program that runs in time ¢, answers correctly the question “z € A?” and does not “lie” about set A
(the program may answer “1” meaning “don’t know”). Communication complexity is about the communication
cost while instance complexity is related with computational complexity.

In this paper we establish a relationship between these two concepts. Let T and 7 be the inputs of Alice and
Bob respectively, n = |Z| = |y| and let Y;(Z) be the set of all y such that f(Z,y) = 1. Theorem 2 states that, apart
from a constant and for ¢ sufficiently large, max ||y —n{icho(F : Y1(T))}, where icye is a “one-sided” version
of instance complexity (Definition 5), equals the non-deterministic communication complexity N'(f) of the
uniform function f; similarly the maximum value of ic'(7 : Y1(¥)) equals the non-deterministic communication
complexity N(f), see Theorem 3. The main ingredient for the proof of this result is a protocol in which Alice
uses the non-deterministic word p as a program that eventually corresponds to ic’(7 : Y3 (%)); Alice runs p(y)
for all y € Y for a maximum of ¢(|y|) steps. We should notice two facts that may help the understanding the
rest of this paper: (i) Neither Alice nor Bob alone (without communication and without the help of the oracle)
can compute ic’(7 : Y1 (T)); the reason is that Alice only knows T and Bob only knows 7. (i) ic'™ (7 : Y1 (%)),
like N(f), can be much smaller than n.

We mention two previous works where the communication complexity has been analyzed in a non-standard
way: the paper [2] on individual communication complexity in which Kolmogorov complexity is used as the
main analysis tool and [5] where “distinguishers” are used to obtain bounds on communication complexity.

This paper is organized as follows. Next section contains some background on communication complexity
and instance complexity. We study one-sided protocols in Sec. 3 and two-sided protocols in Sec. 4. These two
sections contain the main results of this paper, namely Theorems 2 and 3. Sec. 5 contains some comments on
the relationship between individual communication complexity and instance complexity. Finally in Sec. 6 some
future lines of research are suggested.

* The author is supported by the grant SFRH/BD/28419/2006 from FCT

2 Preliminaries

The set of natural numbers (including 0) is denoted by N. An alphabet X' is an nonempty finite set whose
members are called letters. The alphabet used in this paper is {0,1}. A word is a sequence of 0 or more letters;
words are denoted by x, y and w, possibly overlined. The length and the i-th letter of the word x are denoted
by |z| and z; respectively.

2.1 Communication complexity

We define several forms of non-deterministic communication complexity, for more details see [4]. Let f: {0, 1}" x
{0,1}" — {0, 1} be a boolean function. Two players, Alice and Bob want to compute f(Z,7); Alice only knows =
while Bob only knows 3. A (“two-sided”) non-deterministic protocol P for f has output P(w,z,7y) € {0,1, L}

where L means “don’t know” and w is the guess; the protocol P satisfies the following conditions

: P(w,7,

( 1
( 1
(
(

=0
0

<

B eke

<

AN

I

For z € {0,1} a “one-sided” protocol P* has output either z or L and satisfies

2] (5)
=1]

§ 8l
NN
W

P
: P
w

w,
w, T
u

[f@,9) =2 = Pw: P*(w,
[f@7) # 2 = Vw: P*(w,T.7

B
<
I

C)

It is easy to build a non-deterministic protocol for f using the one-sided protocols P° and P*.

We should emphasize that in any protocol, Alice and Bob must be convinced of the output of the protocol,
in the sense that “false guesses” must be detected and rejected (output L); this requirement corresponds to the
“Y...” predicates above. In other words, Alice and Bob do not trust the oracle. Otherwise the problem would
be trivial.

Some of the variants of non-deterministic communication complexity are as follows.

Definition 1 (non-deterministic communication complexities). Standard and individual (non-determ:
co ication complezities are denoted by N and N respectively.

- Individual communication complexity of protocol P with output set {1, L}:
NL(f,7,9) = ming{|e(w)| : P(w,T,7) = 1} where w is the guess and c(w) (“conversation”) is the se-
quence of bits exchanged between Alice and Bob when the guess is w. Notice that N} (f,Z,7) is only defined
if f(Z,y) = 1. Notice also that the behavior of the protocol P for the other inputs (x,y) is irrelevant.
~ Individual communication complexity with output set {1, L}:
NY(f,2,7) = minp{N}L(f,Z,7)} where the protocols P considered for minimization are protocols with output
set {1, L} for the function f.
— Communication complexity of protocol P with output set {1, L}:
Np(f) = maxg g{NB(f,7,9)} :
~ Communication complexity of function f with output set {1, L}:
NY(f) =minp{N}L(f)}.
The complezities NR(f,Z,7), NB(f), and N°(f), are defined in a similar way.
Define also Np(f.7,7) = Np(f,2.3) if f(Z.7) = 0 and Np(f.Z,5) = Np(£,7.9) if f(Z.9) = 1; Np(f) =
log(2YF ) 4 2VF (), N(f) = minp {Np(/)}-
A witness is a guess that causes the protocol to output a value different from L. O

In the literature it is possible to find the following definition of the individual (non-deterministic) communication
complexity associated with protocol P, see for instance [1]: N}(f,Z,7) = ming,{|w| + |c(w)| : P(w,,y) = 1};
comparing with Definition 1, we see that the corresponding values differ by at most a factor of 2.

The definition Np(f) = log(2VF() + 2¥2(D) s from [4]; we have

max{Np(f), Np(f)} < Np(f) < max{Np(f), Np()} +1

therefore Np(f) ~ max{NR(f), N:(f)}.
The following result from [4] shows that for every function there is a simple optimal non-deterministic
protocol.




Theorem 1. For every boolean function [ there is an optimal one-sided non-deterministic protocol P for f,
that is, a protocol P such that N}(f) = N(f), with the following form where the witness w, 1 < w < m, is the
index of the first rectangle R,, = A x B containing (Z,7y) in the first minimum I-cover: (1) Alice guesses w and
checks if T € A. (2) Alice sends w to Bob. (3) Bob checks if j € B.

Define the sets: Xo(y) = {z : f(z,7) = 0}, X1(y) = 2 f(x,y) = 1}, Yo(@) = {y : f(T,y) = 0} and
Y1(Z) = {y : f(T,y) = 1}. Notice that Alice knows Y(Z) and Y;(Z) while Bob knows X (7) and X;(y). The
set Y7 is often mentioned in this paper.

Theorems 2 and 3 apply only to “uniform” functions.

Definition 2. A function is uniform if it is computed by a fized (independent of the length of the input)
algorithm. [m]

Every function that can be described by an algorithm is uniform; for instance equality, conjunction and parity
are uniform functions. An example of a function which with almost certainty is not uniform is the random
function defined as f(x,y) = 0 or f(z,y) = 1 with probability 1/2.

2.2 Instance complexity

We define several forms of instance complexity; for a more complete presentation see [7]. It is assumed that
programs always terminate, and output either 0, 1 or L (“don’t know”).

Definition 3. A program p is consistent with a set A if x € A whenever p(xz) = 1 and x ¢ A whenever p(x) = 0.

[}

Definition 4 (instance complexity). Let t : N — N be a function, A a set and x an element. Consider the
following conditions: (C1) for all y, p(y) runs in time not exceeding t(|y|), (C2) for all y, p(y) outputs 0, 1
or L, (C3) p is consistent with A and (C4) p(x) # L. The t-bounded instance complexity of z relative to the
set A is

ic'(z : A) = min{|p| : p satisfies C1, C2, C3, and C4}
A program p corresponds to ic'(x : A) if it satisfies conditions C1, C2, C3, and C4; if moreover |p| = ic'(z : A)
we say that p corresponds exactly to ic(z : A). O

Relaxing the condition “p(z) # L7 we get two weaker forms of instance complexity:

Definition 5 (inside instance complexity). Consider the following conditions: (C1) for all y, p(y) ru
time not exceeding t(|y|), (C2) for all y, p(y) outputs either 1 or L, (C3) p is consistent with A and (C4) x €
A = p(x) = 1. The t-bounded inside instance complexity of x relative to the set A is

Wowmmﬁ& : A) = min{|p| : p satisfies C1, C2, C3, and C4}

A program p corresponds to it (z : A) if it satisfies conditions C1, C2, C3, and C4; if moreover |p| = icy(z :

yes yes

A) we say that p corresponds exactly to icl. (z : A). O

yes

Definition 6 (outside instance complexity). Consider the following conditions: (C1) for all y, p(y) runs
in time not exceeding t(|y|), (C2) for ally, p(y) outputs either 0 or L, (C3) p is consistent with A and (C4) x &
A = p(x) = 0. The t-bounded outside instance complexity of @ relative to the set A is

icl,(z : A) = min{[p| : p satisfies C1, C2, C3, and C4}

A program p corresponds to ich, (z : A) if it satisfies conditions C1, C2, C3, and C4; if moreover |p| = icl (z : A)
we say that p corresponds exactly to ich, (z : A). [m]

Notice that if z ¢ A then mowﬁ@ : A) is a constant (independent of x), because the program p(z) = L has
fixed length and is consistent with every set; similarly if # € A then icl (z : A) is a constant. Notice also that
for every element x, set A and function ¢ we have wnwo%& tA) <icf(z: A) and il (2 : A) < ic'(2: A). On the
other hand, from a program p corresponding to wnw._om? : A) and a program p’ corresponding to iciz (v : A) we
can define a program r as follows: r(z) = 1 if p(z) = 1, r(z) = 0if p’(z) = 0 and r(z) = L otherwise, concluding
that

mn\:_b;& :A) < il (z:A)+ WOWCA& cA)+ Oﬁcmﬁggﬁor (z: \CVFS (z:A)})

yes yes no
where the function f represents the time overhead needed for the simulation of p(z) for ¢; steps followed
by simulation of p/(z) for ts steps; the logarithmic term comes from the need to delimit p from p’ in the
concatenation pp’.

Notation. To emphasize that ¢ is a function of n, we write ic'™ (y : A(z)), ic/? (y : A(z)) and ic!(™ (y : A(z)).

yes

3 One-sided protocols

As an illustration we first consider in sub-section 3.1 a somewhat simplified analysis of the function Z # 7 (also
called “NEQ”), and show how to use programs corresponding to instance complexity as guesses of (optimal)
non-deterministic protocols. This usage is later generalized to any uniform function in sub-section 3.2.

3.1 Inequality: an optimal “icy.-protocol”
Consider the predicate NEQ and suppose that T # y; then for some 7, 1 < i < n, we have T; # 7,. A possible

program p; corresponding to Ew#@ :Y1(T)) is piy) = 1if y; # T, pi(y) = L if y; = T;. The reader may
compute the set Y{ = {y : and if [p| is minimum, this program

i(y) = 1} and show that Y{ C Y1(Z). If p(y) = 1
corresponds exactly to icy, (7 : Y1(Z)).

Consider now the following protocol P; for NEQ where ¢ is a time bound sufficiently large (see more details in
sub-section 3.2). Alice receives a word p as a guess; p may eventually be the program p; above. Then she runs p(y)
for every y € Y until the program halts or until ¢(|y|) steps have elapsed. If p(y) does not halt in time ¢(|y|),
the word p is not a valid witness and the protocol halts. Otherwise Alice defines the set Y] = {y : p(y) = 1}.
If Y/ C Yi(T), i.e., if p is consistent with Y} (%), she sends p to Bob, otherwise outputs L and halts. Bob tests
if p(y) = 1; if yes, outputs 1, otherwise outputs L.

Correctness conditions:

t

(1) If T # 7, there is a witness p that corresponds to ic,.(7,Y1(Z)). We have z; # y; for some 1,

yes
0 < i < n. Then, if p happens to be the program p; above, the protocol P outputs 1 so p corresponds
to mnw&@qsavvu that is, we must have Y/ consistent with Y1 (Z) (verified by Alice) and p(y) = 1 (verified by
Bob).

(2) If a guess is wrong, the output is L. If the guess is wrong, then either some p(y) runs for more
than ¢(|y|) steps or p is not consistent with Y1 (Z) or p(y) = L; if ¢(n) is sufficiently large, the output is L in all
these cases.
(3) If Z=7, no guess p can cause output 1. This follows directly from the definition of the protocol.

Complexity: The length of p; need not to exceed logn + O(1) and maxo<;<n{|p:|} is logn + O(1). Thus the

complexity of the protocol P is log(n) + O(1). But the non-deterministic communication complexity of NEQ is
also logn + O(1) (see [4]), thus the protocol is optimal.

3.2 “icyes-protocols” are optimal

Consider now the one-sided protocol of Figure 1. In the general case, the function f, which is known by Alice
and Bob, is arbitrarily complex; therefore the description of f can not be included into an “instance complexity
program” p unless lim,_, |p| = oo (see also the comments after the proof of Theorem 2). However, a much
simpler situation arises if we consider only uniform functions.

Theorem 2 (icyes-protocols are optimal). Let f be an uniform function. There is a computable function t(n)
such that
max {ic{%)(y : Yi())} + O(1) (M)

N =
|z]=[y|=n

Proof. Let p be the non-deterministic word given to Alice by the oracle; the protocol Py, is described in

Figure 1 where t(n) is an appropriate time bound (see below). Notice that the protocol specifies that Alice

should interpret p as a program and execute p for a maximum time ¢(n).

The program p, being an arbitrary word, may behave in many different ways; in particular, if f(z,7) = 1, the

behavior described in Figure 2 will cause Py, to output 1.

If i is chosen so that (Z,7) € R; (if f(Z,7) = 1 there is at least one such i, otherwise there is none) then p is
consistent with V(%) and p(y) = 1. Then [p| > anﬁhv (7 : Y1(7)) for t(n) sufficiently large. Moreover, if p is not
“correct”, that fact can be detected by Alice or by Bob; thus, conditions (5) and (6) (see page 2) are verified.

As [ is assumed to be uniform, the length of a program which is accepted as a witness, needs not to
exceed logm + O(1).

How much time ¢(n) must Alice run p(y) (for each y) so that, there is at least a witness for every pair (7, 7)
with f(Z,7) = 1?7 As f is uniform, it is possible to obtain an upper bound ¢(n) in a constructive way by
detailing and analyzing the algorithm that the witness p should implement, see Figure 2. Therefore we may
suppose that ¢(n) is a well defined function.



Alice:
Receive program p(y) (as a possible witness)
Test if, for every yeY,
p(y) halts in time not exceeding #(n) with output 1 or L
If not, output L and halt
Compute the set B ={y:p(y) =1}
Find the set of smallest 1-covers
Select the first (in lexicographic order) such
cover (Ri, Ra,...Rm)
Select a rectangle R; = A x B from that cover
where B CY is the set computed above
As the cover is minimum, there can be at most one such
rectangle. If there is none, output L and halt
Comment. At this point we know that p is consistent with Y/ (Z)
Test if T€ A
If not, output L and halt
Send p to Bob

Verify if p(y) =1
If yes, output 1 and halt
Output | and halt

Fig. 1. A family of one-sided non-deterministic protocols P;(,). The guess is based on a program p that
corresponds to icle (¥ : Y1(T)).

Program p, input y:
From d(f) and i:
Find the set S; of smallest 1-covers
Select the first (in lexicographic order) cover (Ri,Ra,...R.) € S
Select rectangle R; = A X B in that cover
With input y, output
ply)=1if yeB
p(y) = L otherwise

Fig. 2. A possible behavior of the program p which may cause the protocol P, (see Figure 1) to output 1.
A string p with this behavior can be specified in length |d(f)|+log m. The existence of this program, which
has length logm+ O(1) where m is the size of the minimum covers, justifies the step between equation (9)
and inequality (10).

Suppose now that f is uniform, and that f(z,7) = 1. If the protocol accepts (Z,7) with guess p, we
have |p| <logm + O(1) and maxz|—5)=n{|p|} <logm + O(1). Thus

1(f) =log C'(f) +O(1) (8)

=logm+ O(1) (9)

Z max {pl}+0(1) (10)

> _max (i Vi(@)} +0(1) (11)
Fimlgi=n

On the other hand, there exists a non-deterministic protocol with complexity max|z|—z|=n ﬁow\%v (7 :Y1(Z))}+
O(1); this is the protocol of Figure 3 when t(n) is sufficiently large. Notice that program p can be any program

running in time ¢(n) which is consistent with Y3 (Z) and such that p(y) = 1 (and, if f(Z,7) = 1, there is at least

one such program, as we have seen above); thus it can be the shortest such program, |p| = wowmmuﬁ ,Y1(Z)). Taking
the maximum over all Z and § with [Z| = || = n (see Definition 1) we get N*(f) < maxz)—z=n ﬁnwﬂhv (v :
Y1(Z))} + O(1) because N'(f) is the smallest complexity among all the protocols for f. Combining this result
with inequation (11) we get N(f) = EuxEH,SH:TGM\HV 7:V1(@)} +O(1). ]

A note on the uniformity condition

At first it may be not obvious why the validity of equality (7) of Theorem 2 depends on the uniformity of f. Let
us argue that (7) may be false for non uniform functions, using the Kolmogorov complexity as a tool. Denote
by C(x) the (plain) Kolmogorov complexity of  which is defined as C(x) = min{|p| : U(p) = «} where U is
some fixed universal Turing machine, see [6].

Consider a monochromatic cover of a non uniform function such that (i) the number m of rectangles in the
cover is very small and (ii) the horizontal side B of the first rectangle in the cover has a Kolmogorov random
length, C(|B|) ~ n. The length B can be obtained from p, thus C(|B]) < C(p) + O(1) which implies C(p) >
n+ O(1) >> logm; thus the step (9) — (10) in the proof is not valid.

Alice:
Receive program p(y) (as a possible witness)
Test if, for every y, p(y) halts in at most {(n) steps
If not, output L and halt
Test if {y:p(y) =1} CYi(Z) (p is consistent with Y1(T))
If not, output L and halt
Send p to Bob

Bob:
Compute 7 = p(y) and test if r=1
If not, output L and halt
Output 1

Alice:

Output the message received

Fig. 3. A family of one-sided non-deterministic protocols Num?;. The guess may be any program p that
corresponds to icje (7 : Y1(T)), that is p must satisfy only {y: p(y) = 1} C V1(Z) and p(y) = 1.

4 Two-sided protocols

Now we consider the two-sided protocols for non-deterministic communication complexity. If ¢(n) is sufficiently
large, there are optimum protocols whose guesses correspond exactly to ic' (7 : Y1 (7).

Theorem 3. Let f be an uniform function. There is a computable function t(n) such that

N(f) = max {ic!™(y:Yi(2))} +0(1)

[7|=[7]=n

See the Appendix for comments on the proof of this result.

5 About individual communication complexity

The one sided individual communication complexity satisfies
NUL.7.9) 2 ieye(§ : (@) +O(1)

The complexity N''(f,7,7) is obtained from a minimization over all protocols which must of course “work
correctly” for every pair y) and not only for v) while no such restriction exists in the definition of
instance complexity. The individual communication complexity may in a few rare cases (if ¢ has a very short
description), be much smaller than logmn.

Finally we present a result relating the individual non-deterministic communication complexity with the
instance complexity.

Theorem 4. (Individual upper bound) For every function f and values x and y there is a to € N such that the
individual non-deterministic cc ication complexity N'(f,x,y) satisfies

Yt >ty N(f,x,y) =ic'(y: Yi(z)) +O(1) < N(f) +O(1)

6 Conclusions and future work

We have established that, for uniform functions f and for #(n) sufficiently large, the maximum value of ic"™ (7 :
Y1(Z)) (where Y1(z) = {y : f(Z,y) = 1}) equals the non-deterministic communication complexity N(f). The
work done here can be continued along several lines of research and, in particular, it would be interesting
to study more deeply the relationship between individual communication complexity and instance complexity
and to search for the existence and properties of protocols that, besides being optimal (in the worst case)
minimize the communication for all pairs (z,7). It would also be interesting to relate the time bound of instance
complexity with the complexity class of the function f.

In more general terms we think that it is important to study in depth the relationship between measures of
communication cost and measures of computational complexity.




References

—

Sanjeev Arora, Boaz Barak, Computational Complezity: A Modern Approach, Princeton University, 2006,

url: http://wuw.cs.princeton.edu/theory/complexity/communicatechap.pdf

2. Harry Buhrman, Hartmut Klauck, Nikolai Vereshchagin and Paul Vitany, Individual c ication c X
STACS 2004: 21st Annual Symposium on Theoretical Aspects of Computer Science, Montpellier, France, March
25-27, 2004.

3. Tlan Kremer, Noam Nisan, Dana Ron, On randomized one-round communication complezity, Proc. of 27th STOC,
PP 596-605, 1995,
url: citeseer.ist.psu.edu/kremer95randomized.html

4. Eyal Kushilevitz, Noam Nisan, Communication Complexity, Cambridge University Press, New York, Springer-Verlag,

1996.

Sophie Laplante, John Rogers, Indistinguishability, Technical report TR-96-26, 1996,

url: citeseer.ist.psu.edu/laplante98indistinguishability.html

6. Ming Li e Paul Vitanyi, An Introduction to Kolmogorov Complexity and its Applications, Springer-Verlag Graduate

Texts In Computer Science Series, second edition, 1997.

Pekka Orponen, Ker-I Ko, Uwe Schoning, Osamu Watanabe, Instance Complezity, Journal of the ACM, 41:1, pp 96-

121, 1994,

url: citeseer.ist.psu.edu/orponen94instance.html.

8. Andrew Chi-Chih Yao, Some complexity questions related to distributive computing, Proceedings of the 11th Annual

ACM Symposium on Theory of Computing, Atlanta, pp 209-213, 1979.

Andrew Chi-Chih Yao, The entropic limitations on VLSI computations, Proceedings of the 13th Annual ACM Sym-

posium on Theory of Computing, Milwaukee, pp 308-311, 1981.

7

o

~

©

Appendix A. About the proof of Theorem 3

Program p, input y:
o . From d(f) and i:
The proof of Theorem 3 is similar to the proof of Theorem 2; we make only a few observations. The reader should Fi . _
) . . N N A . . ind the set Sy of smallest O-covers and

compare Figures 1 and 2 with Figures 4 and 5 respectively. The main difference in the proof is that we have the set Si of smallest 1-covers
now to consider a minimum cover of O-rectangles and a minimum cover of 1-rectangles. Denote by m = C°(f) Select the first (in lexicographic order) sequence
and m’ = C(f) the size of those covers; as the function f is assumed to be uniform, the witness (program) p s=(Ri,... R, Rmns1,... Rsirnr)
has a description with length log(m + m’) + O(1). It is not difficult to verify the correctness of conditions (1) where (Ri,...Ry) € So and (Rimt1,... Ropms) € S1
to (4), see page 2. Select the ith rectangle R; = A X B from s

With input y, output:

p(y) =z if y € B and rectangle A x B has color z € {0,1}
Alice: p(y) = L otherwise

Receive program p(y) (as a possible witness)
Test if, for every ye€Y,
p(y) halts in time not exceeding ¢(n) with output 0, 1 or L
Compute the set B = {y:p(y) # L}
Test if B is monochromatic and not empty
Find the set Sy of smallest O-covers
and the set S; of smallest 1-covers
Select the first (in lexicographic order) sequence
s=(Ri,...Rm, Rms1,... Ryyir)
where (Ri,...Rm) € So and (Rm+1,... Rmim') € S1
Select a rectangle R, = A x B from s
Comment. There is at most one such rectangle
Test if T€ A
Send p to Bob

Fig.5. A possible behavior of the program p which may cause the protocol P, of Figure 4 to output a
value different from L. A string p with this behavior can be specified in length |d(f)| + log(m + m’).

Compute 7 = p(¥)
Output r

Fig. 4. A family of two-sided non-deterministic protocols P;,). The guess is based on a program p that
corresponds to ic’(7 : Yi(7)). Compare with Figure 1. For simplicity we assume that whenever a test fails,
the protocol outputs L and halts.




Entropy Measures vs. Algorithmic Information

Andreia Teixeira André Souto
Universidade do Porto and Universidade do Porto and
Instituto de Telecomunicag¢des Instituto de Telecomunicagdes
andreiasofia@ncc.up.pt andresouto@dcc.fc.up.pt

Abstract—Algorithmic entropy and Shannon entropy are two
conceptually different information measures, as the former is
based on size of programs and the later in probability distribu-
tions. However, it is known that, for any recursive probability
distribution, the expected value of algorithmic entropy equals
its Shannon entropy, up to a constant that depends only on the
distribution. We study if a similar relationship holds for Rényi
and Tsallis entropies of order «, showing that it only holds
for Rényi and Tsallis entropies of order 1 (i.e., for Shannon
entropy). Regarding a time bounded relati ip, we
show that, for distributions such that the cumulative probability
distribution is computable in time ¢(n), the expected value of
time-bounded algorithmic entropy (where the alloted time is
nt(n)log(nt(n))) is in the same range as the unbounded version.
So, for these distributions, Shannon entropy captures the notion
of computationally accessible information. We prove that, for
universal time-bounded distribution m’(z), Tsallis and Rényi
entropies converge if and only if « is greater than 1.

I. INTRODUCTION

Algorithmic entropy or Kolmogorov complexity, K (x), mea-
sures rigorously the amount of information contained in an
individual object (usually a string) x, by the size of the
smallest program that generates It naturally defines a
probability distribution over ¥* (the set of all finite binary
strings), assigning a probability of 2 K(®) for any string .
This probability distribution is called universal probability
distribution and it is denoted by m.

Shannon entropy of a random variable X, H(X), is a measure
of its average uncertainty. It is the smallest number of bits
required, on average, to describe z, the output of the random
variable X.

Algorithmic entropy and Shannon entropy are conceptually
different, as the former is based on the length of programs
and the later in probability distributions. However, it is known
that, for any recursive probability distribution (i.e. distributions
that are computable by a Turing machine), the expected value
of the algorithmic entropy equals the Shannon entropy, up to
a constant term depending only on the distribution (see [7]).
Several information measures or entropies have been intro-
duced since Shannon seminal paper [9]. We are interested in
two different generalizations of Shannon entropy:

« Rényi entropy, an additive measure based on a specific
form of the Kolmogorov-Naguno mean of the elementary
information gain: instead of using the arithmetic mean,
Rényi used the Kolmogorov-Naguno mean associated
with the function f(z) = 1607 4 ¢y where ¢; and

Armando Matos Luis Antunes
Universidade do Porto and ~ Universidade do Porto and
LIACC Instituto de Telecomunicagdes
acm@dcc.fc.up.pt Ifa@dcc.fe.up.pt

¢y are constants, b is a real greater than 1 and « is a
non-negative parameter;

Tsallis entropy, a non additive measure, often called a
non-extensive measure, in which the probabilities are
scaled by a positive power «, that may either reinforce
the large (if o > 1) or the small (if o < 1) probabilities.
Let R,(P) and T,(P) denote, respectively, the Rényi and
Tsallis entropies associated with the probability distribution
P. Both are continuous functions of the parameter « and both
are (quite different) generalizations of the Shannon entropy.
in the sense that Ry(P) = T1(P) = H(P) (see [1]). It is
well known that for any recursive probability distribution P
over £*, the average value of K (z) and the Shannon entropy
H(P) are close, in the sense that

0< > P(a)K(x)— H(P) < K(P) (L1

where K (P) is the length of the shortest program that
describes the distribution P. We study if this property also
holds for Rényi and Tsallis entropies. The answer is no. If
we replace H by R or T, the inequalities I.1 are no longer
true (unless o = 1). We also study the convergence of Tsallis
and Rényi entropies of the universal time-bounded distribution
m'(z) = 2=k (@), proving that both entropies converge if
and only if o > 1. Finally, we analyze the validity of the
relationship 1.1, replacing algorithmic entropy by its time-
bounded version, proving that it holds for distributions such
that the cumulative probability distribution is computable in
an alloted time. So, for these distributions, Shannon entropy
equals the expected value of the time-bounded algorithmic
entropy.

The rest of this paper is organized as follows: in the next
Section, we present the notions and results that will be used.
In Section 3, we study if the inequalities 1.1 can be generalized
for Rényi and Tsallis entropies and we also establish a
similar relationship for the time-bounded algorithmic entropy.
In Section 4, we analyze the entropies of the universal time-
bounded distribution.

II. PRELIMINARIES
3* ={0,1}* is the set of all finite binary strings. The empty
string is denoted by e. X" is the set of strings of length n and
|.| denotes the length of a string. Strings are lexicographically
ordered. The logarithm of z in base 2 is denoted by log(z).
The real interval between a and b, including a and excluding

b is represented by [a,b). A sequence of real numbers 7, is
denoted by (ry,)nen.

A. Algorithmic entropy

Algorithmic entropy also known as Kolmogorov complexity
was introduced independently, in the 60’s by Solomonoff [10],
Kolmogorov [5], and Chaitin [2]. Only essential definitions
and basic results are given here, for further details see [7]. The
model of computation used is the prefix-free Turing machine,
i.e., Turing machines with a prefix free domain. A set of strings
A is prefix-free if no string in A is prefix of another string of
A. Kraft’s inequality guarantees that for any prefix-free set A,
Trea2 <

Definition 1 (Algorithmic entropy). Let U be a fixed prefix-
free universal Turing machine. For any two strings x,y € ¥,
the algorithmic entropy or Kolmogorov complexity of x given
y is K(zly) = miny{|p| : U(p,y) = x}, where U(p,y) is
the output of the program p with auxiliary input y when it
is run in the machine U. For any time constructible t, the
t-time-bounded algorithmic entropy of x given y is, K'(x|y)
= miny{|p| : U(p,y) = x in at most t(|x|) steps}.

The default value for y, the auxiliary input is the empty string
€; for simplicity K (z) and K*(z) denote K (z]e) and K*(z|e),
respectively. The choice of the universal Turing machine
affects the running time of a program by, at most, a logarithmic
factor and the program length by, at most, a constant number
of extra bits.

Definition 2. Let ¢ be a non-negative integer. We say that
x € X" is c-algorithmic random if K(z) > n — c.

Proposition 3. For all strings x,y € ¥*, we have:
1) K(z) < K'x) +0(1) < |a| + 2log(l]) + O(1);
2) K(zly) < K(z)+0(1) and K'(zly) < K'(z)+ O(1);
3) There are at least 2"(1 — 27°) c-algorithmic random
strings of length n.

As Solovay observed in [11], for infinitely many x, the time-
bounded version of algorithmic entropy equals the unbounded
version. Formally, we have:

Theorem 4. For all time-bounds t(n) > n + O(1) we have
K'(z) = K(x) + O(1) for infinitely many x.

As a consequence of this result, there is a string « of arbitrarily
large algorithmic entropy such that K'(z) = K(z) + O(1).

Definition 5. A semi-measure over a discrete set X is a
Sfunction f: X — [0,1] such that, MU f(z) < 1. We say that
a semi-measure is a measure if &MM&E:Q holds. A semi-
measure is constructive if it is semi-computable from below,
ie., for each x, there is a Turing machine that produces a
monotone increasing sequence of rationals converging to f(x).

An important constructive semi-measure based on algorithmic
entropy is defined by m(z) = 27 K), This semi-measure
dominates any other constructive semi-measure /o (see [6],
[3]). in the sense that there is a constant ¢, = 2-K1) guch

for all x € ¥*, m’

that, for all z, m(x) > ¢, pu(x). For this reason, this semi-
measure is called universal. Since it is natural to consider
time-bounds on algorithmic entropy, we can define m’(z),
a time-bounded version of m(z).

Definition 6. We say that a function f is computable in time
t if there is a Turing machine that on the input x computes
the output f(x), in exactly t(|z|) steps.

Definition 7. The t-time-bounded universal distribution is
tig .
mt(z) = 275, where ¢ is a real number such that

Ypese mi(z) = 1.

In [7], the authors proved that m! dominates distributions
computable in time ¢, where ¢ is a time-bound that only
depends on ¢. Formally:

Theorem 8 (Claim 7.6.1 [7]). If p*, the cumulative prob-
ability distribution of p, is computable in time t(n) then

\A g

> 27K (), where t'(n) =

nt(n)log(nt(n)).

B. Entropies

Information theory was introduced in 1948 by C.E. Shannon
[9]. Shannon entropy quantifies the uncertainty of the results
of an experiment; it quantifies the average number of bits
necessary to describe an outcome from an event.

Definition 9 (Shannon Entropy [9]). Let X be a finite or
infinitely countable set and let X be a random variable taking
values in X with distribution P. The Shannon entropy of
random variable X is: H(X) = =3, P(x)log P(x).

The Rényi entropy is a generalization of Shannon entropy
based on a different concept of average.

Definition 10 (Rényi Entropy [8]). Let X' be a finite or
infinitely countable set and let X be a random variable
taking values in X with distribution P and let o # 1
be a non-negative real number. The Rényi entropy of order
« of the random variable X is defined as: R.(X) =
Hlog (e P(e)).

Another generalization of Shannon entropy is the Tsallis
entropy.

Definition 11 (Tsallis Entropy [13]). Let X be a finite or
infinitely countable set and let X be a random variable
taking values in X with distribution P and let o # 1
be a non-negative real number. The Tsallis entropy of or-
der a of the random variable X is defined as: T,(X) =
att (1= 2,en P()).

It is easy to prove that «le_ Ro(X) = me To(X)=H(X).
Notice that we also use the notation H (P), R, (P) and T,,(P)
to denote Shannon, Rényi and Tsallis entropies of distribution
P, respectively.

Given the conceptual differences in the definitions of algorith-
mic entropy and Shannon entropy, it is interesting that under
some weak restrictions on the distribution of the strings, they




are related. In fact, the value of Shannon entropy equals the
expected value of algorithmic entropy, up to a constant term
that only depends on the distribution.

Theorem 12. Let P(z) be a recursive probability distribution.
Then,
0< Y P@)K(x)— H(P) < K(P)

Proof: (Sketch, see [7] for details). The first inequality
follows directly from the known Noiseless Coding Theorem,
that, for these distributions, states H(P) < Y P(x)K(x).
Since m is universal, m(z) > 2~ 5P P(z), for all , which

is equivalent to log P(z) < K(P) — K(z). Thus, we have:
X, P(@)K(x) - H(P) =3, (P(x)(K () + log P(x)))
<3, (P@)(K(@) + K(P) - K(2)) = K(P)
u

III. ALGORITHMIC ENTROPY AND ENTROPY: HOW CLOSE?
Since Rényi and Tsallis entropies are generalizations of Shan-
non entropy, we now study if Theorem 12 can be generalized
for these entropies. Then, we prove that for distributions such
that the cumulative probability distribution is computable in
time ¢(n), Shannon entropy equals the expected value of the
t-time-bounded algorithmic entropy.

First, we observe that the interval [0, K'(P)] of the inequalities
of Theorem 12 is tight up to a constant term that only depends
on the universal Turing machine chosen as reference. The
following examples illustrate the tightness of this interval. We
present a probability distribution that satisfies:

>, P(x)K(x) — H(P) = K(P)— O(1), with K(P) = n
and a probability distribution that satisfies:
Y. P(@)K(z) — H(P) = 0O(1) and K(P) = n.

Example 13. Fix xy € X". Consider the distribution concen-
trated in x, i.e,

1

R

Notice that describing this distribution is equivalent to de-
scribe xg. So, K(P,) = K(zo) + O(1). On the other
hand, Y-, P,(2)K(z) — H(P,) = K(x¢). Thus, if xo is c-
algorithmic random, i.e. K(zo) > n — ¢, then K(P,) = n
and Y, Py(z)K (x) — H(P,) = n.

Example 14. Let y be a string of length n that is c-algorithmic
random, i.e., K(y) > n — ¢ and consider the following
probability distribution over ¥*:

if = mg
otherwise

0.y if =g
P(z)=¢ 1-0y if x =,
0 otherwise

where 0.y represents the real number between 0 and 1 which
binary representation is y. Notice that we can choose x, and
xy such that K(xg) = K(z1) < ¢ where ¢ is a constant
greater than 1 and hence does not depend on n. Thus,

1) K(P,) > n — ¢ since describing P, is essentially
equivalent to describe xy, x1 and y;
) 3, Pu@)K(x) = (0.4)K(ro) + (1~ 04)K (1)
0yxcd+ (1-0y) xd =
3) H(P,) = —0.ylog0.y — (1 — 0.y)log(1 —0.y) < 1.
Thus, 0 < >, Py(z)K(x) — H(P,) < ¢ << K(P,) and
K(P,) >n—c

Now we address the question if an analogue of Theorem 12
holds for Rényi and Tsallis entropies. We show that the Shan-
non entropy is the only entropy that verifies simultaneously
both inequalities of Theorem 12 and thus is the only one
suitable to deal with information.

For every £ > 0, 0 < &’ < 1, and any probability distribution
P, with finite support, (see [1]), we have:

Ripe(P) < H(P) < Ri—o(P)

Thus:

1) Fora>1,0< Y P(x)K(x) — Ro(P);

2) Fora <1, P(x)K(x) - Ry(P) < K(P).
It is known that for a given probability distribution with
finite support, the Rényi and Tsallis entropies are monotonic
increasing functions one of each other with respect to «
(see [4]). Thus, for every ¢ > 0 and 0 < &’ < 1, we also
have a similar relation for the Tsallis entropy, i.e.,

Ti4o(P) < H(P) < Ty (P)

Hence, it follows that: 2)
1) Fora>1,0<Y Pla)K(z v —T,(P);
2) Fora <1, P(x)K(x) - T,(P) < K(P).

In the next result we show that the inequalities above are,

general, false for different values of a.

Proposition 15. There are recursive probability distributions
P such that:

1) Y, P(z)K(2) — Ra(P) > K(P), where o> 1;
2) >, P(x)K(x) — Ro(P) <0, where o < 1.
3) Y., P(x)K(x) — To(P) > K(P), where a > 1;
4) Y, P(x)K(x) — To(P) <0, where a < 1.
Proof: For x € ¥", consider the following probability
distribution: 3)
1/2 if x =0"
Puw)=1¢ 27" ifz=1a',2" € {0, 1}
0 otherwise

It is clear that this distribution is recursive. We use this
distribution for some specific n to prove all items.
1) First observe that:

H(P,) = =3, Pn(z)log P, (x)
log 1 + 32" 'log 5-)

_ M\w — Lonmip) = nfl

Notice also that to describe P, it is sufficient to give n,
so K(P,) < clogn, where ¢ is a real number.

By Theorem 12, we have,

D Pu(@)K(x) = H(P,) 20

which implies that:

3 Pu(@)K (@) 2 ﬁwH an2)
On the other hand, by definition:
R.(P,) = ﬂ_omm P,
— e (i S
— 2 (log(2 V% +277%) — na)

To prove that M P,(z)K(z) — Ro(P,) > K(P,), itis
sufficiently to mno,\m that:
limy, 35, Po(2)K(2) = Ra(Py) = K(P,) >0

i.e., the limit of the following expression is bigger than

S G:ﬁm?\t: +2"71) —na) — clogn
But,

. log(2(n—Da gn—1
lim,, A:ml - { —clogn

(n-1a
> lim, A:t 4 log@® ) a9 —clog :v

a-1
= lim, A:.t -2

4 na

T—a

o o9 —clog 3v = +o00
To prove this item we use the other inequality of
Theorem 12: 3~ P, (x) K (x)—H(P,) < K(P,), which

implies that:

1
3 Pu@)K (@) < :w +clogn (IIL3)
So,
s Pa(@)K(2) — Ra(Py) <
:m& +clogn — —— GONAMA:\:\:_ +2m71) — :Qv
<z +n_om: _owmz ) 4 1w

=—2+4+L1+clogn+ 2o

o

Thus, taking n sufficiently large, the conclusion follows.
The Tsallis entropy of order « of distribution P, is:
TaPa) = G = e e o)
= a1 a1 Am; + wi

21 gnli-a)
2(@-1  2(a-1)

m:\&

Using the inequality I11.2,
2, Pu(@)K (z) = T. Qui =

201 2
¥, Pa(@)K (2) — 527 + S
> n+1
= 2

we get:

Hn(1-a)
3a-1)

~ e T

Since @ > 1, for n sufficiently large,

. pa_q gn(i-a)
zm - 2% (a—1) + 2(a—1) 2
>nfl ﬁ > clogn = K(P,)

4) Using the inequality IIL.3, we get:
5, Pu@)K () — Ta(Pa) <

;E mal wi_l:
< "5~ +clogn — =D T 2a=1)

Since a < 1, for n sufficiently large, we conclude that:

gn(i-a)
2(1-a)

ntl 4 clogn 4 201

2%(1-a) <0

u
The proof of the following theorem is similar to the previous
proposition.

Theorem 16. For every A > 0 and o« > 1 there are recursive
probability distributions P such that,

) 3" P@)K(z) - Ra(P) > (K(P))";
2) Muw@ VK () —
3) Muw
4) ME&E& -

The previous results show that only Shannon entropy is
suitable for the inequalities of Theorem 12. Now, we analyze if
a similar relation holds in a time-bounded algorithmic entropy
scenario.

If instead of considering K (P) and K (z) in the inequalities of
Theorem 12, we use their time-bounded version and imposing
some computational restrictions on the distributions, we obtain
a similar result. Notice that, for the class of distributions on
the following theorem, the entropy equals (up to a constant)
the expected value of time-bounded algorithmic entropy.

Ro(P) > K(P) + A;

VK (z) — T (P) > (K(P))*

T,(P) > K(P) + A.

Theorem 17. Let P be a probability distribution over X" such
that P*, the cumulative probability distribution of P, is com-
putable in time t(n). Setting t'(n) = O (nt(n)log(nt(n))), we
have, 0 <y P(a)K" () — H(P) < K" (P*).

*

Proof: The first inequality follows directly from the
similar inequality of Theorem 12 and from the fact that
K'(z) > K(x).

From Theorem 8, if P is a probability distribution such that
P* is computable in time ¢(n), then for all z € X" and
'(n) = nt(n)log(nt(n)), K'(z) + log P(z) < K'(P*).
Then, summing over all z, we get:

)< M P(x

MT:X "(x) + log P(x
H(P) < K" (P*).

which is equivalent to ° P(x)K" () — <
u

) K' (P¥)

IV. ON THE ENTROPIES OF THE TIME-BOUNDED
UNIVERSAL DISTRIBUTION

If the time that a program can use to produce a string
is bounded, we get the so called time-bounded universal
distribution, m'(z) 2=K'@)  In this section, we study
the convergence of the three entropies with respect to this
distribution.



Theorem 18. The Shannon entropy of the distribution m'
diverges.

Proof: If @ > 2 then f(z) = 227" is a decreasing func-
tion. Let A be the set of strings such that —logm'(z) > 2.
A is recursively enumerable.

H(m') =Y . —m'(z)logm’(z)
>3 pea —m'(z) logm' ()
=Y eac2 K@ (K (z) ~loge)
=—cloged,cp 27 K@) 4 €Y pea Ki(z)2 K@

So, if we prove that M K*(2)275"@) diverges, the result fol-

z€A
lows. Assume, by contradiction, that M WAHVM\X;NV <d
cA
for some d € R. Then, considering ’
[ IK(@)2 K@ ifse A
10 otherwise

we conclude that r is a semi-measure. Thus, there is a constant
¢ such that, for all z, 7(z) < ¢m(z). Hence, for z € A, we
have www;?.umwrii < 27 K@),
So, K*(x) < ¢/d2"(®)=K(®)  which is a contradiction since
by Theorem 4, A contains infinitely many strings x of time-
bounded algorithmic entropy larger than a constant such that
K'(z) = K(x) + O(1). The contradiction followed from the
assumption that the sum ), K* ()2~ K@) converges. So,
H(m') diverges. ]
Now we show that, similarly to the behavior of Rényi
and Tsallis entropies of universal distribution m (see [12]),
R,(m') < oo iff @ > 1 and T,(m’) < oo iff @ > 1.
First obverse that we have the following ordering relationship
between these two entropies for all probability distribution P:

D) If a>1, To(P) < 25 + Ro(P):

2) If a < 1, To(P) > =15 + Ro(P).

= a-1

Theorem 19. The Tsallis entropy of order « of time-bounded
universal distribution m' converges iff o > 1.

Proof: From Theorem 8 of [12], it is known that
Y pese (m(x))™ converges if @ > 1. Since m’ is a proba-
bility distribution, there is a constant A such that, for all z,
m'(z) < Am(z). So, (m'(2))* < (Am(x))®, which implies
that 3 s (m'(2))* < A*Y° 5. (m(x))* from which we
conclude that for a > 1, T,,(m') converges.
For a < 1, the proof is analogous to the proof of Theorem
18. Suppose that Y- . (m'(x))* < d for some d € R.
Hence, r(z) = (m'(x))™ is a constructible semi-measure.
Then, there is a constant 7 such that for all =z € X*,
= wAnwLﬁ?vv < 727 K@) which is equivalent

to o < ok (z)—K () By Theorem 4, there are infinitely
many strings = such that K'(z) = K(z) + O(1). Then it
would follow that for these strings % < 2(a=1K(2) ' which
is false since these particular strings can have arbitrarily large

algorithmic entropy. u

Theorem 20. The Rényi entropy of order « of time-bounded
universal distribution m' converges iff o > 1.

Proof: For o > 1, since Ms 2-K'(@) < +00, we have
3, (27K )% < oo, Thus, R, (m') converges.
For a < 1, suppose without loss of generality that « is
rational (otherwise take another rational slightly larger than
). Assume that MULMLAAEVQ < oo. Then by universality
of m and since (2-5'®))e is computable, we would have
m(z) > Amlﬁivua which, by taking logarithms, is equivalent
to K*(z) > LK (z) + O(1). Since (1/a) > 1, this would
contradict Solovay’s Theorem of page 2. u

V. CONCLUSIONS

‘We showed that Shannon entropy is the only entropy that
satisfies the relation with the expected value of algorithmic
entropy stated in [7], exhibiting a probability distribution for
which the relation fails for some orders of Tsallis and Rényi
entropies. Furthermore, we proved that under the assumption
that cumulative probability distribution is computable in an
alloted time, a time-bounded version of the same relationship
is verified with respect to Shannon entropy. Since it is natural
to define a probability distribution based on time-bounded
algorithmic entropy, we studied the convergence of this dis-
tribution under Shannon entropy and its two generalizations:
Tsallis and Rényi entropies.

ACKNOWLEDGMENTS

All the authors are partially supported by the program C'ST?
(PTDC/EIA-CCO/099951/2008) granted by FCT to Instituto
de Telecomunicages. The first author is also supported by
the grant SFRH/BD/33234/2007 of FCT. The second author
is also supported by the grant SFRH/BD/28419/2006 of FCT.
The third author is also partially funded by LIACC through
Programa de Financiamento Plurianual, FCT.

REFERENCES

[1] C. Cachin, P. Dr, and U. Maurer. Entropy Measures and Unconditional
Security in Cryptography, 1997.

[2] G. Chaitin. On the Length of Programs for Computing Finite Binary
Sequences. J. ACM, 13(4):547-569, 1966.

[3] P. Gacs. On the symmetry of algorithmic information. Sovier Mathe-
matics Doklady, 1974.

[4] S. Hoffmann. Proceedings of ieeenon-uniqueness of non-extensive
entropy under rényi’s recipe. Technical report.

[5]1 A. Kolmogorov. Three to the
information. Problems of Information Transmission, 1(1):1-7, 1965.

[6] L. Levin. Laws of Information Conservation (Nongrowth) and Aspects
of the Foundation of Probability Theory. Prob. Peredachi Inf., 10(3),
1974.

[7]1 M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and
Its Applications. Springer Publishing Company, Incorporated, 2008.

[8] A. Rényi. On Measures of Entropy and Information. In Berkeley
Symposium Mathematics, Statistics, and Probability, 1960.

[9] C. Shannon. A matt ical theory of

technical journal, 27, 1948.

R. Solomonoff. A formal theory of inductive inference, part I. Infor-

mation and Control, 7(1):1-22, 1964.

R. Solovay. unpublished manuscript, IBM Thomas J. Watson Research

Center. Draft of a paper (or series of papers) on Chaitin’s work, 1975.

K. Tadaki. The Tsallis entropy and the Shannon entropy of a universal

probability. CoRR, abs/0805.0154, 2008.

C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics. J. Stat.

Physics, 52:479-487, 1988.

of

Bell system

=



